
An Architecture for Archiving and Post-Processing Large,
Distributed, Scientific Data Using SQL/MED and XML

Mark Papiani, Jasmin Wason, and Denis Nicole

[papiani@computer.org, jlw98r@ecs.soton.ac.uk, dan@ecs.soton.ac.uk]

High Performance Computing Group

Dept Electronics and Computer Science

University of Southampton



University
of Southampton

High

Performance 

Computing 

Overview

This talk describes - An architecture and an implementation for an active web-
based scientific data archive known as EASIA (Extensible Architecture for
Scientific Information Archives).

❖ Motivation - Large datasets from UK Turbulence Consortium
❖ Approach to problem of limited Bandwidth - distributed, active archive

❖ System Architecture - use of XML defined user interface / DATALINKs
❖ User Interface - Searching and Browsing

❖ SQL/MED
❖ Operations - Loosely coupled, distributed, standard server-side post-processing

codes - incorporated via simple XML defined interfaces
❖ Java Code upload for secure server-side execution



University
of Southampton

High

Performance 

Computing 

Motivation (i)

We have been working with the UK Turbulence Consortium to provide an architecture for
archiving and manipulating the results of numerical simulations.

•larger grid sizes - United Kingdom's new national scientific supercomputing resource.

• One complete simulation, comprising perhaps one hundred timesteps, requires a total
storage capacity of some hundreds of gigabytes.

• Improve collaboration between groups working on turbulence by providing a mechanism
for dissemination of data to members of the turbulence modelling community.

⇒ Necessitates new Web-based mechanisms for storage, searching and
retrieval of multi-gigabyte datasets that are generated for each timestep in a
simulation.

⇒ In particular, an architecture is required that can minimise bandwidth
usage whilst performing these tasks.



University
of Southampton

High

Performance 

Computing 

Motivation(ii): Active scientific data archives

• Caltech Workshop on Interfaces to Scientific Data Archives - identified an urgent
need for infrastructures that could manage and federate active libraries of
scientific data.

Williams, R., Bunn, J., Reagan, M., and Pool, C., T. Workshop on Interfaces to Scientific
Data Achives, California, USA, 25-27 March, 1998, Technical Report CACR-160,
CALTECH, 42pp. http://www.cacr.caltech.edu/isda

• Hawick and Coddington - “An active data archive can be defined as one where
much of the data is generated on-demand, as value-added data products or
services, derived from existing data holdings”. They also state that the information
explosion has led to a very real and practical need for systems to manage and
interface to scientific archives.

Hawick, K., A. and Coddington, P., D. Interfacing to Distributed Active Data Archives,
Journal on Future Generation Computer Systems, to appear.



University
of Southampton

High

Performance 

Computing 

Approach (i)
Starting point was to look at see if we could used a system we developed in 1996:
DBbrowse - an automated web-based interface to an object-relational database
management system (implemented using HTML/CGI/PERL).

• This generates a schema driven web interface, akin to QBE (Query-by-example)
that incorporates searching and browsing of a database.

• Browsing is based on hypertext links in search results, that link to related data in
related tables.

• Relationships are inferred by referential integrity constraints in the DB catalogue
metadata.

• BLOB and CLOB types also contain hypertext links that rematerialise the
underlying objects and return them to the user’s browser with the appropriate
MIME type set.



University
of Southampton

High

Performance 

Computing 

Time Direction of
Transfer

Bandwidth
(Mbit/s)

Estimated time to
transfer small

simulation data
file

Estimated time to
transfer large

simulation data
file

Day To Southampton 0.25 45m20s 4h50m08s
Day From Southampton 0.37 30m38s 3h16m02s
Evening To Southampton 0.58 19m32s 2h05m03s
Evening From Southampton 1.94 5m51s 37m23s

Approach (ii) - Experimental ftp bandwidth
measurements

However - DBbrowse would need to be re-architected to cope with large datasets

• Experimental results demonstrated that using the Web to transfer datasets to a central archive and
retrieve them is not feasible.

• Two file sizes - 85 MByte for a small simulation and 544 MByte large simulation.
(Two current simulation resolutions being used by the UK Turbulence consortium.)

