The audio quality, robustness and complexity issues of a novel mobile digital audio broadcast (DAB) scheme are addressed. The audio codec is based on subjective quality was achieved for a combination of subbands and a perceptual hearing model. Typically a segmental signal to noise ratio (SEGSNR) in excess of 30 dB associated with high fidelity (HI-FI) subjective quality was achieved for 2.67 bits/sample transmissions at a mono bit rate of 86 kb/s. Four different source-matched forward error correction (FEC) schemes were investigated in order to explore the complexity, bit rate and robustness trade-offs. When using 4 bits/symbol 16-level star-constellation quadrature amplitude modulation (16-StQAM) the overall signalling rate became approximately 30 kbd, accommodating two stereo DAB channels in a conventional 200 kHz analogue FM channel’s bandwidth. Our diversity assisted DAB scheme required a channel signal to noise ratio (SNR) of about 25 dB for unimpaired audio quality via the worst-case Rayleigh fading mobile channel, when the mobile speed was 30 mph and the propagation frequency was 1.5 GHz. In case of the stationary Gaussian scenario an SNR of about 20 dB was required.

2. THE AUDIO CODEC

The MMPLPC codec’s schematic diagram is shown in Figure 2, which is similar to that of a conventional MPLPC arrangement [3], except that it incorporates \(N_r \) number of different excitation modes, where we have opted for \(N_r = 2 \), corresponding to Mode 1 and Mode 2. The audio input signal \(s(n) \) is divided into frames of \(N \) samples for LPC analysis and the LPC filter parameters are determined by minimising the mean squared prediction error \(E_w \) over this interval. Each frame is further divided into contiguous subframes of \(N_s \) samples, for which the long term predictor (LTP) delay \(D \) and gain \(G_l \) parameters minimising the mean squared error \(E_w \) for the current subsegment are determined [4].

The MMPLPC codec’s efficiency can be further improved, if the human ear’s frequency and energy sensitive properties are exploited by dividing the audio bandwidth into subbands corresponding to the critical bands found in hearing. However, after band splitting, the correlation between adjacent time domain samples is reduced, and the more the band is split, the more this correlation is decreased. The MMPLPC codec utilizes linear prediction requiring high correlation between adjacent samples. In order to compromise, we chose four-band splitting.

In the SB-MMPLPC codec seen in Figure 1 the input audio signal \(s_a(n) \) is split into four subbands: 0-4 kHz, 4-8 kHz, 8-12 kHz, 12-16 kHz, by a Quadrature Mirror Filter (QMF) bank, using two cascaded 64th order QMF filters [3]. The four subband signals \(\{ s_b(n), k = 1, 2, 3, 4 \} \) are each encoded by an MMPLPC codec.

Since hearing sensitivity is different for the different subbands, the short time energy \(\sigma_k^2 \) in each subband was estimated and subband \(k \) was assigned to one of sixteen empirically designed different bit allocation classes \(C_j, j = 1 \ldots 16 \), as demonstrated by Table 1 designed for subbands SB1 and SB2. Similar tables were constructed for the less significant subbands SB3 and SB4 summarising for both excitation modes the number of excitation pulses \(N_p \), their quantisation accuracies in terms of the number of bits/pulse as well as the number of bits needed for the encoding of their positions, when using the enumerative method [5]. For the same bit allocation class \(C_j(k) \) the lower frequency subbands SB1 and SB2 \(k = 1, 2 \) were typically assigned a higher number of excitation pulses and higher number of pulse amplitude
Figure 1: SB-MMPLPC Codec Schematic

Figure 2: Schematic of 4-band subband MMPLPC encoder
quantisation bits of the high-frequency subbands SB3 and SB4.

The LPC analysis frame size of 20 ms was found to be suitable for every subband. As expected, the LPC prediction gain increased in each subband, when the LPC order was increased. To achieve high fidelity audio, much higher excitation densities were needed than for encoding speech.

