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The propagation of planetary, or Rossby, waves is studied under the effects of different atmospheric
couplings. First, analytical matchings are formulated in which a Rossby wave is coupled to different
thermodynamical atmospheres, from a simple heat flux condition to the inclusion of an atmospheric
energy balance model. The effects on the vertical structure and phase speed of the first modes
are negligible. However, it is shown that for the latter case an unstable mode appears. This
growing mode, of decadal period and growth rate, has no physical source of energy and therefore
is a result of the oversimplified atmosphere employed. In fact, adding physics to the atmospheric
model results in a gradual disappearance of the instability. The possibility of observing similar
unphysical modes in climate studies, where oversimplified models are adopted, is raised.

Next, a quasi-geostrophic coupled model is used in order to analyse the oceanic Rossby wave
characteristics under the influence of a full atmosphere. The idealised eddy-resolving model consists
of an ocean basin underneath a channel atmosphere, and different configurations for the oceanic
component are used. The Rossby waves are observed to propagate faster than both the classical
linear theory (unperturbed solution) and the phase speed estimates when the effect of the zonal
mean flow is added (perturbed solution). Moreover, using statistical eigentechniques, a coupled
Rossby wave is identified, bearing the characteristics of the coupled mode proposed by Goodman
and Marshall (1999). It is argued that the atmospheric coupling is capable of adding an extra speed
up to the wave; in fact, when the waves are simply forced, their propagation speed approaches the
perturbed solution. The waves are observed to break into faster waves, as suggested by LaCasce
and Pedlosky (2004), although their resistance to dissipation and instabilities processes is enhanced
by the atmospheric coupling, which provides extra energy to the initial wave during its propagation.
The development of a coupled Rossby wave is found to be possible in a basin of the dimensions of
both the Pacific and the Atlantic ocean, and its characteristics and strength vary little when the
tridimensional accuracy of the ocean is increased.
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Chapter 1

Introduction

In this introduction we describe the general dynamics of planetary waves and try
to put them into a wider context, emphasising their role in the ocean circulation
and the coupled ocean-atmosphere system. We start by giving a brief introduction
of planetary wave theory and their general characteristics followed by a summary
of the new theories developed since the advent of satellite altimetry and the role
played in the ocean-atmosphere coupling. The chapter concludes with an outline of
the structure of the thesis.

1.1 Planetary waves and their role in ocean and cli-

mate dynamics

The time-dependent ocean circulation has an important impact on our climate due
to the ocean large heat capacity. Any abrupt change, the intrinsic variability and
possible variations of the general circulation caused by the atmospheric influence
is fundamental in climate studies. Moreover, the oceans are no longer considered
passive in the atmosphere-ocean system, but contribute to the production of the
climate low-frequency variability at interannual to decadal time scales (Talley, 1999;
Dewar, 2001; Pierce et al., 2001).

The oceans are forced at the surface by the wind frictional stress and Rossby
waves appear to play a fundamental role in redistributing and dispersing large-scale
time-varying energy in the ocean. The propagation of Rossby waves towards the
ocean interior under the influence of wind stress results in establishing a Sverdrup
balance in the basin, accumulating energy in the western boundaries and intensifying
currents there (Anderson and Gill, 1975, 1979).

The importance of Rossby waves in the spinup of the ocean and in the adjustment
of the ocean interior was also recently shown by Johnson and Marshall (2002).
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They proposed a theory for surface Atlantic response to thermohaline variability;
in their work they study the reaction of the ocean to a perturbation of the rate of
deep water formation at high latitudes. These changes initiate Kelvin waves which
propagate along the western boundary, in a similar response of that demonstrated by
Kawase (1987), and then cross the basin as equatorial Kelvin waves until they reach
the eastern boundary where they propagate northwards and southwards. The final
part of the response is the radiation of Rossby waves from the eastern boundary,
communicating the thermocline displacement to the ocean interior which is clearly
illustrated with a series of snapshots.

Due to the ubiquitous presence of Rossby waves in the world oceans they influ-
ence ocean gyres and air-sea fluxes at all latitudes, affecting in turn the atmospheric
heat transport and circulation. They are believed to provide teleconnections between
the equatorial and middle latitudes regions (Galanti and Tziperman, 2003) as well as
transhemispheric and interbasin communications (Cessi and Otheguy, 2003). Other
major effects are the maintenance and intensification of western boundary currents,
transport of a large amount of heat and, because of their time-scale, they play a key
role in the climate system.

1.1.1 The linear theory in a 3-layer ocean

The discovery of Planetary waves by the solution of Laplace’s equation as the second
class waves dates back to the late nineteenth century by Hough (1897). Later C.G.
Rossby pointed out the characteristic of these waves, hence they carry his name and
are also called Rossby waves.

Since then, Rossby wave theory is well known (Gill, 1982; Dickinson, 1978;
Leblond and Mysak, 1978) and is usually applied to an ocean at rest with uniform
depth.

Rossby waves owe their existence to the meridional variation of the Coriolis
force (the β effect) and therefore propagate following an east-west waveguide, as the
conservation of potential vorticity is their restoring force.

These kind of waves, whose frequencies are considerably lower than those of grav-
ity waves and are subinertial (σ � f), are also sometimes called quasigeostrophic
waves, with a dynamic evolution depending on the departure from geostrophy.

The generation of these waves is still not completely understood but the main
forcing is wind stress and buoyancy forcing, though the latter is thought to act
in a minor way, and upwelling-downwelling on the eastern boundary (Leblond and
Mysak, 1978; Gill, 1982).

In order to obtain and describe the Rossby wave solutions, we consider the
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linearised quasi-geostrophic (QG) potential vorticity equation (Pedlosky, 1987):

∂tqi + J(ψi, qi) = 0, i = 1, ..., N (1.1)

where J(a, b) = axby−aybx is the Jacobian, qi the layer potential vorticity and ψ the
stream function. Introducing a plane wave solution of the type ψ = Ψei(kx+ly−σt)

into (1.1) we naturally obtain the dispersion relation for Rossby waves, showing
their basic characteristics (Leblond and Mysak, 1978; Gill, 1982)

σ = − βk

(k2 + l2) + a−2
,

where σ is the frequency, k and l are horizontal wavenumbers, β is the meridional
variation of the Coriolis parameter and a the Rossby radius (C/f , where C is the
internal wave speed). It is clear that Rossby waves have westward phase velocities
(of the order of a few cm/s) and that these are increasing toward the equator (where
equatorial wave theory holds) with a maximum speed cx = βa2; the group velocities,
Cg, in the case of long waves, are westward and the waves are nondispersive (Cg =

cx), while short waves propagate eastwards but with very slow speeds.
Another remarkable feature of the planetary wave dispersion relation is that not

all frequencies exist, with a cutoff frequency at 1
2
βa.

Besides the horizontal problem, the vertical one is of great importance. Using
a normal mode representation (Leblond and Mysak, 1978), separating the vertical
and horizontal structure, we find an infinite set of solutions (or normal modes).
The zeroth is the barotropic one, almost vertically independent and very rapid; the
other solutions, or modes, are called baroclinic with decreasing phase speeds and
increasing oscillation in the vertical. A first-mode baroclinic Rossby wave takes
months to years to cross an ocean basin, depending on the latitude.

In the case of a 3-layer ocean, the potential vorticities are given by

q1 = ∇ψ1 + βy − F11(ψ1 − ψ2)

q2 = ∇ψ2 + βy − F21(ψ2 − ψ1)− F22(ψ2 − ψ3)

q3 = ∇ψ3 + βy − F32(ψ3 − ψ2),

where Fm,n = f 2
0 /(Hmg

′
n) and g′i and Hi are the reduced gravities and layer depths

respectively.
For this 3-layer system, substitution of a plane wave solution leads to a general-

ised eigenvalue problem of the form AΨ = σBΨ, or explicitly:
β1 0 0

0 β2 0

0 0 β3



ψ1

ψ2

ψ3

 = σ


−G1 1 0

G2 −G3 1

0 1 −G4



ψ1

ψ2

ψ3

 ,
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Figure 1.1: Upper panel: the
dispersion relation for the baro-
tropic and first two baroclinic
modes of the 3-layer QG ocean.
Shown are values of both positive
and negative wavenumbers. The
wavenumber is scaled by the de-
formation radius a and the fre-
quency by βa; the meridional
wavenumber l is set to zero.
Lower panel: phase (solid lines,
cx = σ/k) and group (dashed
lines, Cgx = ∂σ/∂k) velocities of
the barotropic and first two baro-
clinic modes, scaled by βa2.

where β1 = (kβ)/F11, β2 = (kβ)/F22, β3 = (kβ)/F32 and G1 = (K2 + F11)/F11,
G2 = F21/F22, G3 = (K2 +F21 +F22)/F22, G4 = (K2 +F32)/F32, where K2 = k2 + l2.

The solution of the system is plotted in Fig.1.1 and it describes the basic prop-
erties of Rossby wave propagation. In fact, for the 3-layer system, the dispersion
relation is found on the upper panel and both phase and group velocities on the
bottom panel of Fig.1.1. We can distinguish the barotropic mode with increasing
frequencies towards long wavelengths, very fast phase speeds and positive (eastward)
group velocities. The baroclinc modes have smaller frequencies, their phase velocit-
ies are always westward but their group velocities turn from westward to eastward
at the point of maximum frequency (ka = |1|, σ/(βa) = |0.5|), where the group
velocity is zero. Therefore, long baroclinic waves direct their energy westward while
short waves direct it eastward. This means that, in the limit of long wavelengths, the
phase and group speeds are the same and the waves are nondispersive. On the other
hand, for short waves phase and group speeds differ and the waves are dispersive.
The maximum group and phase velocity (Cx = Cgx = −βa2) are attained for long
waves, they are to the west and can be found on the axis origin of the dispersion
relation.

The system could be extended to an N-layer or even, as proposed in chapter
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2, to a continuously stratified ocean. In every case, the solutions obtained are one
barotropic and N-1 baroclinic modes of decreasing phase speeds. This method of
analysis is called the normal modes method, in which the ocean is decomposed into an
infinite set of solutions (or modes): one barotropic (or external) and the remaining
baroclinic (or internal).

1.1.2 The linear theory revisited

The linear theory, generally explained in the preceding sections, was accepted for a
long time, due to the difficulty in obtaining direct observations of Rossby waves in
the ocean1, except some international projects like the USSR Polygon experiment
in 1970 and the Mid-Ocean Dynamics Experiment (MODE) some years later. Both
experiments carried out studies investigating mesoscale motions and observed a good
fit of the Rossby waves characteristics with mooring data and identifying mesoscale
eddies satisfying the dispersion relation for linear Rossby waves (Leblond and Mysak,
1978; Dickinson, 1978).

With the advent of satellite altimetry the direct observation of large-scale propagat-
ing disturbances has become possible and it has been pointed out, first by Chelton
and Schlax (1996), that the speed of Rossby waves is faster than that predicted
by standard linear theory. After these first results, the need for reconsidering and
improving the theory became clear as standard theory for freely propagating, linear,
baroclinic wave is deficient.

Killworth et al. (1997) have tested different possibilities for this deficiency. They
have suggested that a coupled system (that is, the waves are not free) is not able
to magnify Rossby waves speed in a ubiquitous way, that the effect of a varying
topography could be important, though it is not clear that it could always result in
a speedup, that the nonlinearity is not supported by observations and finally they
studied the role of the background state of the ocean.

They investigated the case of an east-west mean flow, inducing changes in the
gradient of potential vorticity, analytically with different velocities and numerically
with different stratifications. The results matched and explained the speedup of the
waves, with the new phase speed being a linear combination of the mode-1 speed
and the amplitude of the mean flow. Finally, they used Levitus and Boyer data
to reproduce the baroclinic background flow and plot the new perturbed velocities
in the ocean finding a good agreement almost everywhere, attaining a ratio of 2

1Rossby waves in the atmosphere are easily detected as perturbation (undulations) of the mid-
latitude jet stream and are responsible of the generation of different weather systems (Gill, 1982;
Kundu and Cohen, 2002).
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for the perturbed and unperturbed velocities at high latitudes as indicated by the
observations of Chelton and Schlax (1996).

Thus, it seems that the presence of a baroclinic mean flow is able to increase the
Rossby wave phase velocities and to explain them in their majority. Furthermore,
Killworth et al. (1997) did not find any significant difference in their results adding
a barotropic flow.

Dewar (1998) found similar results in his investigations confirming the previous
results. In his study, he used a 3-layer quasigeostrophic (QG) model looking at the
interaction between Rossby waves and the vertical shear; first with a linear analysis
and then with a nonlinear one with a general forcing and a continously stratified
ocean showing that a 3-layer QG model is needed at the very least to capture the
dynamics of the wave propagation.

Probably the most important result in Dewar (1998) is the asymmetry in the
changes in phase velocities: they are found to be larger at the west than at the east
(because of the increasing role of the mean flow effect toward the western basin)
and accelerated in the northern half of the subtropical gyre and decelerated in the
southern half, in good agreement with Chelton and Schlax (1996). Dewar and
Morris (2000) used an eddy-resolving QG numerical model to study first-mode long
planetary wave propagation and mean flow interaction, arguing that the full QG
model matched well with the theory and the observations. Thus, they concluded
that a 3-layer model captures this interaction qualitatively, but had several problems
in explaining and reproduce near equatorial propagation.

In conclusion, Killworth et al. (1997) and Dewar (1998) seem to agree, probably
because they both use the same hypothesis (the vertical shear and the potential
vorticity field), though applying a different approach.

Even though all the discrepancies are not explained, not much space is left for
other factors involved in the perturbation of wave phase velocities. The work of
Killworth and Blundell (1999) partly confirmed this, finding that a slowly varying
bottom topography was not able to speedup planetary waves. Results demonstrating
localised effects have been found with phase speeds increasing in shallow waters,
westward and equatorward of an isolated seamount, but with the general effect
being negligible.

Intuitively, bearing in mind all the previous results, one would think that adding
a varying bottom topography to a baroclinic shear flow would not change the results
found by Killworth et al. (1997) and Dewar (1998), but this does not seem to be the
true. Recently, Killworth and Blundell (2003) proposed this case and found a second
speed-up of the wave phase velocities but without giving a complete reason for this
and opening new questions about coupled/uncoupled planetary wave propagation
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Figure 1.2: Sea surface
height anomalies showing
the propagation of planetary
waves in the Pacific Ocean.
Also clear is the β-effect
inducing larger phase speeds
towards the equator [from
Chelton and Schlax (1996)].

and group velocities.
A completely different hypothesis for the observed high phase speeds is given

by LaCasce and Pedlosky (2004). They consider the stability of oceanic Rossby
waves in a 2-layer QG ocean and conclude that they are subject to a β-dependent
baroclinic instability. That is, the instability is stronger as we move northward and
the waves cannot travel very far at high latitudes because they break into baro-
tropic vortices following an inverse cascade mechanism. Those barotropic vortices
(or waves) possess phase speeds of the order of twice the linear baroclinic one, and
the authors argue that this could be the reason for the too fast Rossby waves. Al-
though Rossby waves are definitely subject to strong instability processes in a real
turbulent ocean, the possibility of detecting such barotropic waves with satellite
altimetry is still controversial.