• University of Southampton currently - 10 Mbit/s connection to SuperJANET.
• Repeated measurements of transfer to/from Queen Mary & Westfield College, London (also 10 Mbit/s).

• Not surprisingly, evening is the best time to transfer files. Less predictable is the fact that supplying
result files from Southampton will achieve significantly better performance than trying to send results to
Southampton.



University
of Southampton

High

Performance 

Computing 

Bandwidth Problems

User’s Browser Scientific Data
Archive

User’s Browser Scientific Data
Archive

Upload large dataset

Download large dataset

First problem!

Second problem!

⇒ Our Solution:

1) Archive data where it is generated

2) Post-process - data reduction - ‘operations’ and code upload



University
of Southampton

High

Performance 

Computing 

New approach (i)
• Rewrite DBbrowse system using HTML/JavaScript on the client and Java
Servlets/JDBC/Object-relational DBMS/XML on the server side.

Change the architecture to deal with large datasets in a low bandwidth environment:

⇒ Distribute the data and add user defined post-processing (loosely couple to the data via
XML interfaces).

We demonstrate that the new DATALINK type, defined in the draft SQL:1999 (formerly SQL3)
SQL Management of External Data Standard (SQL/MED), which facilitates database
management of distributed external data, can help to overcome problems associated with
limited bandwidth.

We show that a database can meet the apparently divergent requirements of storing both the
relatively small simulation result metadata, and the large result files, in a unified way, whilst
maintaining database security, recovery and integrity.



University
of Southampton

High

Performance 

Computing 

New approach (ii)

• By managing data in this distributed way, the system allows post-processing of archived
simulation results to be performed directly without the cost of having to rematerialise to files.

• This distribution also reduces access bottlenecks and processor loading.

• We also separate the user interface specification from the user interface processing

We provide a tool to generate automatically a default user interface specification, in the
form of an XML document, for a given database. The XML user interface specification
(XUIS) file.

• Our architecture can archive not only data in a distributed fashion, but also applications.
Applications are loosely coupled to the datasets (in a many-to-many relationship) via XML
defined interfaces. They provide reusable server-side post-processing operations such as data
reduction and visualisation.



University
of Southampton

High

Performance 

Computing Benefits of the EASIA architecture

• The system can be accessed by users of the scientific archive, who may have little or no database or Web
development expertise. Users are presented with a dynamically generated HTML query form that
provides a search interface akin to Query by Example (QBE).

• The default interface specification adds a novel data browsing facility to maintain a Web-based feel.

• Large result files can be archived at (or close to) the point where they are generated.

• Because simulation results are stored in unmodified files, existing post-processing applications (e.g.
FORTRAN codes), that use standard file I/O techniques, can be applied to the files without having to
rewrite the applications.

• We are using our architecture to build a large scientific archive from commodity components, with
many distributed machines acting as file servers for a single database. Security, backup and integrity of
the file servers can be managed using SQL/MED. This arrangement can provide high performance in
the following areas:

•Data can be distributed so that it is physically located closest to intensive usage.
•Data distribution can reduce access bottlenecks at individual sites.
•Each machine provides a distributed processing capability that allows multiple datasets to be
post-processed simultaneously. Suitable user-directed post-processing, such as array slicing and
visualisation, can significantly reduce the amount of data that needs to be shipped back to the
user.



University
of Southampton

High

Performance 

Computing System architecture



University
of Southampton

High

Performance 

Computing 

Architecture (ii)

Database server host (located at Southampton University)

Stores metadata describing the scientific information such as, simulation titles, descriptions
and authors. This data is stored locally in the database and is accessed by our servlet code
using Java Database Connectivity (JDBC)

File server hosts that may be located anywhere on the Internet

Store files referenced by attributes defined as DATALINK SQL-types. These file servers
manage the large files associated with simulations, which have been archived where they were
generated.

When the result of a database access yields a DATALINK value, our interface presents this to
the user as a hypertext link that can be used to download the referenced file. The URL contains
an encrypted key that is prefixed to the required file name. This data can also be post-
processed.