The number of LPC filter coefficients was 6,4,4,4 for subbands 1,2,3,4 respectively. The LPC filter parameters were quantized by linear quantization of log-area ratios [3] \(LAR_k(k) \). After band splitting to a bandwidth of 4 kHz, the sampling frequency was reduced to 8 kHz, yielding a subsegment length of 5 ms, equivalent to 40 samples. Accordingly, a subsegment excitation frame size of 5 ms or 40 samples was used for our SB-MMPLPC codec. Again, the excitation pulse positions were encoded using the enumerative method [5]. A long term predictor (LTP) was also invoked, as it provided a noticeable increment in subjective and objective quality when the excitation pulse density was low, and even for high excitation densities, it retained the same performance as without the LTP both in terms of bit rate and SEGSNR. For each subband, 4 bits were needed to linearly quantize the LTP filter gain, while 7 bits were used to encode the LTP delay.

When quantising the excitation pulse amplitudes \(g_k \), we found that if the number of excitation pulses \(N_g \) was less than six, 3, 4, 5, or 6 bit quantization achieved almost the same quality with the segmental SNR differing by only 0.2 dB, while the number of excitation pulse quantisation bits doubled. If \(N_g \) was from six to ten, 4, 5, or 6 bit quantization had a similar effect, whereas if \(N_g \) was from eleven to sixteen, 5 or 6 bit quantization also got to within 0.2 dB and so on. So when we constructed Table 1 and the equivalent tables for SB3 and SB4, we used less precision to quantize the lower excitation density pulses, while higher precision was employed to quantize the higher excitation density pulses. The excitation pulse amplitudes were normalised by their maximum value within the subsegment and this maximum value was logarithmically quantised using eight bits for each subsegment and each subband before quantisation. The MMPLPC codec structure was identical for all four subbands. The total number of bits per 20 ms became 1707, which yielded a mono bit rate of about 86 kbits/s at a coding rate of 1707 bits/640 samples \(\approx 2.67 \) bits/sample.

| Table 1: Bit Allocation Scheme for bands B1 and B2 of the SB-MMPLPC Codec |

<table>
<thead>
<tr>
<th>(N_g)</th>
<th>bit/pulse position</th>
<th>(N_g)</th>
<th>bit/pulse position</th>
<th>total bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>4</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
<td>37</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>5</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>5</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>5</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>5</td>
<td>37</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>6</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>6</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>7</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
<td>7</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>7</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>39</td>
<td>7</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>7</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 3: Broadcasting System Schematic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(C_i(t))</th>
<th>Mode</th>
<th>Bit-position</th>
<th>LTP delay</th>
<th>Bit-position</th>
<th>LTP gain</th>
<th>Bit-position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_i)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB1-SB4</td>
<td>103</td>
<td>35</td>
<td>24</td>
<td>24</td>
<td>20</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>SB1</td>
<td>104-107</td>
<td>108-111</td>
<td>112-115</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB2</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB3</td>
<td>121-127</td>
<td>128-134</td>
<td>135-141</td>
<td>142-148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB4</td>
<td>149-152</td>
<td>153-156</td>
<td>157-160</td>
<td>161-164</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: SB-MMPLPC bit allocation for the first subframe

Having considered the audio codec used in our DAB transceiver we now focus our attention on transmission issues.

3. THE DAB TRANSCEIVER

The schematic diagram of our audio broadcast transceiver is depicted in Figure 3, where the audio encoder's source bits are source-matched forward error correction (FEC) coded and 16-level quadrature amplitude modulated (16-QAM) on to a 1.5 GHz satellite carrier. Low-complexity non-coherent 4 bits/symbol 16-QAM is used [6] combined with a range of embedded block FEC codes [3] in order ensure high bandwidth efficiency.