It is worth noting that all these theoretical considerations are based on dynamics
on a β-plane. Paldor and Mariano (2005) discuss the limitations of this assumption
considering the equations on a spherical earth and points out the conservation of
angular momentum as a reason for the discrepancies in phase speeds.

As anticipated, the advent of satellite altimetry brought a powerful tool to de-
scribe Rossby waves in the real ocean. The TOPEX/POSEIDON (T/P) altimeter is
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Figure 1.3: Time-longitude
plot of the sea surface height
anomalies (in meters) in the
Indian Ocean at 20oS. On
the left panels, the original
altimeter data. On the
right panel, the correspond-
ing westward-filtered signa-
ture. There is a clear evid-
ence of crests and troughs
propagating westward with a
biannual period (Courtesy of
P. Cipollini).
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able to detect long baroclinic planetary waves unambiguously over the entire world
ocean.

Chelton and Schlax (1996) presented for the first time the results of these ob-
servations identifying clear Rossby waves signals (Fig.1.2) and common features like
the increase of phase speed in the western basin, the effect of bottom topography,
eastward propagating equatorially trapped Kelvin waves and pulses related to El
Niño events.

Globally, Rossby wave phase velocities were found to be greater than those pre-
dicted by standard theory and up to twice their value at mid-latitudes. This has
motivated the theoretical studies described in the previous section (Killworth et al.,
1997; Dewar, 1998; Killworth and Blundell, 1999; Dewar and Morris, 2000) and sev-
eral satellite-based investigations (Hill et al., 2000; Hughes, 1995; Cipollini et al.,
2001; White et al., 1998).

The T/P altimetry data reveal the sea surface height anomalies (SSHA) and
to analyse this data time-longitude plots, known as Hovmöller diagrams, are used,
which clearly show Rossby waves as diagonal alignments of crests and troughs mov-
ing westward. An example of this is given in Fig.1.3, where SSHA data from the
Indian Ocean are plotted for the latitude 20oS from 1993 till May 2005; in the left
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panel the row data are plotted while in the right panel the data have been filtered
with a westward filter to better show Rossby wave propagation.

By this technique, Rossby waves are detected in all basins and altimetry has
been used also in the Southern Ocean (Hughes, 1995) where two dynamical systems
were found, a supercritical and a subcritical one with respect to Rossby waves, the
first one being able to advect the waves eastward.

Rossby waves are also detected by other sensors like the Along-track Scanning
Radiometer (ATSR) in sea surface temperature (SST) and, recently, SeaWiFS in
ocean colour.

As an example, Hill et al. (2000) used a SST record to compute Rossby wave
phase speeds finding good agreement with Killworth et al. (1997). They were also
able to detect topographic effects such as those predicted by Killworth and Blundell
(1999).

One of the latest applications has been using ocean colour. Cipollini et al. (2001)
found for the first time Rossby waves in SeaWiFS datasets, although they are neither
very clear nor ubiquitous. A preliminary explanation for this detectability was in
term of the vertical displacements of the thermocline associated with the Rossby
wave and subsequently changes in the nutrient upwelling, however, Killworth et al.
(2004) concluded that the chlorophyll signal can be explained by horizontal advective
processes.

1.1.3 The role in the coupled ocean-atmosphere system

Planetary waves are very slow oceanic movements and their time-scale is so that
they acquire a central role in the climate dynamics at interannual to decadal time
scales. Not only they transfer and distribute atmospheric informations to the ocean
interior but they also directly interact with the atmosphere above them.

Several mechanisms have been identified in which Rossby waves are a key com-
ponent. The El Niño Southern Oscillation (ENSO) is probably the most common,
but others exist, like the newly described (and still controversial) Antarctic Circum-
polar Wave (ACW, White and Peterson, 1996).

Coupled ocean-atmosphere modes, in which oceanic baroclinic Rossby waves
set the “clock” of the coupled interaction, develop at both equatorial- and mid-
latitudes, and have been observed (White et al., 1998; White, 2000a, 2001; Jin et al.,
2003), modelled (Latif and Barnett, 1994; Münnich et al., 1998; Barnett et al., 1999;
Solomon and McCready, 2003) and studied with the help of simple analytical models
(Jin, 1997; Qiu and Jin, 1997; Talley, 1999; Neelin and Weng, 1999; Goodman and
Marshall, 1999; Ferreira et al., 2001; Bye, 2004).
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The basic mechanism by which oceanic Rossby waves can couple to the tro-
posphere is as follows: the propagation of baroclinic waves in the ocean generates
undulations in the thermal field associated with the mixed layer depth, this causes
SST anomalies that influence the tropospheric heat structure and therefore its cir-
culation. As a result of this, anomalous winds are generated and a stress is exerted
over the ocean. Depending on the spatial phase relationship between several oceanic
and atmospheric variables, this anomalous wind stress can amplify the subsurface
undulations and the related SST field, leading to a positive feedback. Otherwise,
the coupled mechanism leads to a damping of the anomalies and the couple mode
slowly dies away.

Because of their period and their role in setting the time-scale in the coupled
modes, oceanic Rossby waves are crucial in decadal ocean and climate variability,
as confirmed by many studies (Latif and Barnett, 1996; Capotondi and Alexander,
2001; Arzel and Huck, 2003).

As mentioned above, oceanic Rossby waves have been observed to be coupled
with the overlying atmosphere and some simple ocean-atmosphere models have been
formulated in order to try to explain the coupled mode mechanism. However, a
detailed study focused on Rossby wave propagation under an atmospheric coupling,
the effects on the general wave dynamics and the identification of a truly coupled
Rossby mode in a non-linear coupled model of intermediate complexity is lacking in
the literature.

This will be the main aim of the thesis, which is explained in the following section
together with its general organisation.

1.2 Aims and structure of the thesis

A coupled ocean-atmosphere study will be carried out in which primary attention
will be given to oceanic Rossby wave propagation.

Different stages of complexity in the coupling will be considered, from a simple
analytical coupling with a simplified thermal atmosphere to a fully non-linear ocean-
atmosphere coupled model.

In a first very idealised study, coupling mechanisms such as a heat flux condition
at the surface and a simple Energy Balance atmosphere will be introduced to the
long-wave equations for a continuously stratified ocean on a β-plane. The wave
response will be studied under the different couplings and the relevance of these to
climate models will be addressed.

Then, a quasi-geostrophic coupled model, recently developed at the National
Oceanography Centre, Southampton (Hogg et al., 2003a,b), will be used to study
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the Rossby wave propagation influenced by both thermodynamical and mechanical
atmospheric coupling and the results compared to the linear theory. Finally, in the
context of a fully coupled ocean-atmosphere model, the identification of a coupled
Rossby mode will be pursued, compared with previous studies and examined under
different configurations.

In summary, we will try to answer the following questions:

• What is the response of a Rossby wave coupled to a thermal atmosphere?,
that is, is the wave damped by atmospheric heat fluxes?

• What are the Rossby wave characteristics in terms of phase speed and stability
in a coupled ocean-atmosphere model?

• And finally, are the waves coupled to the atmosphere? can an unstable coupled
mode exist and what is the mechanism of such coupling?

In Chapter 2 we study the simple coupling of a Rossby wave to an atmospheric
Energy Balance Model. Chapter 3 explains the main features of the QG coupled
model employed in this thesis. In Chapter 4 we investigate the oceanic Rossby
waves in the model with the help of statistical techniques, analysing their coupling
with the atmosphere; this is followed by a test on the results applying a different
configuration to the coupled model in Chapter 5. Finally, we summarise and discuss
the main results and future studies in Chapter 6.



Chapter 2

The effects of coupling with a

thermal atmosphere †

This chapter shows the existence of a growing planetary-wavelike ocean mode, with
a decadal period and growth rate, which appears when a stratified, diffusive ocean
is coupled to a simple atmosphere via an energy balance model (EBM). Such modes
are not found when simpler surface ocean conditions are applied. The mode is low
order in the vertical and, because of its slow growth, is likely to be observed in Earth
System Models using an EBM in place of a fuller set of atmospheric dynamics. There
is no apparent physical energy source for such a mode, and therefore it should not
be expected to arise in such a model. The mode is analysed through a hierarchy of
simple models which differ only through their surface boundary condition.

2.1 Introduction

Energy Balance Models (EBMs) have been very useful for the development of
coupled models for thermohaline circulation studies (Pierce et al., 1996; Bjornsson
et al., 1997; Huck et al., 2001; Kravtsov and Dewar, 2003) as well as for decadal-
interdecadal climate variability identification (Barsugli and Battisti, 1998, BB98
hereafter). The latter study found that the coupling of a simple ocean with an
atmospheric EBM is able to reduce the energy fluxes between the ocean and atmo-
sphere increasing at the same time the variance of both the atmosphere and ocean.
It is argued in their paper that this model based on thermal coupling only is a valid
tool for understanding the basic effects of ocean-atmosphere coupling at midlatit-
udes. EBMs have also played a fundamental role in the early development of Earth
System Models (North, 1975; North et al., 1981; Harvey, 1988; Trenberth, 1992;

†This chapter is published as Farneti, R. and P.D. Killworth, 2005: The effects on oceanic
planetary waves of coupling with an atmospheric energy balance model. Tellus, 57A, 742-757.
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Weaver et al., 2001) since a fully active atmospheric model is usually too slow for
the lengthy integration periods under investigation.

Though still very simplified, the one-dimensional EBM is very popular for repro-
ducing coupled ocean-atmosphere systems (Kiehl, 1992). It is the simplest model of
the coupled system at midlatitudes and often agrees well with more sophisticated
GCM studies. Other studies have focused on couplings with different oceans, from
a slab ocean to an OGCM, with sometimes the explicitly inclusion of the results of
latent heat through moisture (Fanning and Weaver, 1996; Bjornsson et al., 1997).

Nonetheless, EBMs are a drastic simplification of the atmospheric reality, and it
is important to understand both their features and their shortcomings. Is it possible
for a model including an EBM to possess unphysical responses, for example? A pos-
sible hint is given by the study by Goodman and Marshall (1999), who described
a model which, using both dynamical and thermal forcing as coupling mechan-
isms, supports growing coupled modes in the decadal period via positive feedbacks
between the atmosphere and the ocean. Some limitations of Goodman and Marshall
(1999) were addressed by Ferreira et al. (2001), mainly in the use of a bounded basin,
exploring the air-sea interactions at midlatitudes with a two-layer quasigeostrophic
channel atmosphere. In their work, the atmosphere component of the coupled model
consists of an EBM, similar to BB98, and explicit dynamics. When Ferreira et al.
(2001) couple their atmosphere to an oceanic mixed layer, their results are in better
agreement with previous GCM studies, with their success attributed to the inclusion
of atmospheric dynamics.

The purpose of this chapter is to examine how an EBM may be implicated in
the production of a growing mode of oscillation when an EBM is coupled to an
ocean under conditions relevant to climate simulations (long period, predominantly
geostrophic, etc.). This is done by coupling a stratified ocean which includes a
vertical diffusivity1 to a succession of slightly more complicated surface boundary
conditions, in the context of Rossby, or planetary, waves. These waves are the main
mechanism whereby climatic information is carried around the ocean.

The concept of Rossby wave coupling to the overlying atmosphere is hardly new
(consider White et al., 1998; White, 2000a, for example); but no clear attempt has
been made so far to explain or study the effects on the wave structure and propaga-
tion. Nonetheless, experiments with coupled atmosphere-ocean systems in which
planetary waves play a major role have proliferated (Frankignoul et al., 1997; Jin,
1997; Qiu and Jin, 1997; Goodman and Marshall, 1999; Colin de Verdière and Blanc,
2001; Ferreira et al., 2001) in the attempt of better understanding and increasing

1Qiu et al. (1997) has examined the effects of horizontal eddy diffusion in a 1.5-layer model,
finding no change to the westward phase speed of free long baroclinic waves.
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the predictability of the decadal-interdecadal climate variability.
Indeed, Jin (1997) found a spectral peak in the decadal-interdecadal period due

to the resonance of the forced oceanic Rossby waves in his reduced-gravity uncoupled
model but also an oscillatory mode with an interdecadal peak when the model was
coupled. Also, this mode was found to be unstable when positive thermal feedbacks
were present.

The question of why planetary waves are observed to propagate faster than the
linear theory predicts has been tackled in many ways. Since Chelton and Schlax
(1996) published their results, many authors have tried to match the satellite res-
ults with a more complete theory. The inclusion of a baroclinic mean flow into a
continuously stratified ocean, inducing changes in the gradient of potential vorti-
city, has been the first and probably the most successful study (Killworth et al.,
1997). The results matched and explained the speed-up of the waves and were
in good agreement with observations almost everywhere. Although these results
were a good approximation to the observed phase speeds, not all discrepancies were
explained.

The importance of topographic effects was also considered in Killworth and Blun-
dell (1999), but they were found to be negligible over an entire basin; however, when
the effects of a mean flow and bottom topography are combined a second speed-up
is found (Killworth and Blundell, 2003).

The first study to address the question of how dissipative mechanisms influence
the propagation of baroclinic planetary waves was by Qiu et al. (1997). Dissipation
in the form of horizontal eddy diffusion in a 1.5-layer model of a forced ocean induced
no changes in the westward phase speed of the free long baroclinic waves. Moreover,
the free Rossby wave was found to be more sensitive to eddy dissipation at higher
latitudes, due to its e-folding latitudinal dependence.

The purpose of this study is to identify another potential cause of differences in
planetary wave propagation from the classic linear theory: the coupling with the
atmosphere.

We will be concerned not with direct wind or buoyancy forcing, which can be
effective generators of forced waves, but with the response of the ocean surface to
the atmosphere above for free waves.

We examine the role of an EBM as follows. After the introduction of the vertical
diffusion coefficient Kv into the stratified ocean wave equation, exchanges with the
atmosphere take the form of a surface boundary condition to an eigenmodal problem.
Only the first few normal modes of the system are of interest, as the remainder
possess higher vertical structure than is observed. Various boundary conditions will
be employed: no flux to the atmosphere (NF, hereafter), a vertical diffusive heat
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flux of sensible heat to the atmosphere (HF, hereafter) and the coupling with an
EBM. However, as we shall show, when an EBM provides a surface condition, a
growing mode which is low order in the vertical is permitted. This mode does not
exist with the other surface boundary conditions. More complete models involving
an atmospheric EBM have proved the presence of sustained oscillations in the ocean
(Cessi, 2000; Huck et al., 2001), but the inclusion of wind stress in the case of Cessi
(2000) and of mean flow in Huck et al. (2001) was essential.