University
of Southampton

High

Performance 

Computing 

Demo:
http://www.hpcc.ecs.soton.ac.uk/~turbulence

username: guest
password: guest

Guest users:

•cannot download
datasets

•cannot upload
post-processing
codes

•are limited in the
types of operations
they can run



University
of Southampton

High

Performance 

Computing 

Searching and browsing the archive

Users can begin to locate information in the scientific archive by
searching or browsing data or by using a combination of both techniques.

Searching

- Select a link to a query form for a particular table

On the query form, the user selects the fields to be returned. Also for
each field present, restrictions including wildcards may be put on the
values of the data.

Other features to aid direct searching - restrictions and sample values
from drop-down lists - choices of attribute names, relation names and
operators

- Alternatively request all data for a table



University
of Southampton

High

Performance 

Computing 

Searching and browsing the archive

5 tables used for the Turbulence database

simulation
codes and post-
processing
codes

datasets

metadata
identifying
simulation



University
of Southampton

High

Performance 

Computing 

Sample database schema



University
of Southampton

High

Performance 

Computing 

Searching the archive



University
of Southampton

High

Performance 

Computing 

Result table from querying SIMULATION table

Primary key
browsing

Foreign key browsingCLOB browsing



University
of Southampton

High

Performance 

Computing 

Browsing

✦ Foreign Key Browsing
(Selecting a link on an AUTHOR_KEY value will retrieve full details of the author)

✦ Primary Key Browsing
(SIMULATION_KEY links to three tables where it appears as a foreign key; the RESULT_FILE table,

CODE_FILE table and VISUALIATION_FILE table. Selecting one of these values will return all
the rows that the key appears in from one of the referenced tables)

✦ BLOB and CLOB
(Store small files that can be uploaded over the Internet. Hypertext link displays size of object -

rematerialised and returned to the client)

✦ DATALINK Browsing

(Hypertext link displays size of object - contains an encrypted key, required to access the file from the
remote file server)



University
of Southampton

High

Performance 

Computing 

DATALINK browsing

DATALINK retrieves file
from remote file server
using encrypted key



University
of Southampton

High

Performance 

Computing 

SQL/MED (Management of External Data)
ANSI and ISO have accepted the proposal for SQL Part 9: Management of External Data*

this includes the specification of the DATALINK type.

ISO progressed SQL/MED to Committee Draft (CD) in December 1998 and it should become a
standard in late 2000.

DATALINKs provide the following features for database management of external files:
• Referential Integrity (an external file referenced by the database cannot be renamed or
deleted)

• Transaction Consistency (changes affecting both the database and external files are executed
within a transaction. This ensures consistency between a file and its metadata)

• Security (file access controls can be based on the database privileges)

• Coordinated Backup and Recovery (the database management system can take responsibility
for backup and recovery of external files in synchronisation with the internal data)

*Mattos, N., Melton, J. and Richey, J. Database Language SQL-Part 9: Management of
External Data (SQL/MED), ISO/IEC Committee Draft, CD 9075-9 (ISO/IEC JTC 1/SC 32
N00197), December, 1988. ftp://jerry.ece.umassd.edu/isowg3/dbl/YGJdocs/ygj023.pdf



University
of Southampton

High

Performance 

Computing 

DATALINK Type (i)

CREATE TABLE RESULT_FILE (
download_result DATALINK
LINKTYPE URL
FILE LINK CONTROL
READ PERMISSION DB
…

• FILE LINK CONTROL -- a check should be made to ensure the existence of the file during a
database insert or update.

• READ PERMISSION DB -- files can only be accessed using an encrypted file access token,
obtained from the database by users with the correct database privileges

• Several other parameters and options are supported for the DATALINK type.



University
of Southampton

High

Performance 

Computing 

DATALINK Type (ii)
A DATALINK value can be entered via a standard SQL INSERT or UPDATE statement.

The value takes the form:
http://host/filesystem/directory/filename

An SQL SELECT statement retrieves the value in the form:
http://host/filesystem/directory/access_token;filename

The file can then be accessed from the filesystem in the normal way using the name:

access_token;filename

or, by using the full URL if the file is placed on a Web server (as in EASIA). The access tokens
have a finite life determined by a database configuration parameter. This can be set to expire
after an interval.