The proposed 2.67 bits/sample SB-MMPLPC audio codec was subjected to bit sensitivity investigations by systematically corrupting all of its bits in a 1707 bit frame and evaluating the SEGSNR penalty inflicted. When for example the sensitivity of bit 1 was investigated, this bit was consistently corrupted in every frame, while keeping all other bits intact. The 1707-bit frame is constituted by 103 bits for the LPC parameters and 401 bits for every 5 ms subframe. The detailed bit allocation within a frame is shown in Table 2, where A, B, C, and D represent quantities having a variable number of quantisation bits in the subbands SB1-SB4 that add up to a fixed value of \(A+B+C+D = 340 \) bits. The overall shape of the SEGSNR degradation versus bit in-
index sensitivity curves, which are omitted here due to lack of
space, suggested that basically there are two sensitivity
classes, the sensitive C1 and the more robust C2 categories,
associated with more than 15 dB and less than 10 dB
SEGSNR degradations, respectively. These findings were
also confirmed by injecting random errors assuming a given
fixed BER, as would be experienced over a Gaussian chan-
nel. From these experiments we confirmed that the BER of
the more sensitive C1 bits must be below about 10^{-4},
while that of the more robust C2 bits below about 10^{-3}, in
order to ensure acceptable audio quality, although even lower
BERs are preferable.

Based on the above findings as regards to the bit sen-
sitivities we experimented with a source-sensitivity matched
twin-class and three different full-class FEC schemes. Long
Reed-Solomon (RS) FEC block codes inherently possess
good error randomising properties over bursty channels, but
are complex to implement. In our deliberations we will
represent this class of codes using the powerful half-rate
RS(380,190,95) code over the finite Galois field GF(512),
which encodes 190 nine-bit symbols into 380 symbols and
can correct 95 symbol errors. This code represents the
highest practically achievable implementation complexity
for our system and when encoding the 86 kbits/s audio
information generated by the SB-MMPLPC encoder we have
a bit rate of about 171 kbits/s. Using our 4 bits/symbol
non-coherent 16-QAM modem this yields a signalling rate
of 42.75 kBD that requires a bandwidth of about 64 kHz,
when employing an excess bandwidth of 50 %.

A very good compromise in terms of implementational
complexity and error correcting power is constituted by the
family of binary BCH codes of 63 bits length. Often used
members of this family are the BCH(63,30,6), BCH(63,36,5),
BCH(63,39,4), BCH(63,45,3), BCH(63,51,2) and BCH(63,
57,1) codes, correcting 6, 5, 4, 3, 2 and 1 bits per frame,
respectively. The BCH(63,30,6) code has a coding rate
of R = 30/63 ≈ 0.5 and will be used in our experiments as a
low-complexity alternative to the complex but similar rate
RS(380,190,95) code. The associated bit rate for our DAB
transceiver becomes 179.55 kbits/s, yielding a 16-QAM sig-
alling rate of 44.9 kBD and necessitating a bandwidth of 67
kHz.

A third FEC scheme that we will investigate is consti-
tuted by a twin-class embedded source-matched un-equal
protection arrangement. Our proposed audio codec has a
frame length of 20 ms, which is encoded using 1707 bits.
Accordingly, these bits are mapped into two sensitivity classes,
C1, C2 and matched BCH codes are assigned to them. The
number of bits in the sensitivity classes C1 and C2 are 684
and 1020, respectively, yielding a total of 1704 bits, and
three bits are unprotected. The FEC codes assigned are the
double-error correcting BCH5 = BCH(63,36,5) and double-
error-correcting BCH2 = BCH(63,51,2) codes, respectively.
In C1 there are nineteen, while in C2 twenty BCH code
words, respectively, and the total number of FEC-coded bits
is 2457 + 3 = 2460.