2.2 Formulation of the coupling

2.2.1 The ocean

The introduction of the vertical diffusivity coefficientKv into the long wave equations
for a continuously stratified Boussinesq ocean on a β-plane is formulated.

The perturbation equations of momentum, continuity and conservation are

ut − fv +
1

ρ0

px = 0 (2.1)

vt + fu+
1

ρ0

py = 0 (2.2)

pz = −ρg (2.3)

ux + vy + wz = 0 (2.4)

ρt + ρ̄zw = Kvρzz (2.5)

where u,v and w are the velocity components, ρ and p are the perturbation density
and pressure fields, g is the gravitational acceleration, f = f0 + βy is the Coriolis
parameter, β the meridional gradient of f , Kv is the vertical diffusion coefficient
and subscripts denote partial derivatives.

The addition of vertical diffusion effects requires some background density forcing
to maintain the background stratification (which is denoted by an overbar). As is
customary in perturbation studies, this is ignored henceforth.

Eliminating the vorticity terms between (2.1)-(2.2) we get

wztt + f 2wz − fβv − βut =
1

ρ0

∇2pt. (2.6)

Introducing plane wave form eigensolutions of the type

[u, v, w, p] = ei(kx+ly−σt)[û, v̂, ŵ, p̂]

and after using (2.3), we have (dropping the hats)

f 2wzz − fβvz + iσβuz =
−iσ(k2 + l2)

ρo

ρg. (2.7)
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Here we have made use of the approximation of low-frequency motions, σ � |f |,
typical for planetary wave studies.

To leading order we may now substitute geostrophy

u =
−ilp
fρo

, v =
ikp

fρo

into (2.7), arriving at the expression

f 2wzz + βik
ρg

ρo

= −iσ(k2 + l2)
ρg

ρo

, (2.8)

where again σ/f � 1 has been used. This leads in turn to

ρ =
if 2ρo

g[σ(k2 + l2) + βk]
wzz, (2.9)

which relates the density to the second derivative of w. This relationship will be used
throughout this study to formulate the coupling as one of the boundary conditions
at the surface.

Substituting the expression for ρ into the conservation of density and rearranging
yields an expression for the vertical velocity

N2[σ(k2 + l2) + βk]w = −iKvf
2wzzzz + σf 2wzz (2.10)

where N2 = −gρ̄z/ρo.
Diffusion, being a fourth derivative, is therefore not expected to alter the fre-

quency of the wave significantly. In fact, the surface boundary layer generated by Kv

should have a thickness of 100-200 m depending on k (this is discussed later). Com-
puting the phase speeds with the inclusion of the predicted homogeneous boundary
layer leads to no differences from the unperturbed solutions.

Setting Kv = 0 reduces the problem to the classical Sturm-Liouville problem
(e.g., Gill (1982))

wzz +
N2

C2
w = 0 (2.11)

together with vanishing w at surface2 and floor, where the eigenvalue C, the internal
wave speed, is related to the frequency by

σ = − βk

(k2 + l2) + a−2
(2.12)

and a = C/f is the Rossby radius of deformation.
2The assumption of a rigid lid does lose the possibility of an interaction between barotropic

and baroclinic modes which could occur in the presence of diffusion. This is likely to be negligible,
since it is of order the small parameter C2/gH.
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If the diffusivity is non-zero, then two more boundary conditions are required for
the fourth order eigenvalue problem (2.10). The condition of no heat flux through
the floor requires from (2.9) that

wzzz = 0, z = −H. (2.13)

The last boundary condition is at the surface. In the case of no heat flux at the
surface (the NF case), (2.9) gives

wzzz = 0, z = 0 (2.14)

though this boundary condition will be changed later to permit fluxes to and from
the atmosphere.

The eigenvalue problem (2.10), (2.13), (2.14) must be solved numerically (though
analytical solutions are possible for simple forms of N2(z), the algebra is tedious
and unenlightening). The problem is cast onto a fine-resolution finite-difference grid
(5 m spacing) so that any boundary layer structure can be adequately resolved.
Such resolution is not too computationally expensive. Then (2.10) is converted
into a matrix eigenvalue problem of the form Aŵ = σBŵ, where A and B are the
matrices of the coefficients and σ = (σr + iσi) the complex eigenfrequency; the
eigenvectors ŵ and associated eigenvalues are ordered by decreasing value of σ. The
meridional wavenumber, l, is set to zero for simplicity. The square of the Brunt-
Väisälä frequency, N2, is an exponential function of z (N2 = N2

0 e
−γz/H), where

N2
0 = 10−5s−2 is the stratification at z = 0 and γ = 3.7 a typical midlatitude value

(Killworth et al., 1997).
The system is solved numerically with NAGLIB’s generalised eigenvalue problem

solver routines.
With a β-plane centred at 30oN, we set

f = 0.7×10−4s−1, β = 2×10−11(m s)−1,
Kv = 10−4m2s−1, H = 5×103m.

For the stratification considered, C1 = 2.37782 ms−1 is the internal wave speed for
the first mode, and therefore a = C1/f = 23.7782×103m is the Rossby radius of
deformation. Due to the choice of a weak N2

0 , the resulting radius of deformation is
possibly small, but the effects on the eigenmodes will be discussed later.

2.2.2 The atmospheric energy balance model

A one-dimensional, linear EBM is used to simulate the basic coupling between the
atmosphere and ocean in the midlatitudes.
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We use here the model of BB98 with the only difference being that there is no
dynamical forcing in this case. The basic mechanisms of the different EBMs in
the literature are very similar. The model takes into account the balance between
shortwave, longwave and surface fluxes and thus reproduces the balance of incoming
and outgoing radiant energy. BB98’s equations, linearised about the climatological
mean state and neglecting any dynamical forcing, are

γa∂tTa = −λsa(Ta − To)− λaTa (2.15)

γo∂tTo = λso(Ta − To)− λoTo. (2.16)

Here subscripts “a” and “o” refer to atmosphere and ocean respectively; T is the
anomalous temperature; γa = ρaCpaHa and γo = ρoCpoHo the heat capacities; λs

the linearised coefficient of combined latent, sensible and longwave heat flux; λa and
λo(bulk transfer coefficients) are the radiative damping of each component to space.
The standard values for the ocean are ρo = 1024 kg m−3, Cpo = 4×103 J (kg K)−1,
To = 285 K, and for the atmosphere ρa = 1.25 kg m−3, Cpa = 1×103 J (kg K)−1,
Ta = 270 K, Ha = 8.4× 103 m, ε = 0.76, σb=5.67×10−8 W (m2 K4)−1, where ε is
the longwave emissivity and σb the Stefan-Boltzmann constant. Finally, following
BB98, we choose λsa = 23.9, λso = 23.4, λa = 2.8 and λo = 1.9 (in units of W
m−2K−1).

After taking the Fourier transform (∂t → −iσ), BB98’s equations take the form

−iσγaTa = λsaTo − (λsa + λa)Ta (2.17)

−γ′

oKv∂zTo = λsoTa − (λso + λo)To. (2.18)

Here the ocean heat equation has been converted into a vertical diffusive flux towards
the interior, the ocean heat capacity has become γ′

o = ρoCpo and the assumption
that

ρoCpoKv∂zTo
∼= ρoCpoHo∂tTo, (2.19)

where Ho is a mixed layer depth, has been made.
The ocean equation (2.18) is the same as the one used in (Bjornsson et al., 1997,

their eq. 20), if the contribution from the evaporation term is neglected.
It is straightforward to prove that (2.17)-(2.18), with (2.19) substituted, is a

stable system with two different and negative eigenvalues.
From (2.17):

Ta

(λsa + λa

λsa

− iσ
γa

λsa

)
= To, (2.20)

which describes the relationship between the atmospheric and oceanic temperature
for every eigenfrequency; the presence of an imaginary part indicates a phase shift
between Ta and To.
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Substituting (2.20) into (2.18) and rearranging yields

− γ
′
o

λso

Kv∂zTo =
(λsa + λa

λsa

− iσ
γa

λsa

)−1

To −
(λso + λo

λso

)
To, (2.21)

or:
−Γ

′

o∂zTo =
[(

Λa − iσΓa

)−1

− Λo

]
To, (2.22)

where the following substitutions have been made: Γ
′
o = (γ

′
o/λso)Kv, Γa = (γa/λsa),

Λo = (λso + λo)/λso and Λa = (λsa + λa)/λsa.
Equation (2.22) will be the new surface boundary condition for (2.10) in the

EBM case.
Using again the relationship described in (2.9), the suitable form for the boundary

condition in the EBM case becomes:

−Γ
′

owzzz =
[(

Λa − iσΓa

)−1

− Λo

]
wzz, (2.23)

The accuracy of our grid spacing was tested for the resulting σ and the length scale
(of around 10 m) was found to be well resolved.

The new coupling involves incoming longwave and surface fluxes to the ocean
modulated by the eigenfrequency and a direct estimate of the atmospheric and
oceanic temperature feedback.

2.2.3 A surface thermal boundary condition

To permit investigation of the possible effects of simpler matching to the atmosphere,
we also construct a simpler coupling of heat fluxes at the ocean surface through
a surface thermal boundary condition. Restoring boundary conditions implicitly
model the atmosphere and the vertical diffusive heat flux only considers the sensible
heat (Haney, 1971). In this case, only losses towards the atmosphere are possible.

In this case we will allow a heat flux to the atmosphere with a simple matching
via one of the boundary conditions. We will consider a standard vertical diffusive
heat flux,

Q = −ρ0CpoKv∂zTo, (2.24)

where
Q = ∂TQT

′
,

is proportional to the vertical diffusivity of heat and the vertical gradient of tem-
perature, Cpo is the ocean heat capacity and To its temperature.

The heat flux Q is reformulated in order to give the following expression:

−Kv∂zTo|z=0 = τT ′, (2.25)
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where T ′ is the difference between oceanic and atmospheric temperature and τ =

(1/ρ0Cpo)∂TQ = 1.15 × 10−5 m s−1, corresponds to the sensible heat and can be
thought of as the restoring time scale of a mixed layer relaxing to the prescribed
temperature; for a mixed layer depth of 30 m this timescale would be of 30 days.
The negative sign on the l.h.s of (2.25) means a return towards zero of any surface
perturbation temperature. Assuming that the perturbation densities are function
of the perturbation temperatures only, ρ′ = −αρ0T

′, and using the relationship in
(2.9), equation (2.13) is included as a surface boundary condition for (2.10) and the
top boundary condition for the third derivative in the HF case takes the form

wzzz = −µwzz, (2.26)

where µ = τ/Kv. This would imply a length scale µ−1 = Kv/τ , which forKv=10−4m2s−1

is equal to 10 m and therefore adequately resolved by our 5 m grid spacing. For
a smaller diffusivity value, e.g. 10−5m2s−1, the length scale would reduce to 1 m;
however, the results have been tested with a 4 and 3 m spacing without changes in
the solution.

2.3 Discussion

For selected wavenumbers, the real and imaginary parts of the eigenfrequencies
resulted from the solution of the eigensystem (2.10)-(2.13)-(2.22) are plotted for the
first twenty least damped modes in Fig.2.1.

Re(σ) (top panels) is not noticeably perturbed by the coupling for any of the first
twenty modes, but Im(σ) presents some peculiarities. Besides the intuitive increase
in damping rate as we move to higher mode numbers, an unstable mode (Im(σ) > 0)
and a slowly decaying mode are present for both selected wavelengths in the EBM
case. This is a surprising result, since an instability is not expected to rise from a
thermal coupling of this kind and there is no apparent source of energy. Sensible heat
exchanges with the atmosphere are expected to provide a sink of energy and therefore
an extra damping to the diffusive ocean. Unstable coupled modes need a source from
either the ocean or the atmospheric reservoir to release available potential energy.
In our simple model there is no mean flow in the ocean nor in the atmosphere and
the coupling is given only by thermal exchanges. Mean flows and wind stress are
essential factors for developing growing coupled modes through ocean-atmosphere
positive feedbacks (Qiu et al., 1997; Goodman and Marshall, 1999; Cessi, 2000; Cessi
and Paparella, 2001; Colin de Verdière and Blanc, 2001; Huck et al., 2001). In the
model presented here there is no kinetic energy since the basic state is motionless
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and no available potential energy in either the ocean or the atmosphere, therefore
there is no energy to sustain instabilities.

Interestingly, the slowly decaying mode found in Fig.2.1 is present for the NF
and HF case as well, where only losses towards the atmosphere are present, but the
growing mode appears only when the EBM is coupled to the ocean. Both Colin de
Verdière and Huck (1999) and Huck and Vallis (2001) found interdecadal oscillations
in their ocean forced by constant surface heat fluxes but in our simple representation
these are not supported under the HF case. However, we can speculate, as discussed
later, that the weakly damped mode highlighted before might get unstable under
more realistic physical conditions.

A global view of the main results is summarized in Fig.2.2. Here the disper-
sion relation for the first two baroclinic modes of the linear unperturbed theory is
compared with the results from our three alternative surface conditions. None of
the simple couplings applied to the planetary wave change its frequencies signific-
antly, and therefore its phase velocities are essentially the same as the linear theory
predicts. Some discrepancies from the standard linear theory appear only at very
long wavelengths λw (around 107m, much longer than any observed planetary wave)
where greater decaying rates (Im(σ)) are found.

Decay rates are plotted in the bottom panel of Fig.2.2. Here a slow increase in
Im(σ) is clear as the wavenumber moves towards longer waves for all three cases.
For long wavelengths, the EBM produces the strongest damping, though in a range
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Figure 2.1: Real and Imagin-
ary parts of the eigenfrequen-
cies for k = 10−5m−1 and k =

5×10−6m−1 (NF = no fluxes,
HF = heat fluxes and EBM
= Energy Balance Model).
No differences are found for
Re(σ) and only small decays
exist for Im(σ). Whilst all
the modes resemble each other
in the different cases, an un-
stable mode appears for the
EBM and a slowly decaying
one for the NF and HF case
as well.
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Figure 2.2: Dispersion relation for the first and second mode for all the three cases
studied (N2

0 = 10−5s−2, Kv=10−4m2s−1). The frequency is scaled by 1/βa and the
wavenumber by a. Top panel: real part of the frequency. Solid and dotted lines
correspond to the unperturbed solution for the first and second mode respectively. �

= diffusivity-only case (NF), ∗ = heat flux case (HF), ◦ = EBM case. Bottom panel:
decaying rate of the first and second mode for the three cases. Thick solid lines =
NF, solid lines = HF, dashed line = EBM.

of λw from decadal to annual period (λw = 106 - 104m), the HF dominates. This
was to a certain point predictable as the EBM includes some incoming fluxes that
counteract the outgoing fluxes, also included in the HF case. Therefore, the first
mode is weakly damped everywhere whereas the second and successive modes are
more and more damped. The result is then an insensitivity of the first mode to all
these couplings and a small dependence of the following ones.