University
of Southampton

High

Performance 

Computing 

XUIS - XML User Interface Specification File

• System is started by initialising the Java servlet code (on DB server host)
with an XUIS.

• Default XUIS can be created prior to system initialisation using a tool that we
provide.

•Written in Java, uses JDBC to extract data and schema information
from the database being used to archive simulation results.

• Default XUIS conforms to a DTD that we have created. The default
XUIS can be customised prior to system initialisation.

• The XUIS contains table names, column names, column types, sample
data values for each column, and details of primary keys and foreign
keys.

• The XUIS also allows aliases to be defined for table and column names.

• XUIS defines interfaces for post-processing operations

•XUIS specifies if DATALINK column supports user upload of codes for
execution against the stored data files



University
of Southampton

High

Performance 

Computing 

XUIS fragment

<table name="AUTHOR" primaryKey="AUTHOR.AUTHOR_KEY">

<tablealias>Author</tablealias>

<column name="AUTHOR_KEY" colid="AUTHOR.AUTHOR_KEY">

<type><VARCHAR/><size>30</size></type>

<pk><refby tablecolumn="SIMULATION.AUTHOR_KEY" /></pk>

<samples>

<sample>A19990110151042</sample>

<sample>A19990209151042</sample>

</samples>

</column>



University
of Southampton

High

Performance 

Computing 

Customisation in EASIA - through XUIS modification

Foreign key (AUTHOR_KEY)
replaced with data from a
specified column (Name) in the

referenced Author table

Single primary key column replaced
by multiple columns that identify
linked tables (pk to fk relationship )



University
of Southampton

High

Performance 

Computing 

XUIS Customisation

<table name = "SIMULATION" primaryKey = "SIMULATION.SIMULATION_KEY">

<tablealias>define alias for table name here</tablealias>

<column name = "AUTHOR_KEY" colid = "SIMULATION.AUTHOR_KEY">

<!--Foreign key link defined here, with possible

substitute columns->

<fk tablecolumn = "AUTHOR.AUTHOR_KEY"

substcolumn = "AUTHOR.NAME"/>

<samples>

<sample>user defined sample 1</sample>

<sample>user defined sample value 2</sample>

</samples>



University
of Southampton

High

Performance 

Computing 

Operations
EASIA architecture allows the XUIS to be modified to allow post-processing applications that have
been archived using DATALINK values to be dynamically executed server-side to reduce the data
volume returned to the user.

These applications can consist of Java classes or any other executable format, suitable for the file
server host on which the data resides, including C, FORTRAN and scripting languages.

These applications do not have to be specially written for our architecture (in fact, operations stored
as DATALINKs can be downloaded separately for standalone execution elsewhere) and they can be
packaged in a number of different formats including various compressed archive formats (such as
tar.Z, gz, zip, tar etc.).

The only restriction is that the initial executable file accepts a filename as a command line parameter.

This filename will correspond to the name of a dataset to be processed.

Archived applications are associated with a number of archived datasets using a mark-up syntax that
we have defined for ‘operations’ in the XUIS.

If the application allows other user-specified parameters, the syntax for operations has been defined
so that an HTML form will be created to request these parameters at invocation time.



University
of Southampton

High

Performance 

Computing 

XUIS fragment for an operation (i)

<column name="DOWNLOAD_RESULT"

colid="RESULT_FILE.DOWNLOAD_RESULT">

<type><DATALINK /></type>

<operation name="GetImage" type="JAVA" filename="GetImage.class"
format="jar" guest.access="true" column="false">

<if>

<condition colid="RESULT_FILE.SIMULATION_KEY">

<eq>'S19990110150932'</eq>

</condition>

</if>

<location>

<database.result colid="CODE_FILE.DOWNLOAD_CODE_FILE">
<condition colid="CODE_FILE.CODE_NAME">

<eq>'GetImage.jar'</eq>

</condition>

</database.result>

</location>

<parameters> ...