In the audio transmission frames bits 1-103 represent
the LAR parameters, while each of the four subsegments is
encoded by 401 bits, yielding a total of 103 + (4.401) = 1707
bits. The LAR bits 1-103 are assigned to C1, along with the
most important 145 bits of each subsegment, yielding a total
of 103 + (4.145) = 684 C1 bits. The remaining 4.255 =
1020 C2 bits are assigned to the weaker BCH2 codec. The
overall coding rate becomes R = 1707/2460 ≈ 0.69, while the
transmission rate is 123 kbits/s, giving a Baud rate of about
30.7 kBd. The required bandwidth is 1.5 · 30.7 = 46
kHz.

The performance of this scheme will be gauged against
that of a similar rate, but less complex single-class code,
namely the BCH(63,45,3) code, for which R = 45/63 =
0.71, the total number of bits per frame is 2394, the bit rate
becomes 119.7 kbits/s and the signalling rate is ≈ 30 kBd.
The bandwidth requirement of this scheme is about 45 kHz.

The 'FEC encoder/decoder scheme' drawn in dashed
lines in Figure 3 represents the four previously mentioned
FEC schemes. If the RS(380,190,95) scheme is used, no
mapping and interleaving is needed, since the entire audio
frame is encoded by a single 9 · 190 = 1710 bit codeword,
requiring only 3 padding bits. In case of the BCH(63,30,6)
code 1710/30 = 57 codewords constitute an audio frame,
allowing for an interleaving depth of 57 words, but again, no
source mapping is required. When using the BCH(63,45,3)
code, 1710/45 = 38 codewords encode an audio frame, hence
the interleaving depth is 38.

Lastly, when the twin-class source-matched FEC scheme
is used, the audio encoder's bits are sorted by the 'Mapper'
to two sensitivity classes according to their vulnerabil-
ity, as described earlier in this Section. Twin-class unequal
error protection is deployed using the previously proposed
63-bit binary two- and five-error correcting BCH codes
noted by BCH2 and BCH5, respectively. The FEC coded
bits are rectangularly interleaved over the current 20 ms
audio frame, namely over 20 and 19 BCH5 and BCH2 codewords,
respectively. The interleaved bits are mapped back
in one stream by another bit 'Mapper', multiplexed by the
Time Division Multiple Access (TDMA) multiplexer (MPX)
with three additional mono or another stereo audio program,
as it will be explained in the next paragraph, 16-StQAM
modulated onto a 1.5 GHz carrier and transmitted via the
Rayleigh fading broadcast channel.

The half-rate FEC-coded schemes have a stereo band-
width requirement of about 2 · 67 = 134 kHz. Single channel
per carrier (SCPC) transmissions with a stereo bandwidth
of about 134 kHz are common in terms of low transmission
bitrate, which is well below the coherence bandwidth of
the typical mobile broadcast channel, hence ensures that
the channel is essentially a narrowband flat fading transmis-
sion medium. Hence no 'power-hungry' channel equaliser
is required, which is crucial in order to maintain low receiver
complexity, low battery drain and hence ultimately light-
weight construction. However, at low signalling rates the
time between two adjacent signalling symbols is long and
hence the channel's fading envelope changes dramatically
between two adjacent transmitted samples and due to this
the 16-StQAM modem's BER performance suffers from its
lack of ability to efficiently trace the received signal's ampli-
ditude and phase trajectory. This is particularly true, if the
mobile receiver's speed is high.

Although the proposed second order switched diversity
receiver efficiently mitigates this problem, it is advantageous
in terms of improving the 16-StQAM BER performance to transmit several channels per carrier in a TDMA structure. This increases the transmission signalling rate and hence improves the receiver’s BER performance for slowly walking pedestrians. However, the transmission bit rate must not exceed the typical propagation channel’s coherence bandwidth in order to avoid using equalisers. A TDMA structure based on two stereo channels constitutes a good compromise in this respect.