The vertical structure of the wave is also analysed. The unperturbed nondiffusive
solution, together with the results of the different surface conditions, is shown in
Fig.2.3 for the first three modes for the stratification considered. The eigenvectors
are almost independent of the wavenumber but this is not the case when they become
complex. For a wave with λw = 6 × 105m, vertical diffusivity only and the two
couplings have negligible effects on the eigenstructure; when we move toward longer
waves, the effects are visible from the third mode (λw = 6 × 106m, right panel of
Fig.2.3). As anticipated by the dispersion relationship, damping starts to be “felt"
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Figure 2.3: Solutions for
the vertical structures of the
first three modes for the three
cases. Only the third mode at
long wavelengths starts being
significantly modified.

at higher modes and longer waves. After computing the solutions for all matchings
and looking at different wavenumbers, neither a surface boundary layer nor any
significant difference from the linear unperturbed vertical structure could be found
in the first mode.

Moreover, no discernible difference was found in the perturbation of the vertical
structure from the HF or the EBM coupling. The introduction of unrealistically
high Kv (10−3m2s−1) into the wave equations is significant in the vertical structure
in the second and higher modes, as can be seen for the NF case in Fig.2.4. The de-
pendence of the eigenfrequencies on changes in Kv showed similar results: the real
part remains unaffected for all modes while σi starts to be perturbed by diffusivity
from the second mode if Kv=10−3m2s−1 as found for the vertical structure. There-
fore, vertical diffusivity only and the coupling through heat fluxes do not slow down
the wave or damp it effectively, even with unrealistically high values. This result
is in contrast with previous studies, which suggested that planetary waves could
be slowed and damped by Newtonian cooling by the atmosphere (White, 2000a).
Sensible heat fluxes seem to be the most successful mechanism in damping out the
wave; in the EBM, positive contributions of sensible and latent fluxes to the ocean
do exist, possibly inducing some positive feedbacks that diminish the net loss to the
atmosphere and therefore the damping of the wave.

Since more damping effects are found for the second mode, it is interesting to
look at the whole spectrum of modes (Fig.2.1). These are progressively slower and
hence they have more time to interact with the overlying atmosphere and, in this
case, be damped by heat losses.

Weakly dissipated modes have been recently discussed by Cessi and Primeau
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ficient on the first three modes
for selected wavenumbers in
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increased from 10−4m2s−1 to
10−3m2s−1 the second mode,
and for long waves also the
third mode, is perturbed.
Therefore, the Kv value ne-
cessary to modify the vertical
structure is too high.

(2001). Within the free basin modes they found the existence of weakly damped
modes promoted by dissipation; moreover, these ocean-only modes can be excited by
dynamical air-sea coupling (Cessi and Paparella, 2001). In fact, Jin (1997) discussed
a coupled mode that under a moderate thermal damping was weakly damped but
when positive coupled feedbacks are acting the mode turns to be weakly unstable.
Therefore, while the unstable modes generated by the EBM result from a different
process, we hypothesize that the slowly decaying modes found with the NF and
HF case could be generated by similar mechanisms as the ones found by Cessi
and Primeau (2001), and possibly become sustained by a subsequent atmospheric
forcing.

2.4 Structure and growth of the unstable mode

The mode with a positive imaginary part found in Fig.2.1, implying a growing dis-
turbance, exists for a wide range of wavenumbers (Fig.2.5), including the physically
significant range. In the longwave limit, the growth rate varies linearly with the
wavelength. Its vertical structure resembles that of a first mode, becoming more
oscillatory in the vertical as the wavelength decreases; this holds for its imaginary
part as well, which is of the same order of magnitude as the real part (Fig.2.6).
Clearly this mode arises from the interaction of the wave with the overlying EBM
and its incoming energy, the longer the wave the more it interacts with the atmo-
sphere. At the beginning of this chapter we suggested the possibility of a boundary
layer arising due to the inclusion of Kv and different matching at the surface, but
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this was not found for any of the modes. In contrast, this growing mode possess a
clear surface boundary layer (Fig.2.6) which deepens as k → 0. We therefore try to
predict what the boundary layer should be.

The standard dispersion relation for planetary waves is

σ = − βk

(k2 + l2) + 1
a2

, (2.27)

If a ∼ 25 km, the long wave approximation is reached from k ∼ 10−6m−1 and the
approximate dispersion relation is σ ≈ −βka2. Rewriting (2.10) we have

N2
[
σ(k2 + l2) + βk

]
w = −iKvf

2wzzzz + σf 2wzz (2.28)

and introducing the approximation for σ

N2
(
− βk3a2 + βk

)
w = −iKvf

2wzzzz − βka2f 2wzz (2.29)

Finally, since −βk3a2 � βk we get

βkN2w = −iKvf
2wzzzz − βka2f 2wzz (2.30)

or
βkN2w︸ ︷︷ ︸

A

=
−iKvf

2w

δ4︸ ︷︷ ︸
B

− βka2f 2w

δ2︸ ︷︷ ︸
C

(2.31)

In the boundary layer, the 4-th order term (wzzzz) balances the 2-nd order term
(wzz) and the relation B ∼ C must hold. This is

Kvf
2w ∼ βka2f 2wδ2
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Therefore with the introduction of Kv into the long wave equations, the dependence
of the boundary layer thickness δ on diffusivity would be described by

δ ∼ 1

a
√
β

(
Kv

k

)1/2

. (2.32)

The resulting boundary layer thickness can be predicted and some examples are
calculated below:

δ ∼


300m. , k = 10−7m−1

140m. , k = 5× 10−7

100m. , k = 10−6

(2.33)

This would give a δ of about 200m for λ = 6× 106m, which is roughly what we
obtain in the growing mode. Also, after computing the vertical structure for several
k, it was observed that the decay of δ towards smaller wavelengths is linear and
therefore contradicting the previous relationship. However, (2.32) would describe
a boundary layer for a no heat flux condition where (2.14) holds; in this case the
EBM needs to be present for the unstable mode to exist, therefore the theoretical
behaviour of δ is expected to be different from the one found here.

The other singular mode, the slowly-decaying one, has a bottom trapped struc-
ture and no particular changes are found when the air-sea coefficient λ or Kv vary,
as only the surface trapped growing mode will be sensitive to changes at the surface.
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2.4.1 Parameter sensitivity

In order to understand the response of this unstable mode to changes in the back-
ground conditions we carried out sensitivity analyses on the main parameters that
could control the ocean-atmosphere interaction.

As the selected value for the stratification is slightly weak (N2
0 = 10−5s−2) we

studied the eigenresponse to an increase in the ocean stratification. In Fig.2.7 the
decaying rates for different N2

0 are plotted. The growing rate diminishes and the
unstable mode is shifted towards higher modes, indicating that a lower frequency is
needed to interact positively with the EBM. The same happens for the slowly decay-
ing mode and for both wavenumbers (k = 5×10−6m−1, k = 10−5m−1). At the same
time, with stronger stratification the response is more concentrated in the surface
layer and more oscillations in the vertical start to appear (Fig.2.8). Interestingly,
surface intensified unstable modes have also been found by Huck et al. (2001) in their
three-dimensional dynamical ocean model forced by constant surface fluxes. Their
unstable mode, studied in the framework of quasigeostrophic baroclinic instability
and identified as potential vorticity waves (a kind of planetary waves), relied on the
background flow in order to propagate. In our case such a mode could not exist,
lacking our model of a circulation on which the unstable wave could grow. In our
study, with an exponential profile for the Brunt-Väisälä frequency, the mixed layer is
not represented. Since the heat exchanges with the atmosphere are concentrated at
the surface, the inclusion of a mixed layer could be important. Therefore, we stud-
ied the case of an exponentially stratified ocean with an homogeneous mixed layer
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Figure 2.7: Responses of
the decaying rate to changes
in N2

0 (s−2). As the expo-
nential stratification increases
the unstable mode is displaced
toward higher modes and its
growth rate becomes smaller.
The same is happening for the
slowly decaying mode which is
approaching the other modes.
Note how shorter waves are
more sensitive to changes in
N2

0 .
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at the top. In this case, we used the same exponential stratification N2 = N2
0 e

−γz

(where again N2
0 = 10−5 s−2 and γ = 3.7) and introduced an homogeneous layer of

different thickness δ at the surface, i.e.

N2 =

{
0 , −δ ≤ z ≤ 0

N2
0 e

−γz , −H ≤ z ≤ −δ
(2.34)

Applying the same boundary conditions for the coupling and using values ranging
300 m ≤ δ ≤ 0 m, no significant differences were found, apart from similar changes
obtained when N2

0 is modified (not shown). The unstable mode is still present
indicating that the heat exchanges at the surface are rapidly transmitted into interior
of the ocean and the homogeneous mixed layer is not able to modify the wave
response. Also, introducing the homogeneous surface layer in the stratified ocean
did not change the characteristics of the internal wave propagation, resulting in
similar wave speeds and vertical structure.

Another fundamental parameter is the coefficient of air-sea exchange λ, which
is included in λsa, λso

3. An increase in λ would mean a stronger communication
between the wave and EBM leading to an excitement of the coupled unstable mode.
This is clearly seen in Fig.2.9 when λ is changed from its original standard value of
20 W m−2 K−1. All modes react to a smaller value of λ (which is the way to separate
the wave from the overlying atmosphere and recover the ocean-only solution) but
only the unstable mode is sensitive to greater values, being the direct consequence
of the coupling. Clearly, λ is a necessary condition for the existence of the coupled

3For a clear derivation of equations (2.15)-(2.16) and the relationship between λ and λsa,λso,
see Appendix A in BB98.
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sea exchange but not dramat-
ically. In contrast, the slowly
decaying mode is less affected.

mode but it is not controlling its growth rate as strongly as the existent stratification.
Also, the vertical unstable eigenmodes at different values of λ are not shown as no
significant modifications are found for changes in the air-sea coefficient.

The weak effect of changes in the exchange coefficient was also demonstrated in
Huck et al. (2001) when using a vertical diffusivity of 10−4m2s−1; in their planetary
geostrophic model coupled to an atmospheric EBM they found no dependence of the
variability of the system by varying the air-sea exchange coefficient within a range
of 10-60 W m−2K−1.

The last parameter subject to study is the vertical diffusivity. The existence
of Kv is crucial to the transmission of the information received at the surface to
the ocean interior and, although it did not affect the properties of the modes, it is
expected to control the behaviour of the unstable mode due to the boundary layer
at the top.

In Fig.2.10 the solution for different values of Kv is represented (top panels)
and the vertical structure of the unstable mode is also given (bottom panels). As
diffusivity increases the unstable mode appears at low mode numbers, reaching
its maximum growth for a diffusivity of 3-4×10−5m2s−1. Then the growth rate of
the unstable mode gradually decreases until it becomes zero for a value of Kv=5-
4×10−4m2s−1 for the two wavelengths considered. While the mode is being destroyed
its vertical structure is slowly modified until it becomes a third or fourth mode,
coherent with the frequency trajectory. The coupled mode, strongly influenced by
Kv, is extremely slow with a timescale of ∼100 years but has a growth rate of ∼10
years. This might be interesting in studies concerning climate variability, in which
timescales are of the order of a hundred years.



2.4 Structure and growth of the unstable mode 30

1 5 10 15 20 25
0

0.05

0.1

0.15

0.2

σ i/β
 a

mode number

k=5×10−6 m−1

−0.1 −0.05 0 0.05 0.1
5000

4000

3000

2000

1000

0    

de
pt

h 
(m

)

1 5 10 15 20
0

0.05

0.1

0.15

0.2

σ i/β
 a

mode number

k=10−5 m−1

−0.1 −0.05 0 0.05 0.1
5000

4000

3000

2000

1000

0    

de
pt

h 
(m

)

Figure 2.10: The dependence of the unstable mode to diffusivity. The position of
the mode is shown in the top panels from Kv = 2×10−5 (the first value at which the
unstable mode appears) to Kv = 5 × 10−4 for k = 5 × 10−6 and Kv = 4 × 10−4 for
k = 10−5 (the last value of diffusivity supporting the mode). As Kv increases from its
critical value the mode is rapidly destroyed and reenters the decaying curve of modes.
For k = 5 × 10−6m−1 the final position is the third mode and for k = 10−5m−1 the
fourth mode . This trajectory is reflected in the vertical structure of the bottom
panels (thick solid line = Kv = 10−4, thin solid line = last vertical structure for
which σi>0).

Moreover, the unstable mode possesses a vertical structure typical of a first,
second or third mode, depending on the wavenumber (Fig.2.6). Also, when tested
with different values of Kv, it rapidly moved to the fourth and even third position
of the eigenspectrum (Fig.2.10), adjusting its vertical shape to the modal ordering.
What seemed an unimportant mode, far from the first two or three eigenfrequencies,
and therefore not likely to play a major role when more complicated physics is added
in the ocean, is now a mode that, under certain parameters values, reaches the higher
eigenfrequencies and looks like one of them.

This mode could be misleading if identified as a first or second mode and we need
to know more about its behaviour. Therefore, it is interesting to study in detail its
time dependent solution with the help of an initial value problem.
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2.4.2 The time-dependent solution

We here examine briefly the time-dependent solution of the unstable EBM mode.
The initial value problem of the damped eigenmodes is not of any particular interest
in this case; as predicted by the eigenanalysis, all of them are slowly decaying in
time with stronger damping rates for higher modes. However, the behaviour of the
unstable mode during a cycle will inform us about its vertical structure evolution
and how its boundary layer grows. The time-dependent problem will also be useful
in corroborating the previous numerical solution.

From (2.1)-(2.5) the time dependent equation reads(
∂t −Kv∂

2
z

)
f 2wzz =

[
(k2 + l2)∂t − ikβ

]
N2w, (2.35)

which can be rewritten in the condensed form

∂tL(w) = M(w) (2.36)

where the linear operators are L = f 2∂2
z −N2(k2 + l2) and M = Kvf

2∂4
z − ikβN2.

The problem was time stepped using the semi-implicit Crank-Nicholson scheme,
which is unconditionally stable and second order in space and time. The initial
condition is the solution found with (2.10) with a different boundary condition at
the top for every case and every mode.

The time stepped EBM involves the system (2.17)-(2.18). In our simplified model
we will neglect the effects of salinity and consider density perturbations driven only
by temperature perturbations, i.e. ρ = −ρ0αT (where α = 10−4K−1 is the coefficient
of thermal expansion of seawater). Then the initial conditions can be expressed as
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for the real part of the grow-
ing modes of Fig.2.1.
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Figure 2.12: Time dependent solution after two cycles for the real part of the
slowest growing modes of Fig.2.10 (top: k = 10−5m−1, bottom: k = 5 × 10−6m−1).
Left panels: thick line = initial state, thin line = final state. Right panels: evolution
of Re(w) during the two cycles integration. The contour interval is 0.025. Negative
contours are shaded.