University
of Southampton

High

Performance 

Computing 

XUIS fragment for an operation (ii)

<parameters>

<param><variable>

<description>Select the slice you wish to visualise:</description>

<select name="slice" size="4">

<option value="x0">x0=0.0</option>

<option value="x1">x1=0.1015625</option>

<option value="x2">x2=0.203125</option>

...

</select>

</variable></param>

<param><variable>

<description>Select velocity component or pressure:</description>

<input type="radio" name="type" value="u">u speed</input>

<input type="radio" name="type" value="v">v speed</input>

<input type="radio" name="type" value="w">w speed</input>

<input type="radio" name="type" value="p">pressure</input>

</variable></param>

</parameters>



University
of Southampton

High

Performance 

Computing 

Result table showing operations available for
post-processing datasets

Operations available on datasets (data and operations
archived using DATALINKS)

Code upload available for
server-side processing



University
of Southampton

High

Performance 

Computing 

Input form for operation (generated according to XUIS)



University
of Southampton

High

Performance 

Computing 

Output from operation execution



University
of Southampton

High

Performance 

Computing 

URL Operations

• The XUIS can also specify operations as URLs

• These correspond to Servlet or CGI based post-processing services running on the
same host as a particular DATALINK file server

• The following example shows how to include NCSA’s Scientific Data Browser* CGI
code as a service in EASIA - for post-processing HDF datasets - Simply included via
XUIS modification

*Yaeger, N. A Web Based Scientific Data Access Service: The Central Component of a
Lightweight Data Archive, National Center for Supercomputing Applications, University of
Illinois, Urbana-Champaign. http://hopi.ncsa.uiuc.edu/sdb/sdb.html



University
of Southampton

High

Performance 

Computing 

XUIS fragment for the SDB operation

<operation name="SDB" type="" filename=""

format="" guest.access="true" column="false">

<if>

<condition colid="RESULT_FILE.FILE_FORMAT">

<eq>'HDF'</eq>

</condition>

</if>

<location>

<URL>http://quagga.ecs.soton.ac.uk:8080/servlet/SDBservlet</URL>

</location>

<description>NCSA Scientific Data Browser</description>

</operation>



University
of Southampton

High

Performance 

Computing 

NCSA’S SDB invoked on a dataset managed
within our interface



University
of Southampton

High

Performance 

Computing 

Post-processing via uploaded Java code

Authorised users can upload Java code for secure server-side execution
against datasets stored as DATALINKs on file server hosts

Code must accept filename as first command line parameter

Code must write output to relative filenames



University
of Southampton

High

Performance 

Computing 
Code upload for server-side execution - XUIS

<table name = "RESULT_FILE"

primaryKey = "RESULT_FILE.FILE_NAME RESULT_FILE.SIMULATION_KEY">

<column name="DOWNLOAD_RESULT"

colid= "RESULT_FILE.DOWNLOAD_RESULT">

<type><DATALINK/></type>

<!-- Code upload is allowed against this DATALINK, but not by

guest users. A Java jar file can be run against the data-->

<upload type="JAVA" format="jar" guest.access=“false”

column="false">

<!--Only allow this operation on attributes in this column that

meet the following conditions-->

<if>

<condition colid="RESULT_FILE.SIMULATION_KEY">

<eq>'S19990110150932'</eq>

</condition>

<condition colid="RESULT_FILE.MEASUREMENT">

<eq>'u,v,w,p'</eq>

</condition>

</if>

</upload>

</column>



University
of Southampton

High

Performance 

Computing 

Implementation of Operations/Code Upload (i)

Initial idea - a specially written operation startup servlet running within the
JWS would dynamically load the required Java class (using Java Reflection).

Any output would be written to a temporary directory that had a unique
name based on the user’s servlet session identifier (and time/date
information).

However, it is extremely difficult to redirect any file output to the temporary
directory using this mechanism.