A further advantage of the TDMA structure is that the receiver can monitor the reception quality of other transmitters during the unused time slot and allow seamless switching between two transmitters broadcasting the same program. The twin-channel stereo TDMA burst rate of the approximately \(R = 2/3 \) rate schemes becomes about \(4 \cdot 30 \text{ kbd} = 120 \text{ kbd} \), which requires a bandwidth of \(1.5 \cdot 120 = 180 \text{ kHz} \). This rate allows us to fit two stereo digital audio channels into one conventional analogue frequency modulated (FM) channel while ensuring that the transmission bandwidth is narrow with respect to the fading channel’s coherence bandwidth. The \(R \approx 0.5 \) rate schemes have an approximate signalling rate of 45 kbd, yielding a four-channel TDMA rate of about 180 kbd, which can accommodate a twin-channel stereo scheme slotted into a 270 kHz channel.

4. RESULTS AND DISCUSSION

In our experiments linear amplification was assumed, no AGC and carrier recovery were invoked, and the excess-bandwidth was 50%. Our results are provided for the best and worst case Gaussian and Rayleigh channels, respectively.

In Figure 4 we portray the BER performance of the proposed 16-StQAM modem for a signalling rate of 180 kbd assuming four-channel mono TDMA transmissions with diversity (D) at a mobile speed of 30 mph, and propagation frequency of 1.5 GHz using the set of BCH2-BCH6 codes and the RS(380,190,95) code. Note the gradual BER improvements, when using stronger codes. It is also interesting to observe that the most complex RS code is outperformed by the lower complexity BCH5 and BCH6 codes, if the SNR is about above 22-24 dB. Similar tendencies are also true for the AWGN channel, depicted in Figure 5, which is characteristic of the best stationary scenario.

The overall objective SEGSNR versus channel SNR performance of our proposed broadcast scheme is portrayed with diversity at a mobile speed of 30 mph, as well as for the stationary AWGN scenario in Figures 6 and 7, respectively. As anticipated from the BER versus channel SNR curves seen in Figures 4 and 5, best SEGSNR performance is guaranteed by the single-class protected half-rate type systems, namely the BCH6 and the RS coded arrangements. Again, the modest-complexity BCH(63,30.6)-coded scheme outperforms the more complex RS(380,190,95) arrangement. Both of these diversity-assisted higher bit rate schemes require an SNR of about 24 dB at 30 mph for unimpaired audio quality, while this 'corner' SNR value is about
Figure 7: SEGSNR versus channel SNR performance of the proposed 16-StQAM/TDMA transceiver via AWGN channels using various FEC codes.

17 dB for the stationary AWGN channel.

In case of the less robust and lower bit rate, lower complexity schemes only about one dB excess channel SNR was required in order to ensure unimpaired audio reception over the 30 mph Rayleigh-fading channel, when compared to the half-rate type systems. For transmissions over the more benign stationary AWGN channel the minimum required SNR was about 20 dB, some 2 dB higher than for the half-rate coded arrangements. The source-matched twin-class BCH2-BCH5 coding scheme failed to outperform the less complex single-class BCH3 codec due to the inherent error sensitivity of the SB-MMPLPC codec, because in case of bad channel conditions the weaker BCH2 code was more frequently overloaded than the BCH3 code. This resulted in a SEG-SNR penalty, in spite of the more robust protection of the C1 bits. Based on these experiences in our final proposed DAB scheme we favour the lowest complexity BCH3 codec.

5. SUMMARY AND CONCLUSIONS

When protecting the proposed 2.67 bit/sample SB-MMPLPC audio codec by the favoured BCH(63,45,3) code and using non-coherent differential 16-QAM, a mono bandwidth of about 45 kHz and a channel SNR in excess of about 25 dB are required for both pedestrian as well as typical urban vehicular speeds in order to maintain Hi-Fi DAB quality. Our current work is targeted at improving the audio quality, complexity, bit rate, bandwidth occupancy and error resilience trade-off using a pilot symbol assisted, block-coded coherent square 16-QAM modem [6].

6. REFERENCES