(from (2.9)):

To =
−if 2

αg(σk2 + βk)
wzz (2.37)

Ta = λoTo − Γ
′

o∂zTo. (2.38)

and the time stepped expression for the atmospheric temperature is

∂tTa =
λsa

γa

wzz|top −
λsa + λa

γa

Ta (2.39)

In order to solve the problem numerically, the integration for Ta is included in the
time stepped matrix system, therefore the problem ∂tw = A−1Bw becomes of order
N + 1.

The time stepped solution of the unstable modes found in the eigenanalysis
can be seen in Fig.2.11. After two cycles they grow as predicted by their σi and
so appear more and more surface intensified. In Fig.2.12 the growing modes for
k = 5 × 10−6m−1, top panel, and k = 10−5m−1, bottom panel, with the smallest
growing rate are plotted (Kv = 4× 10−4 and Kv = 3× 10−4 m2s−1 respectively for
N2

0 = 10−5s−2) confirming their third and fourth mode vertical structure. Therefore,
this growing solution is robust, as a large Kv coefficient is needed to destroy it, even
though the stratification is rather weak in this case.
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The solution given by this initial value problem proves the existence of an un-
stable mode, which is travelling very slowly but growing at the decadal period,
present for every wavenumber and sustained by the interaction with the atmospheric
EBM. However, the reasons for the existence of this mode are still unclear as is the
origin of the energy necessary for its growth. A brief discussion of energetics is given
in the next section.

2.4.3 Energetics

In the simple case of constant N2, some progress can be made towards identifying
the source of the instability. We construct a kinetic energy equation by multiplying
(2.1) and (2.2) by ρ0u and ρ0v respectively, adding and integrating over a horizontal
wave cycle and depth. To this is added the potential vorticity equation, obtained
by multiplying (2.5) by g2ρ/ρ0N

2. The terms in w cancel, leaving

Et ≡
∂

∂t

1

2

∫ 0

−H

[
ρ0(u

2 + v2) +
g2ρ2

ρ0N2

]
dz =

=
Kvg

2

ρ0

∫ 0

−H

ρρzz

N2
dz. (2.40)

The r.h.s. cannot be further simplified in general, except when the background
stratification is uniform. In that case, integrating by parts,

Et =
Kvg

2

ρ0

{
ρρz

N2

∣∣∣∣
z=0

−
∫ 0

−H

ρ2
z

N2
dz

}
. (2.41)

The second term is negative definite (the diffusion acting as an energy sink) and
the first term can only have a contribution at the surface by (2.14). In all the cases
considered here except the EBM case, the surface contribution is identically zero,
and the system energy can only decrease with time, indicating damped solutions.

In the EBM case, however, the potential energy in the EBM atmosphere must
also be considered. To obtain this, take (2.17), with the l.h.s. converted back to
γaTat, multiply by λso, and add λsa times (2.18), which eliminates the first terms on
the r.h.s., to obtain

γaλsoTaTat + γ′oKvλsaToToz|z=0 =

= −λso(λsa + λa)T
2
a + λsa(λso + λo)T

2
o . (2.42)

Converting ocean temperature to density perturbations through ρ = −ρ0αT , this
becomes

γaλsoρ0α
2g2

γ′oλsaN2
TaTat +

Kvg
2

ρ0N2
ρρz|z=0 =

− λso(λsa + λa)ρ0α
2g2T 2

a

γ′oλsaN2
+

(λso + λo)g
2ρ2|z=0

ρ0γ′oN
2

(2.43)
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so that a total energy equation is found by adding (3.1):

Et +
γaλsoρ0α

2g2

γ′oλsaN2
TaTat = −Kvg

2

ρ0

∫ 0

−H

ρ2
z

N2
dz −

− λso(λsa + λa)ρ0α
2g2T 2

a

γ′oλsaN2
+

(λso + λo)g
2ρ2|z=0

ρ0γ′oN
2

. (2.44)

The l.h.s. is a time derivative of a positive definite (quadratic) quantity, and the
r.h.s. consists of negative terms apart from the last, which is positive definite. This
term, if sufficiently large, can permit growth of the solution as observed. After
performing an eigenanalysis for the case in which the stratification is constant we
use the numerical results to evaluate the three terms in the total energy equation
(2.44). We are then able to compare the positive term against the other two for the
decaying and the growing modes.

In the first mode solution the negative terms are greater than the positive term
indicating a total sink of energy. In the case of the growing mode, the positive term
is larger than both decaying terms and the r.h.s. of (2.44) is positive, confirming an
increase in the energy of the system. Also, the energy loss of the decaying modes
is much smaller than the energy inputs of the growing modes, confirming again the
previous results of growth rates greater than the decaying rates of the first modes.

Moreover, we emphasize the dependence of the first term in (2.44) upon Kv.
Since the first term is the largest of the negative terms, it will play a major role in
balancing the energy conservation against the growing term. Therefore, an increase
in the vertical diffusivity coefficient is likely to rapidly counteract the third term as
previously observed.

These results are summarised in Table 1 where the total energy budgets of the
cases depicted in Fig.2.10 are shown. Only the first two damped modes and the
unstable mode are analysed. The values of the three terms in (3.4) are given as
a percentage of the total budget, being the first two negative contributions and
the third a positive contribution. It is clear how the first term (involving vertical
diffusivity) and the third term (the positive contribution) are dominating the budget
at all parameters values. In the case of decaying (unstable) modes, the diffusivity
(positive) term is responsible for the energy of the system. Also, the term allowing
growth gets weaker with stronger stratifications and bigger diffusivities, which is
in agreement with the results shown in Fig.2.7 and Fig.2.10. The position of the
unstable mode within the damped modes is shifting depending on the parameters
values (as pointed out in the parameter sensitivity analysis) and, because of the
uniform stratification, is always located at higher position than in the exponential
case, but always present.
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Figure 2.13: The effects of
the inclusion of horizontal
atmospheric heat transport
(AHT) at different vertical
diffusivities for k = 10−5m−1.
Also plotted is the result with
no AHT at Kv = 10−4m2s−1

(circles).

2.4.4 The effects of atmospheric heat transport

We proved that when the EBM is coupled to the planetary geostrophic model the
energy balance might be positive, generating an instability and explaining the results
of the eigenmode analysis. However, this is not physically correct and therefore
there must be a missing term in the energy budget able to counteract those positive
contributions from the EBM and give a final damped solution.

So far, we have considered a one-dimensional model, with the spatial dimension
represented by a point at midlatitudes (300N). Barsugli and Battisti (1998) neg-
lect any meridional variability in both atmosphere and ocean, but atmospheric heat
transport (AHT) is an important and effective damping of sea surface temperat-
ure anomalies (Pierce et al., 1996). We consider here the effects of eddy-diffusive
horizontal heat transport in the atmosphere in its usual parameterization

γa∇ · (∇KTTa),

where again γa = ρaCpaHa is the atmospheric heat capacity and KT is the heat
transport coefficient. For our model we neglect any meridional dependence in KT

and set it to 106m2s−1 as suggested by Huck et al. (2001). Fanning and Weaver
(1996) points out that the assumption of diffusive transport is valid only for length
scales bigger than 106 m, we therefore set the new meridional wavenumber to its
minimum. Fig.2.13 shows the results for the eigenanalysis of the system where the
eigenfrequencies for a selected wavenumber are compared with the previous solution
without AHT at different values of vertical diffusion. The additional damping effect
is clear for all modes, the unstable mode is weaker and shifted towards higher modes
and the effect of Kv in damping the instability is even stronger; however the growing
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mode is still present and has the same behaviour as when the AHT is missing.
Moreover, calculations with different wavenumbers (both zonal and meridional) did
not reveal significant differences. The introduction of horizontal diffusion in the
atmosphere will imply an extra term in (2.23) but this term, together with the
second term on the r.h.s., is small compared to the others and therefore does not
cause any major modifications in the coupling. Applying (2.23) with no AHT and
also removing the second term showed that the ocean response is not crucially
dependent on the term involving the frequency and in fact the coupled growing
mode maintains a growth rate fairly constant across a wide range of horizontal
wavenumbers.

We conclude that, although the AHT is indeed a strong damping mechanism, and
together with particular coefficients of diffusivity and stratification can diminish the
growth rate, is not sufficient to balance the positive terms involved in the coupling
and further physics should be included in order to compensate the mechanisms
generating the unstable mode.

2.5 Conclusions

This chapter has examined the behaviour of an oceanic planetary geostrophic model
coupled to an atmosphere through an EBM, by examining wave modes with a suit-
able boundary condition for the vertical velocity in the long wave limit for a con-
tinuously stratified, diffusive, ocean. En route, we have examined the effects on long
wave motions of the diffusivity itself, and several boundary conditions.

The introduction of vertical diffusion has proved to have little effect on the
propagation of planetary waves. Qiu et al. (1997) pointed out that the phase speed
of the free wave remains unaltered by the inclusion of eddy processes and is also
weakly sensitive to changes of its value, but horizontal diffusion can effectively damp
the wave. The NF and HF case are both unable to modify the wave phase speed
and also produce small damping rates for the first modes.

The introduction of sensible heat fluxes, and therefore a net loss towards the
atmosphere, resulted in only small increase in the damping rates (Fig.2.2, bottom
panel). Again, the first three modes seem to remain unchanged. However, this seems
to be the more efficient way of damping the planetary wave. When the EBM is intro-
duced, smaller damping rates are found and variations from the unperturbed theory
are even less then in the diffusivity case. This is due to the positive contributions
of sensible and latent fluxes towards the ocean.

However, when an EBM is used, an additional unstable mode is found. Robust
to any change in the parameters, it presents a boundary layer due to the presence of
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diffusion and a decadal growth rate, but its extremely long period (about a hundred
years), while probably irrelevant for decadal processes, is clearly of importance in
the interpretation of long climate model runs using a simplified atmosphere. The
shape of the unstable mode resemble that of a first mode (no zero-crossings in the
vertical). This means that the unstable mode found when an atmospheric EBM
is coupled to a continuously stratified ocean is not negligible in those parameter
settings and could be found with a simpler ocean of fewer layers. Also, its existence
has been tested within an initial value problem which proved its growing behaviour.

The sensitivity of the unstable mode to the different parameters taken into ac-
count is thoroughly explored. The background stratification has been modified, an
homogeneous mixed layer has been included at the surface and a possible range of
the coefficient of air-sea exchange λ was used without successfully destroying the
instability. Moreover, as Kv seemed to be the main factor in controlling the vertical
eigenvectors and growth rate of the unstable mode, we computed the growth rate
with a larger range of diffusivity values (Fig.2.14) and the unstable mode was found
to exist for a relatively wide range of parameter space. When Kv → 0, the ocean and
atmosphere stop communicating, or the atmospheric information is not transmitted
into the interior ocean; as a result of this, the growing mode cannot exist, and for sig-
nificant wavelengths, the critical point appears to be at Kv = 10−5m2s−1. When Kv

reaches its critical value, the bifurcation takes place and the unstable mode appears
with a growth rate close to the annual period. Then, as diffusivity increases, the
mode is slowly destroyed (as shown in Fig.2.10) and its growth rate slows down until
it becomes a decaying mode. In fact, the surface intensified disturbance generated
by the EBM is rapidly distributed vertically for higher Kv values and the unstable
mode no longer exists; this happens for the bottom intensified mode as well. It is dif-
ficult to give a realistic value for midlatitude diapycnal diffusivity. Munk and Wunch
(1998), revisiting older studies, concluded that 10−4m2s−1 is the necessary averaged
diffusivity, but other studies using direct estimates at midlatitudes suggest a lower
value of 10−5m2s−1 (Ledwell et al., 1998). General revisions of the problem (see for
example Webb and Suginohara (2001)) indicate a range between 3-5×10−5m2s−1.

Within this range, our unstable mode has a decadal growth rate. If we increase
the weak stratification to N2

0 = 5×10−5s−2 and look for waves with λw = 10−6m, we
find a phase speed corresponding to a decadal period (denoted by a star in Fig.2.10).

So far, unstable modes in the extratropics have been identified where a dy-
namical coupling is present in the ocean-atmosphere system (Liu, 1993; Jin, 1997;
Frankignoul et al., 1997; Talley, 1999; Goodman and Marshall, 1999; Ferreira et al.,
2001), or when the ocean model is coupled to the atmosphere through an EBM with
no wind forcing (Huck et al., 2001), but in this case the instability relied on the
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Figure 2.14: Semilog plot of the growing rate (top) and Re(σ) (bottom) relation
with vertical diffusivity for different wavelengths λw (m). When Kv = 10−5m2s−1 the
growing mode appears; its growth rate rapidly increases and then slowly vanishes as
Kv approaches values around 10−4m2s−1 depending on λw. For Kv between 4×10−5

and 10−4m2s−1 the growth rate is decadal. Note that for λw=106m and N2
0 =5×

10−5s−2 (denoted by a ∗) also the period of the growing mode is decadal in that
region.

zonal background flow to grow, which is not present in our model.
In order to understand the origin of the unstable mode we studied the energetics

of the system and identified a positive term that, in the case of the growing mode, is
greater than the remaining negative terms and justifies the instability. The simplified
atmosphere was improved with the inclusion of horizontal diffusion of heat without
achieving a sufficient damping.

It is not clear whether the atmospheric EBM alone could support coupled modes
or if this result is an artifact generated by the simplified atmosphere employed,
raising doubts over the use of EBMs in coupled studies. Moreover, if dynamics is
included in the atmospheric part of the model and the EBM retained, this unstable
mode could still be present and possibly confused with a dynamically generated
coupled mode.

It might be argued that the use of a constant vertical diffusivity in our ocean
could be a lack of representation of the vertical fluxes generated by the EBM, but
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the results obtained with different N2
0 and with an explicit mixed layer at the top

seem to indicate that the fluxes are not constraint to the top layer but rapidly
transmitted to the interior of the ocean, making the use of a constantKv a reasonable
approximation.

However, our model is oversimplified. The lack of dynamics in both the at-
mosphere and the ocean, horizontal diffusion and meridional boundaries are big
limitations in the results obtained in this study. For instance, mean flows are key
factors for the development of positive ocean-atmosphere feedbacks (Qiu and Jin,
1997, for example), meridional boundaries have been proved to cancel the existence
of growing modes existing in channel configurations (Goodman and Marshall, 2003),
and finally horizontal diffusion, as discussed by Qiu et al. (1997), although not able
to modify the phase speed, is a crucial mechanism for the dissipation of planetary
waves and among the primary sinks of energy in the ocean. But our model is also
missing the positive feedback of wind-stress, which can reinforce the wave against
dissipation, and many studies are based on oversimplified atmospheres or oceans in
climate modelling studies, which can result in similar conclusions.