Although it is straightforward in Java to redirect any output directed to
standard output or standard error to files in the temporary directory, it was
not possible to get the startup servlet to redirect any other file output from
the user’s code (which used relative path names as mentioned previously)



University
of Southampton

High

Performance 

Computing 

SUN BUG Report -Setting the current directory
from Java

The following bug report is taken from the Sun's Java Developer Connection
Bugs Database (http://developer.javasoft.com/developer/jdchome.html)

Bug Id: 4307856
Submit Date: Jan 27, 2000
Description: There should be a way for a Java application (not an applet) to
set the current directory. This feature has a number of uses but it's mainly
necessary to run certain applications launched from the Java application. This
has been sorely missing for years and it's causing a lot of problems for
developer that are then forced to use ugly hacks to work around the problem.
Workaround: None.
Evaluation: The Java platform API specifically does not allow the working
directory to be changed, since having such mutable global state would vastly
complicate writing multithreaded programs (4307856). For the purpose of
creating a subprocess that runs in a different directory, however, a new
variant of the Runtime.exec method was introduced in J2SDK 1.3 (Kestrel, see
RFE 4156278).



University
of Southampton

High

Performance 

Computing 

Implementation of Operations/Code Upload (ii)

Batch file approach supports changing directory and post-processing codes
written in other languages.

Batch file is dynamically created by the startup servlet and contains commands to
unpack operation into temporary directory and appropriate commands to invoke
second Java interpreter or non-Java post-processing code.

The batch file mechanism is also used to run uploaded post-processing codes. This
is required to not only fix the file output problem, but also to implement the
'sandboxing' restrictions required in this case.

Startup servlet then creates a script that changes to the required temporary
directory, unpacks the uploaded jar archive, and then invokes another Java
interpreter with another special secure application class that is used to implement
the 'sandboxing' for uploaded code.

This special class declares appropriate security restrictions and then dynamically
loads and runs the user's uploaded code using Java reflection (applied to the
user's input corresponding to the name of the class to run).



University
of Southampton

High

Performance 

Computing 

Implementation of Code Upload

Invokes the operation class file via a
system call to a dynamically created
batch file. This batch file changes
the directory to the appropriate
temporary directory, unpacks the
code if it is stored in an archive
format (such as jar or zip) and then
invokes another Java interpreter to
run the operation class file for the
user’s requested post-processing
code



University
of Southampton

High

Performance 

Computing 

Web-based user management



University
of Southampton

High

Performance 

Computing 

Future

✦ Caching operations results

✦ Runtime monitoring of operation progress

✦ Store operation statistics (execution time, output details) for benefit of future
users

✦ Can other languages be uploaded for secure execution?

✦ Extend XUIS DTD for more complex operation specification
❖ operation chaining

❖ operations applied to multiple datasets

❖ Interactive applet based operations



University
of Southampton

High

Performance 

Computing Summary (i)
• Demonstrated an architecture for an active digital library to meet a requirement of the
UK Turbulence Consortium to make available to authorised users, large result files from
numerical simulations, with a total storage requirement in the hundreds of gigabyte range.

• Greatly reduce bandwidth requirements by avoiding costly network transfers associated
with uploading data files to a centralised site and by allowing data reduction through post-
processing - archive applications along with data, which can be dynamically invoked to
post-process the data.

• Data and code distribution reduces retrieval bottlenecks/processing loading at individual
sites.

•Complete architecture including Web-based user interface for archiving large, distributed
files whilst maintaining database security, integrity and recovery.

• Help users locate scientific data files of interest, using an intuitive searching
and browsing mechanism in keeping with a Web-based look and feel.

• Automate the interface construction so that it requires little database or Web
development experience to install and access. Generic, schema-driven system
that can be used to manage many different types of large, distributed data
archives.



University
of Southampton

High

Performance 

Computing 

Summary (ii)
Automated construction -- XML user interface specification (XUIS) - generated by tool

Separating the user interface specification from the user interface processing can provide a
number of further advantages:

• Customisation - Schema driven user interface can be customised (aliases for table
and column names , different sample values, tables and attributes can also be hidden
from view).

• User defined relationships between tables - Hypertext links to related data can be
specified in the XML even if there are no referential integrity constraints defined for
the database.

• Personalisation - Different Users (or classes of user) can have different XML files -
different user interfaces to the same data.

• Operations can be associated with database columns - standard reusable server-side
post-processing codes loosely coupled to the datasets via XML defined interfaces