Finally, we conclude that a thermal atmosphere is not efficient in damping out the
planetary wave. A dynamic atmosphere needs to be coupled to the planetary wave
in order to clarify whether this can be modified in its properties. The unstable mode
found when an atmospheric EBM is coupled could disappear but the weakly damped
modes could also be excited by wind stress as suggested in recent works (Cessi and
Paparella, 2001; Cessi and Primeau, 2001). However, the null negative effects of the
thermal atmospheric components leave hope for effective input of energy against any
form of dissipation.



Chapter 3

The Quasi-Geostrophic Coupled

Model

In this chapter we will briefly explain the model used in the following sections of the
thesis, the advantages of using such a model for our purposes and the basic config-
urations employed. However, a detailed explanation of the model equations, deriva-
tions and the general numerical formulation can be found in Hogg et al. (2003a,b).
The model is intended to be for general public use and can be downloaded from
the URL http://www.noc.soton.ac.uk/JRD/PROC/Q-GCM, together with its users’
guide, details of recent developments and related publications.

3.1 Introduction

The aim of the Quasi-Geostrophic Coupled Model (Q-GCM) is to be able to repres-
ent coupled ocean-atmosphere dynamics in a transparent and efficient way, retaining
at the same time simplicity and numerical rapidity. The importance of non-linear
dynamics and high-resolution in both the ocean and atmosphere is evident in the
climate system; these are both present in the model thanks to its numerical config-
uration and equations used.

The model dynamics are based on the quasi-geostrophic (QG) equations -which
are known to be a very good and widely accepted approximation for mesoscale dy-
namics and planetary wave propagation- in both the atmosphere and ocean. How-
ever, if a fully coupled model is to be built, incorporating both mechanical and
thermodynamical interaction between the two fluids, the QG equations raise a dif-
ficulty because they do not fully resolve the vertical fluxes of heat. This problem is
overcome by embedding a mixed layer in both the ocean and atmosphere through
which the two fluids communicate and where the mutual interaction takes place.
This technique is not new; other authors (Kravtsov and Robertson, 2002; Kravt-
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sov et al., 2005b) coupled their ocean-atmosphere model through an oceanic mixed
layer, but the Q-GCM employes a mixed layer in each domain, allowing for an even
better representation of heat transport and a simpler numerical formulation.

The Q-GCM is forced by latitudinal variations of incoming radiation, the atmo-
spheric part of the model is represented as a re-entrant channel of N-layers coupled
to an ocean of M-layers through their respective mixed layers; the ocean can be set
up as either a box or a channel ocean and topography can be added respectfully of
QG approximations. A schematic representation of the model is given in Fig.3.1.
The Q-GCM can not only run as a coupled ocean-atmosphere model but it can also
be decomposed into a forced model, in which the atmosphere (ocean) forces the
oceanic (atmospheric) circulation.

The model sits on a β-plane in which the Coriolis parameter is given by f = f0 +

βy, where f0 is the Coriolis parameter at a central latitude φ and β is its meridional
gradient. The Q-GCM therefore represents a mid-latitude climate system, able to
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Figure 3.1: Schematic (not to scale) of a three-layer version of the Quasi-
Geostrophic Coupled Model [Adapted from Hogg et al. (2003a)]. Shaded areas cor-
respond to the atmospheric (variable height) and oceanic (fixed height) mixed layers,
which interchange momentum and heat fluxes between the two fluids. The atmo-
spheric component is a zonally reentrant channel while the ocean is a box domain.
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reproduce the non-linearity in the atmospheric and oceanic dynamics with very high
resolution at a very affordable machine time.

The only deficiencies of the model at this stage are the lack of possibility of
introducing variable coastlines (other than the solid walls delimiting the ocean do-
main), the absence of equatorial dynamics (due to the use of QG approximations),
the restricted thermodynamics employed and the parameterization of salinity or
any other passive tracer. However, for idealised mid-latitude studies, these are all
unimportant. Finally, we conclude that for the purposes of this study on the invest-
igation of planetary wave propagation in a coupled ocean-atmosphere system, the
Q-GCM perfectly suits our needs in terms of interaction dynamics, non-linearities
in the system and versatility of the different configurations.

3.2 Model description

The model is symmetric around the ocean-atmosphere interface, with increasing
layer numbering away from it. Then, the mixed layer is embedded in layer 1 for both
atmosphere and ocean and the possible ocean topography would be parameterised
within the last layer (Fig.3.1).

For a flat bottom 3-layer configuration, the QG potential vorticity (QGPV)
equation is

∂tqi + J(ψi, qi) = f0Ae + A2∇4ψi − A4∇6ψi (3.1)

where qi and ψi are the layer potential vorticities and stream functions respectively,
J(a, b) = axby − aybx is the Jacobian and subscripts denote derivatives. We define

A =


1

H1

−1
H1

0 0

0 1
H2

−1
H2

0

0 0 1
H3

−1
H3

 , eo =


eo0

eo1

0

eo3

 , ea =


ea0

ea1

0

0

 ;

in the atmospheric QGPV equation the matrix A will simply be of opposite sign.
The vector on the right, e, is the ocean and atmosphere entrainment vector for
which eo0 = woek and ea0 = waek are the Ekman velocities, eo1 = −∆mT

2∆1T
woek where

∆iT describes the temperature difference across interfaces i and i + 1 and finally
eo3 = δek

2
∇2ψ3, with δek a bottom drag. There is no entrainment of heat flux between

other intermediate layers, i.e. ei = 0 for i > 1, and because both the oceanic and
atmospheric layers have constant potential temperature, any change in the layer’s
heat content will be given by modifications in its height.

The ocean and atmosphere Ekman pumpings are related through their density
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difference ratio rρ = ρa/ρo and are defined as

woek = rρwaek = rρ(∂xτ
y − ∂yτ

x)/f0

The last two terms on the right hand side of (3.1) correspond to Laplacian diffusion
and biharmonic viscosity respectively. The latter is an effective way to remove
enstrophy from small scales without damping the energy containing eddies (Rhines,
1986).

The layer PVs are given by

qi = ∇2ψi + βy + FΨ (3.2)

where

F =


−F11 F11 0

F21 −(F21 + F22) F22

0 F32 −F32

 , Ψ =


ψ1

ψ2

ψ3

 ,
and F11 = f 2

0 /(H1g
′
1), F21 = f 2

0 /(H2g
′
1), F22 = f 2

0 /(H2g
′
2), F32 = f 2

0 /(H3g
′
2) following

the general convention Fn,m = f 2
0 /(Hng

′
m) and g′i and Hi are the reduced gravities

and layer depths respectively. It is straightforward to extend the equations to any
N-layer configuration.

As mentioned above, the system interacts via the two mixed layers, where stress
and fluxes are parameterised and then entrained into their respective first layer.

The mixed layer temperature equations are expressed as

∂tT +∇ · (uT ) =
T

Hm

{
woek

−waek

}
+K2∇2T −K4∇4T +

1

Hm

{
−Fo0−Fom

ρoCpo

Fa0−Fam

ρaCpa

}
, (3.3)

where ρo and ρa are the ocean and atmosphere density, Cpo and Cpa their specific
heat capacity, Hm their mixed layer thickness and the mixed layer velocities, u,
where their quasigeostrophic and ageostrophic Ekman parts, are simply

(um, vm) = (−∂yψ1, ∂xψ1) + (τ y,−τx)/(f0Hm).

Only the atmospheric mixed layer has a variable height due to numerical necessity
whereas the depth of the oceanic mixed layer is fixed.

The second and third terms on the right hand side of (3.3) are Laplacian and
biharmonic diffusions. The last term in (3.3) represent the fluxes at the top (Fm)
and surface (F0) of the mixed layer. In the case of the ocean, the heat fluxes are
defined as

Fo0 = Fλ − Flong − Fs, Fom = −ρoCpo∆mTwoek, (3.4)

where Fλ encapsulates the sensible and latent heat fluxes, Flong is the longwave
radiation, Fom the entrainment heat fluxes and Fs the incoming y-dependent solar
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radiation. Where the atmosphere is in contact with land, the incoming shortwave
radiation is absorbed by the land and reemitted as longwave radiation into the
atmosphere. For a detailed derivation of heat fluxes between layers we refer to Hogg
et al. (2003a,b).

The model is initialised from rest, driven by latitudinally varying solar forcing.
The atmospheric stress over the ocean is computed, from which the oceanic mixed
layer temperature is derived. Then, the oceanic QGPVs are found and from these the
atmospheric mixed layer temperature. Finally the atmospheric QGPVs are stepped
and the procedure is repeated for each time step.

For every experiment the Q-GCM is initially run for 20 years, during which the
ocean spins up and reaches a steady state. Then, the run is continued for a total of
200 model years.

3.3 Experimental design and basic state solutions

Next, we describe the different parameters and configurations used in this study;
modifications of any of these will be clearly stated in the next chapters. While the
ocean response will be studied under different parameters, the atmospheric channel
component of the model will remain constant throughout the study. The oceanic and
atmospheric parameters used in the standard 3-layer basin ocean configuration are
listed in Table 3.1. We opted for a relatively coarse resolution in the ocean (∆x=40
km), as we aim to identify large scale coupled ocean atmosphere interactions.
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Figure 3.3: Time-averaged ψ1 of a 200 year run.

We explore the response of the model at two different central latitudes, corres-
ponding to 300 and 400; for the two cases, our model is barely resolving the first
Rossby radius of deformation but not the second one. The basin dimensions are
fairly large and, in particular, the ocean is very wide in order to study the zonal
propagation of planetary waves under the effect of atmospheric coupling. This has
the advantage of using a quasi-channel configuration but retaining the effects of me-
ridional boundaries. In fact, Rossby waves are dissipated at the western boundary
and any coupled Rossby mode will be affected by this interaction (Goodman and
Marshall, 2003). Viscosities are set to their minimum value ensuring stability and
no-slip boundary conditions are enforced.

The averaged ocean forcing fields, τ = (τx, τ y), and relative Ekman pumping,
woek, are shown in Fig.3.2, together with the oceanic sea surface temperature (SST).
The flow responds to the wind stress in a symmetrical double-gyre solution, a sub-
polar and a subtropical gyre, and the gyres shrink moving down towards lower
layers.

In Fig.3.3 we show the time-averaged stream function in the first layer. The Q-
GCM actually computes the layer pressures and, in geostrophic balance, the oceanic
stream functions are estimated from the layer pressures pi via

ψi(x, y, z, t) = hi{pi(x, y, z, t)− pi(xe, y, z, t)}/f0,

where xe is the eastern longitude of the eastern coast.
We also note the presence of a strong boundary current, separating at the centre

of the meridional extension of the basin, which will play a major role in damping
the incident planetary waves in the model.
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Figure 3.4: Snapshots of PV fields (left panels) and stream functions (right panels)
for each layer at the end of the run. Bluish colours are for lower values and reddish
colours for higher values; contour interval is arbitrary.

The instantaneous PV fields are shown on the left panels of Fig.3.4. In the first
layer, where the wind forcing provides a source of PV, a sharp region denotes the
separation of the two gyres, while in the inner layers a region of homogenised PV is
formed, caused by the intense eddy activity driving an enstrophy cascade. This is
clearly visible in the second layer but is shrinking in size in the deeper layers.

Snapshots of the layer stream functions can be found on the right panels of
Fig.3.4. They reveal an intense eddy activity, a westward intensification of mesoscale
structures in all three layers and the ability of resolving mesoscale eddies.

A 3-layer ocean model is able to better represent baroclinic instability, which
is the source of these eddies on the scale of the first Rossby radius, enhancing the
turbulent structure even in a coarse resolution simulation.

In order to reproduce the intense eddy activity and the dynamics of long wave-
mean flow interaction, one can either increase the ocean resolution or the strati-
fication of the layered model (Dewar and Morris, 2000). This will be discussed in
Chapter 5, where the Q-GCM will be run with a 20 km resolution 6-layer ocean and
the results compared with the standard configuration.
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Parameters Value Description

Ocean

Zi 3 No of layers

∆x 40 [km] Horizontal grid spacing

(X, Y ) (11520,4800) [km] Domain size

Hi (300, 1100, 2600) [m] Mean layer thicknesses

Hm 100 [m] Mixed layer thickness

Ti (278, 268, 258) [K] Layer’s potential temperature

g′i (0.05, 0.025) [m s−2] Reduced gravities

ρo 1×103 [kg m−3] Density

Cpo 4×103 [J(kg K)−1] Specific heat capacity

K2 5.7×102 [m2 s−1] ∇2 diffusion coefficient

K4 8×1010 [m4 s−1] ∇4 diffusion coefficient

A4 4×1010 [m4 s−1] ∇4 viscosity coefficient

δek 2 [m] Bottom Ekman layer

f0 7.292×10−5 [s−1] Coriolis parameter, φ=30o

β 1.982×10−11 [(m s)−1] df/dy (30o)

ai (53.1, 35.6) [km] Rossby radii (30o)

f0 9.374×10−5 [s−1] Coriolis parameter, φ=40o

β 1.753×10−11 [(m s)−1] df/dy (40o)

ai (41.3, 27.9) [km] Rossby radii (40o)

Atmosphere

Zi 3 No of layers

∆x 120 [km] Horizontal grid spacing

(X, Y ) (15360,7680) [km] Domain size

Hi (2000, 3000, 4000) [m] Mean layer thicknesses

Hm 100 [m] Minimum mixed layer thickness

Ti (330, 340, 350) [K] Layer’s potential temperature

g′i (1.2, 0.4) [m s−2] Reduced gravities

ρa 1 [kg m−3] Density

Cpa 1×103 [J(kg K)−1] Specific heat capacity

K2 2.7×104 [m2 s−1] ∇2 diffusion coefficient

K4 3×1014 [m4 s−1] ∇4 diffusion coefficient

A4 2×1014 [m4 s−1] ∇4, viscosity coefficient

λ 35 [W m−2 K−1] Sensible and latent heat flux coefficient

ai (496, 259) [km] Rossby radii

Table 3.1: List of the standard oceanic and atmospheric parameters of the Q-GCM
used in this study.



Chapter 4

Coupled Rossby waves in the

Q-GCM

Rossby wave propagation is investigated in the framework of an idealised middle-
latitude coupled ocean-atmosphere model. Rossby waves are observed to be unstable
according to a latitude-dependent instability process but also show resistance to this
mechanism. A clear coupled Rossby wave mode is identified between a baroclinic
oceanic Rossby wave and an equivalent barotropic atmospheric wave. The spatial
phase relationship of the coupled wave is similar to the one predicted by Goodman
and Marshall (1999) suggesting a positive ocean-atmosphere feedback. It is argued
in this chapter that Rossby waves can be efficiently coupled to the overlying atmo-
sphere allowing the waves to partially maintain themselves against dissipation and
instability mechanisms so that the waves travel longer distances than those predicted
by the unforced problem considered in LaCasce and Pedlosky (2004). Furthermore,
evidence for a coupling speed-up is found and comparisons with previous theoretical
and observational studies are given.

4.1 Introduction

In recent years there has been a growing interest in the scientific community in study-
ing ocean-atmosphere coupled models (Liu, 1993; Frankignoul et al., 1997; Barsugli
and Battisti, 1998; Goodman and Marshall, 1999; Ferreira et al., 2001; White et al.,
1998; Neelin and Weng, 1999; White, 2000a; Gallego and Cessi, 2000; Cessi and
Paparella, 2001; Colin de Verdière and Blanc, 2001; Kravtsov and Robertson, 2002,
to mention a few). Different approaches have been used and different results, some-
times in disagreement, have been found. Nevertheless, there are a few key findings
that can be pointed out. First, it is clear nowadays that the ocean does not respond
passively to atmospheric forcing but interacts through feedback mechanisms (for ex-
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ample, Latif and Barnett, 1994, 1996; Barsugli and Battisti, 1998; Pierce et al., 2001;
Hogg et al., 2005; Kravtsov et al., 2005a). It is also well known that oceanic Rossby
waves play a major role in the coupling physics (for example, Jin (1997); Goodman
and Marshall (1999); Ferreira et al. (2001); Kravtsov and Robertson (2002); Arzel
and Huck (2003)). A single theory for the coupling has not been reached yet because
of its complexity and its geographical variations. These studies on atmosphere-ocean
coupling can also help understand some questions mentioned in the first chapter of
this thesis, like the differences between theoretical and observed Rossby wave phase
speeds (Frankignoul et al., 1997; Qiu et al., 1997; Ferreira et al., 2001; White et al.,
1998), although different answers are usually argued.

For instance, Frankignoul et al. (1997) studied the decadal variability of the
extratropical ocean forced by stochastic winds. They found a baroclinic response
consisting of a Rossby wave travelling at twice the theoretical speed, and concluded
that this could be a reason for the fast speeds observed by Chelton and Schlax
(1996). Also, they compared their results with a GCM and found good agreement
in terms of frequency spectra but their conclusions did not hold above 45oN where
the mean flow velocity is comparable to the Rossby wave phase speed. The model of
Frankignoul et al. (1997) was simple, with a flat bottom 2-layer ocean with neither a
western boundary nor a mean flow, the latter of which has been proved to be of great
importance in Rossby wave propagation (Killworth et al., 1997). Although there is
a lack of reality in these models, simple models are often able to predict the basic
coupling mechanisms (Barsugli and Battisti, 1998) and it seems very probable that,
even if neither the mechanisms nor the magnitude are completely clear, coupling
effects are able to modify Rossby wave phase speeds.

The two theoretical studies that are the most complete to date are given by
Goodman and Marshall (1999) and Ferreira et al. (2001). Goodman and Marshall
(1999) used a QG atmosphere overlying a QG ocean where the coupling mechanisms
were both wind stress and thermal forcing. In their analytical model they found that
coupled modes in which baroclinic Rossby waves can grow (unstable modes) exist
under some circumstances through the linear interaction between travelling oceanic
Rossby waves and forced stationary atmospheric planetary waves. The response in
the atmosphere to the thermal forcing is equivalent barotropic and the resulting be-
haviour need not to be a first baroclinic mode. This important feature has not been
considered much yet, although it has also suggested in White (2000a) where phase
speeds consistent with a second mode Rossby wave have been found, though have
not been pursued further. Furthermore, Goodman and Marshall (1999) pointed out
that the atmosphere and the ocean need not be in phase (high pressures located
above warm water) for the growing mode to exist, but that for the case of the Ant-
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arctic Circumpolar Wave (ACW), growing modes occur if surface air pressure is in
phase with SST, contrary to observations in White and Peterson (1996). A similar
result was also found by van der Avoird et al. (2002) who, using a linear stabil-
ity analysis of a 2-layer coupled model, described a coupled mode of interdecadal
period originating from the interaction of a baroclinic Rossby wave and a quasi-
stationary atmospheric equilibrated planetary wave with the same mechanisms as
in the advective case of Goodman and Marshall (1999).

An extension to the Goodman and Marshall (1999) study is given by Ferreira
et al. (2001) in which the major difference is the introduction of a boundary to the
east and a radiation condition to the west. In this case similar patterns are found,
like the equivalent barotropic atmosphere response leading to coupled growing modes
and oceanic-atmospheric perturbations in phase. As in Frankignoul et al. (1997) the
phase speed of the baroclinic Rossby wave was observed to increase due to larger
wavelengths resulting from the coupling and leading to increased phase speeds. The
simple atmosphere used in all these studies could be a weakness of the results but
the ocean is more likely to be the cause of any misrepresentation.

Satellite observations are used by White et al. (1998) to study the interaction
between the atmosphere and the ocean and analytical models are developed to be
used in synergy with these studies. White et al. (1998) analysed anomalies in the
sea level height (SLH), SST and meridional surface winds (MSW) signatures in the
Pacific Ocean. They found a 90o shift between SST and SLH in an advection mech-
anism and faster Rossby wave phase speeds in the mid-latitudes and slower in the
subtropics, reducing the characteristic β-refraction of Rossby waves. In these stud-
ies the author argued that the effect of coupling was due to the introduction of a
supplementary zonal phase speed component that increases the theoretical phase
speed due to a SST-induced meridional anomalous heat transport by Ekman velo-
cities. Moreover, in an identical study with the only difference of analysing data
from the Indian Ocean, White (2000a) observed slower speeds arguing that in the
Indian Ocean the phase relation between SST and MSW was opposite of that in
the Pacific allowing for an eastward phase speed resulting in slower Rossby wave
propagation. Based on Topex/Poseidon (T/P) observations, in both White et al.
(1998) and White (2000a) different analytical models and theories for the two oceans
are derived.

Although a general coupled Rossby wave model, describing the interaction of
the oceanic Rossby wave with the overlying atmosphere and the phase relationship
between the two, has not been developed yet, the literature presented here gives
clear examples of the increasing interest and efforts on the study of coupled mech-
anisms in which oceanic Rossby waves are modified either in their structures or in
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their phase speeds. In addition to modelling efforts, observations of the propaga-
tion of Rossby waves are able to characterise the wave properties as the record of
satellite measurements increases. After the pioneering study of Chelton and Schlax
(1996) several authors have applied satellite-based data analyses to infer Rossby
wave activity (Wunsch and Zang, 1999; Cipollini et al., 2000; Hill et al., 2000; Fu
and Qiu, 2002; Osychny and Cornillon, 2004; Fu, 2004). Wunsch and Zang (1999)
pointed out the existence of both linear signals falling into the theoretical linear
dispersion relation for Rossby waves and faster forced motions generated by other
mechanisms such as those described by Killworth et al. (1997) and Qiu et al. (1997).
The more thorough study of Osychny and Cornillon (2004) identifies faster phase
speeds at all middle latitudes with differences increasing both moving polewards and
towards shorter wavelengths; the latter characteristic is also confirmed by the recent
modelling work of Killworth and Blundell (2005b).

The latitudinal dependence in the Rossby wave speed discrepancies has also been
addressed by LaCasce and Pedlosky (2004), although with a different context. They
considered the unforced problem with no mean flow in which Rossby waves are
unstable due to a β-dependent baroclinic instability mechanism. Hence, baroclinic
Rossby waves were easily breaking into barotropic eddies travelling at about 2 times
the baroclinic wave speed arresting the propagation of the original baroclinic wave
after a few thousands of kilometres from its source. It is important to underline
that in their analytical calculations they did not consider the effects of mean flow,
forcing or ocean-atmosphere feedbacks.

The main goals of the study presented in this chapter are the identification
of the atmospheric influence and possible positive feedback on the oceanic Rossby
wave propagation. Are Rossby waves subject to the LaCasce and Pedlosky (2004)
instability mechanism? What are the effects of including the atmospheric forcing
and coupling and do Rossby waves couple with the overlying atmosphere as has
been observed and theorised? If this feedback exists, can it explain the features
observed by remote sensing devices? We will focus on the possibility of a positive
coupling between the oceanic wave and the atmosphere at middle-latitudes, trying
to identify a coupled wave mode in a fully coupled ocean-atmosphere model and its
subsequent response in the wave propagation. Comparisons with previous theories
and observations will follow.

In Section 2 we identify the Rossby wave activities in the model and charac-
terise their main properties with the help of statistical analyses in Section 3. We
then proceed to isolate a coupled Rossby wave explaining the relationships with the
atmospheric variables in Section 4 and conclude with a discussion of the results in
Section 5.
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4.2 Detection and identification of Rossby waves

The Q-GCM is run for 200 model years at two central latitudes φ = 30◦ and 40◦,
for the parameters listed in Table 3.1. Oceanic and atmospheric variables are saved
every 10 days in order to have a dense temporal sampling, useful for the statistical
techniques used later on in the study and enabling direct comparisons with satellite
measurements such as TOPEX/Poseidon, which provides observations approxim-
ately every 10 days.

We are then ready to identify the propagation of the oceanic Rossby waves gen-
erated by the unsteady winds in the model (Fig.3.2) and their basic properties. We
begin by plotting Hovmöller diagrams (time-longitude plots at a given meridional
position in the ocean basin domain) of the second interface height (OCH2), cor-
responding to thermocline displacements. The Hovmöller shown are for the north
subtropical gyre, for correspondence with the real oceans at these latitudes; never-
theless, they show similar patterns at different locations.

As we are interested in westward propagating waves, we apply a westward filter
to the data (Cipollini et al., 2000), the results of which are shown in Fig.4.1 for a
particular time interval. Here, clear signals of crests and troughs are visible with a
strong zonal variation in both amplitude and propagating speed. For comparison
purposes, we also plotted the results from a previous run, with the same character-
istics, at φ = 20◦. By following crests we can estimate an approximate velocity of
the dominant signals, and a simple inspection of the diagrams reveals the theoret-
ical increase in phase speed as we move towards lower latitudes. With this crude
estimation, at φ = 30◦ the phase speed is around 6.5 cm/s and at φ = 40◦ around
5 cm/s. These are relatively high phase speeds since in the simulations our Rossby
radii give us velocities of 5.2 and 2.9 cm/s at 30◦ and 40◦ respectively for the first
baroclinic Rossby wave mode.

The high phase speeds identified seem to agree with some observations, for in-
stance Osychny and Cornillon (2004), who find differences in wave propagation
stronger at higher latitudes. Hovmöller plots of SST anomalies reveal similar results
for all central latitudes.

Another fundamental feature in Fig.4.1 is the apparent breaking and instability
of waves, which is stronger as we move away from the Equator. In fact, at lower
latitudes crests and troughs are very well defined and consistent throughout their
propagation in single beams. However, as we increase the central latitudes in our
simulations, faster waves start to appear, generated from an original “mother wave”,
breaking and destroying their source as they get stronger with latitude.

This result recalls the instability mechanism proposed by LaCasce and Pedlosky
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Figure 4.1: Hovmöller plots of the second interface heights OCH2 (in meters),
representative of the thermocline displacements, for three different central latitudes
(φ = 20o, 30o, 40o). Note the increasing breaking of the waves as the latitude in-
creases.

(2004) in which Rossby waves are subject to a latitude-dependent baroclinic in-
stability, resulting in faster barotropic Rossby waves. In fact, a time series of the
two interface heights in a point in the western side of the basin where these faster
waves are found, reveals the barotropicity of the signal, with interface height dis-
placements travelling with a barotropic vertical structure, suggesting that we are in
presence of the LaCasce-Pedlosky’s instability mechanism.

A complementary and more accurate identification of the spectral characteristics
of the Rossby waves identified is achieved through a Fast Fourier Transform (FFT)
of the westward-filtered data, resulting in frequency-wavenumber spectra. To this
purpose we applied a temporal band-pass filter to the data between 1 and 5 years
at every spatial location in order to suppress the high frequencies and the decadal-
interdecadal signals.

The FFT analysis plotted in Fig.4.2 reveals Rossby waves propagating much
faster than the unperturbed (dashed lines) and the perturbed dispersion relation
(solid lines) predict, with mean peaks showing phase speeds around twice the un-
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Figure 4.2: Frequency-wavenumber spectra of OCH2 anomalies at φ = 30◦ (top
panels) and φ = 40◦ (bottom panels) for the entire basin (first), the western side
(second) and the eastern side (third panels). Magnitude is normalised by its max-
imum value for each case. The broken line represents the theoretical dispersion
relation at the two central latitudes computed from the theoretical dispersion relation
with the model’s Rossby radii. The solid lines are the computed perturbed dispersion
relation with the inclusion of a zonal mean flow (See Appendix B). The mean flow
speed-up is about 1.2 for typical examples, close to the suggested value of 1.4 by
de Szoeke and Chelton (1999).
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perturbed values at both central latitudes. Here, we will refer to “perturbed solution”
to the dispersion relation computed with the inclusion of a zonal mean flow while
the “unperturbed solution” correspond to the classical linear dispersion relation (For
computations of perturbed solutions see Appendix B. The mean flow computed at
the location A in Fig.B.1, typical for the latitudes considered, correspond to the
solid line in Fig.4.2 ). In our 3-layer system we found only small variations in the
dispersion relation when including the model zonal mean flows. Following the theory
of de Szoeke and Chelton (1999), and making use of our density jumps and mean
layer depths, we should reach a speed-up of about 1.4. However, in the calculations
given in Appendix B, the maximum speed-up was found to be of around 1.22 and
this corresponds to the solid lines in Fig.4.2.

As we move polewards, more and more high-frequency waves appear in the west-
ern part of the basin, indicating the generation of fast barotropic waves probably due
to baroclinic instability processes. For the case at φ = 30◦ (upper panels of Fig.4.2)
we find wave speeds ranging from 6 to 9 cm/s, all of them much higher than the
unperturbed and perturbed theory would predict. The main peak in the spectra
has a period, P , of about 2.5 yr and is shared by the total, western and eastern side
spectrum. Another peak, with a period of about 1.5 yr and speed of 9-9.5 cm/s, is
present only in the spectrum of the western side of the basin, identifying the fast
barotropic waves. We can see that spectral peaks fall into the long nondispersive
range, where the phase speed is well approximated by cx = −βa2 and tend to di-
verge from the linear dispersion relation as the wavelength decreases, consistently
with Wunsch and Zang (1999), Osychny and Cornillon (2004) and Killworth and
Blundell (2005b), meaning that shorter waves travel faster than the longer ones and
there is evidence of both linear and non-linear activity in the spectrum. It is also
evident from the FFT analysis that the western side is more energetic and presents
more variability at all frequencies than the eastern side.

One might argue that, because the resolution is quite coarse, the phase speeds
present in these data are not properly taking into account the wave-mean flow inter-
action and the baroclinic mean flow speed-up is not fully reflected in these results.
However, if we believe the theory by LaCasce and Pedlosky (2004), the fast baro-
tropic waves should travel at approximately the double of the linear baroclinic speed,
and this is reflected in our data at both central latitudes.

For the central latitude φ = 40◦ (lower panels of Fig.4.2) the results are qual-
itatively very similar. The main peak is around P= 3-3.5 yr with phase speeds
of about 4-4.5 cm/s. The extra peak in the western side of the ocean basin has a
period of 2 years and phase speeds of 7.5-8 cm/s. The wavenumber of the main
peaks is around 2×10−7m−1, which corresponds to a wavelength λ = 5× 106m. Al-
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though quite a long wave, Goodman and Marshall (1999) found in their analytical
results k=π(5500 km)−1=5.7×10−7 or λ ∼ 1× 107m as the wavelength of maximum
growth at a decadal period (ω = 2× 10−8s−1) for their coupled Rossby mode. Our
wavelengths are different because of the choice in our basin dimensions and, if an
atmospheric coupling is occurring, an increase in the wavelengths of the coupled
waves is expected, as suggested by Ferreira et al. (2001).

Generally, we discovered very fast Rossby waves in our model runs, all with phase
speeds faster than predicted by the linear theory, with increasing differences as we
move towards higher latitudes (Chelton and Schlax, 1996; Killworth et al., 1997).
Also, we observed the instability mechanism proposed by LaCasce and Pedlosky
(2004). However, the waves can travel much longer distances than those predicted
by LaCasce and Pedlosky (2004). At the latitudes presented in this study, the
baroclinic “mother wave” should no longer be able to propagate the long distance of
our very wide ocean basin and leave space only to the resulting barotropic vortices.
Moreover, the amplitudes of the waves, in all three central latitudes presented in
Fig.4.1, seem to be enhanced as they move westward. The ability to propagate
longer distances and the increase in the magnitude of the anomalies make us think
of the possibility of a positive coupling with the atmosphere, sustaining the waves
against dissipation and instability processes. Besides, although some peaks in the
FFT analyses fall into either the unperturbed or the perturbed dispersion relation,
one or two major peaks at both central latitudes are clearly too fast and are not
explained by the inclusion of a sheared mean zonal flow.

Coupled Rossby modes have been identified in data (White et al., 1998; White,
2000a, 2001) and simple analytical-numerical models (Goodman and Marshall, 1999,
2003), but whether they really exist in fully coupled models of intermediate com-
plexity is still unclear and the processes involved within a full dynamics model not
completely understood.

4.3 Principal components analysis of the oceanic

and atmospheric variability

We already know the ocean climatology of this model from Chapter 3. The ocean
circulation is dominated by a double gyre circulation, subtropical and subpolar, sep-
arated by a narrow and strong zonal current, where the SST presents a sharp front.
The channel atmosphere is instead characterised by a zonally symmetric circulation,
with sloping interface heights (ATH1 and ATH2) towards the south, due to the ra-
diation condition of heating in the southern region and cooling in the northern one.
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Figure 4.3: First four Empirical Orthogonal Functions of the unfiltered ATH1
(upper panels) and ATH2 (lower panels). In the grey scale dark colours correspond
to negative weights.

The atmospheric dynamics are then inferred from an Empirical Orthogonal Func-
tions (EOFs) analysis (Preisendorfer and Mobley, 1988). EOFs separate the data set
into dominant spatial modes of variability, attributing a portion of the total variance
to each one of them; the eigenvectors of the eigenvalue analysis correspond to the
spatial patterns while the associated eigenvalues represent the variance explained
by the mode (details of the statistical eigentechniques used in this chapter can be
found in Appendix A). In Fig.4.3 we show the first four EOFs of the two unfiltered
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interface heights, ATH1 and ATH2, at the central latitude of 40◦. The four ATH1
EOFs explain around 37% of the variance of the unfiltered data; when a low-pass
filter is applied to the data the percentage explained is increased to around 65%.
EOF-1 has a wavenumber-3 structure, apparently propagating westward, in quad-
rature with EOF-2 of similar eigenvalue. EOF-3 is dominated by a wavenumber-3
eastward-propagating signal, paired with EOF-5. A mode-1 in meridional and zonal
wavenumber is represented by the EOF-4, paired with EOF-6 and travelling east-
ward.

The analysis for ATH2 results in similar patterns, with the first four EOFs ac-
counting for the 21% of the total variance (∼45% in the filtered case). An eastward
propagating wave is shown in EOF-1 and EOF-2, a standing annular/wavenumber-3
is dominating EOF-3 and a wavenumber-4 westward-propagating signal appears in
EOF-4, paired with EOF5. Similar results are found when applying the principal
component analysis to the unfiltered atmospheric surface temperature (AST). In
fact, for both central latitudes a wavenumber-3 propagating wave and the standing
annular/wavenumber-3 mode explain most of the variance.

The results obtained with the EOFs analysis of the unfiltered data are in agree-
ment with previous similar studies (Kravtsov et al., 2003; Hogg et al., 2005; Kravt-
sov et al., 2005b); however, they do not shed much light on the atmospheric wave
propagation and we need a more powerful technique to address the question of what
are the characteristics of the wave dynamics in both ocean and atmosphere and
whether they are related. To this end, we will next apply a variation of EOFs to
our data, the Complex Empirical Orthogonal Functions (CEOFs) analysis, more
suitable for studying propagating waves.

4.3.1 Patterns of observed Rossby waves in both ocean and

atmosphere

Statistical eigenvalue analysis can be a very powerful tool for identifying particular
modes of variability in a given set of data. However, EOFs can identify standing
oscillations, giving only suggestions of the existence of propagating signals; these
can be highlighted by a CEOFs analysis, a technique designed to characterise the
propagating modes of variability with a pair of real and imaginary spatial pattern
in quadrature with one another (Preisendorfer and Mobley, 1988; von Storch and
Navarra, 1999), a method applied to the study of Rossby waves and basin modes
in many previous works (White, 2000a, 2004; Santoso and England, 2004; Yang
et al., 2004). After the CEOFs are computed, the real and imaginary eigenvectors,
together with their eigenvalues, can be manipulated to obtain several useful functions
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defining the mode evolution in both space and time (see Appendix A for a detailed
explanation). We therefore try to identify the periods and spatial characteristics
identified so far in both the atmosphere and the ocean at the two central latitudes.

Since we are interested in the propagation of Rossby waves only, and we have
recognised the main periods involved at both φ = 30◦ and 40◦, we apply a 1-10
year band pass filter to all our variables, filtering out interannual and interdecadal
frequencies before performing the CEOFs analysis on our data sets. Fig.4.4 shows
the third and fourth mode of the spatial patterns of OCH2 at φ = 30◦. The first two
modes have semi-annual periods, spatial structures not consistent with Rossby waves
and believed to be low-order basin modes characterised by a north-south dipole.
CEOF-3 explains ∼14.5% of the variance and propagates faster than CEOF-4, with
a basin mode-like structure, whilst CEOF-4 (∼6.3%) is clearly associated with a
Rossby wave propagating westward. This is visible comparing the real (left panels)
and the imaginary spatial structures (right panels) in Fig.4.4. Results for SST show
similar patterns, with westward propagating CEOF-3 and CEOF-4 (not shown).

Analysing the spectra of the principal components (PCs) we can extract the peri-
ods of each CEOFs mode. The spectra of the modes in Fig.4.4 and the corresponding
ones for SST are plotted in Fig.4.5. Broken lines are associated with CEOF-3 and
solid lines with CEOF-4. The Rossby wave in mode-4 has a pronounced peak at
0.4 years−1 (P= 2.5 yr), which corresponds to the strongest peak in the FFT ana-
lysis, for both OCH2 and SST; the peak at P= 3.5 yr, close to the linear theory, is
given by CEOF-3. Both modes present also other peaks at shorter periods, probably
associated with the high-frequency faster Rossby waves.

The same analysis was performed on the data at φ = 40◦. In this case the spatial

2000 4000 6000 8000 10000

1000

2000

3000

4000

       OCH2 − Re(CEOF-3); 14.51%

Y
 (

k
m

)

2000 4000 6000 8000 10000

1000

2000

3000

4000

      OCH2 − Im(CEOF-3)

2000 4000 6000 8000 10000

1000

2000

3000

4000

       OCH2 − Re(CEOF-4); 6.28%

Y
 (

k
m

)

2000 4000 6000 8000 10000

1000

2000

3000

4000

       OCH2 − Im(CEOF-4)

X (km) X (km)

Figure 4.4: CEOFs real and imaginary spatial patterns for OCH2 at φ = 30◦. Top:
CEOF-3 (14.5%); bottom: CEOF-4 (6.3%). Negative weights are shaded.
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patterns associated with the main Rossby wave peaks were found to be CEOF-1 and
CEOF-2. In Fig.4.6 we plot the results for CEOF-2, with a similar percentage of
variance as in CEOF-3 in the case of φ = 30◦, for OCH1, OCH2 and SST. Again
the wavenumber-3 westward propagating Rossby wave is visible in all variables with
an apparent baroclinic structure.

But what are the structures dominating the propagating features in the at-
mosphere? We find that the main atmospheric response in our simulations is a
wavenumber-3 wave at all central latitudes. The first two modes in the CEOFs ana-
lysis are dominated by an annular mode but CEOF-3 and CEOF-4, plotted in Fig.4.7
for ATH1 and ATH2, show the wavenumber-3 wave structure with an important and
fundamental difference between the two.

The atmospheric interface heights CEOF-3 show a wavenumber-3 wave, of re-
latively high percentage of variance (16.34% and 10.83%), propagating eastward.
CEOF-4 for both ATH1 and ATH2 explains a much smaller amount of variance in
the atmosphere (6.53% and 4.63%), but the same wavenumber-3 wave is observed to
travel westward instead (bottom panels of ATH1 and ATH2 in Fig.4.7), with appar-
ent equivalent barotropic structure. The atmospheric surface temperature (AST)
has the same response in spatial patterns for both modes (not shown).

Once again, the periods of the oceanic and atmospheric modes shown so far
are inferred from the spectra of the correspondent PCs. Normalised spectra of
atmospheric CEOF-3 and CEOF-4 and oceanic CEOF-1 and CEOF-2 are plotted in
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Figure 4.6: Spatial patterns of the second CEOF modes of OCH1,OCH2 and SST
at φ = 40◦. Negative weights are shaded.

Fig.4.8. The atmospheric CEOF-3 (broken lines) are dominated by energy at short
periods in all three variables and do not seem to share any relation with the oceanic
spectra of CEOF-1. In contrast, the atmospheric CEOF-4 modes have a clear peak
for P ∼3 yr, matching the oceanic CEOF-2 spectra with exactly the same period.
Thus, an atmospheric equivalent barotropic wave, travelling westward with a period
of around 3 years, seems to be coupled with a baroclinic Rossby wave of same period.

Some doubts can arise at this point on whether the atmospheric wave is really
travelling westward or not. The plots shown in Fig.4.7 relate to the real and imagin-
ary part of the spatial pattern for a given mode, in quadrature with each other. This
however does not necessarily give a clear indication of the sense of the propagation
and the eye can be misled. As discussed before, the CEOF technique can be ex-
tended from the simple description of the spatial patterns given by the eigenvectors
and other useful relations can be found manipulating the eigenanalysis results.

The spatial phases can be computed from the eigenvectors of a particular mode,
showing the relative phase of an oscillation in that mode, and giving a definitive
sense of propagation. For the case of the oceanic Rossby waves there is no doubt we
are in presence of westward propagating signals. The spatial phases of OCH1 and
OCH2 CEOFs were computed as a test, showing the westward sense of propagation
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Figure 4.7: a) CEOFs spatial patterns for the first interface height (ATH1). Top
panels: CEOF-3 (16.34%) propagating eastward as a wavenumber-3 wave. Bottom
panels: CEOF-4 (6.53%) propagating westward as a wavenumber-3 wave. b) Same
as a) but for the second interface height (ATH2). Top panels: CEOF-3 (10.83%)
propagating eastward as a wavenumber-3 wave. Bottom panels: CEOF-4 (4.63%)
propagating westward as a wavenumber-3 wave.

given by the phase degrees.
In addition to the spatial phases, we can compute the temporal phases, describing

the variation of the phase of a particular oscillation with a given period. If the
phase increases monotonically from 0◦ to 360◦, it is an indication of the presence
of cyclicity in the variable considered (Venegas, 2001). The temporal phases of the
OCH2 CEOF-4 and CEOF-2 at φ = 30◦ and φ = 40◦ respectively represent a clear
cyclicity (Fig.4.9), with similar periods as the ones given by their spectra. These
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Figure 4.8: Normalised spectra of atmospheric and oceanic h1,h2 and surface tem-
perature. Left panels: atmospheric spectra. Broken lines are for CEOF-3, dominated
by high frequencies, and solid lines for CEOF-4, with a common peak at P ∼3 yr.
Right panels: oceanic spectra. Broken lines are for CEOF-1 and solid lines for
CEOF-2, which shares the same peak as the atmospheric variables.

are the two waves associated with the biggest peaks in the frequency-wavenumber
dispersion relation shown in Fig.4.4 and Fig.4.6. The first is dominated by cycles
of about 2.5 yr with other shorter cycles involved, whilst the second one has clear
cycles oscillating between periods of 3 and 4 yr. One must remember that all the
frequencies in the spectrum of a mode are captured by its temporal phases, therefore
a single cyclicity will be difficult to determine. If we really wanted to isolate a single
mode, we should have applied a narrower band-pass filter and in that case the results
of the CEOFs analysis would have been more precise in describing a particular wave
pattern.

For the more controversial case of the atmosphere, the spatial phases leave no
doubt over the westward propagation of the CEOF-4 wave in ATH1 and ATH2. In
Fig.4.10 the phase degrees grow as we move westward and the wave is in an apparent



4.3 Principal components analysis of the oceanic and atmospheric variability 65

110 112 114 116 118 120 122 124 126 128 130
−180

0

180

p
h

a
s
e

time (yr)

φ = 30

100 102 104 106 108 110 112 114 116 118 120
−180

0

180

p
h

a
s
e

time (yr)

φ= 40

Figure 4.9: Temporal phases
of the OCH2 CEOF-4 at φ =

30 (top) and CEOF-2 at φ =

40 (bottom) for two selected
time intervals. For the two
cases, periods correspond to 2
to 2.5 and 3 to 4 yr respect-
ively.

1000

2000

3000

4000

5000

6000

7000

Y
 (

k
m

)

ATH1

1
2
0

6
0

6
0

1
2
0

1
2
0

6
0

−
6
0

−
1
2
0

−
120

−
6
0

−
1
2
0

−
1
2
0

−
6
0

0

0

0

2000 4000 6000 8000 10000 12000 14000

1000

2000

3000

4000

5000

6000

7000

X (km)

Y
 (

k
m

)

ATH2

1
2
0 6

0 1
2
0

6
0

−
6
0

−
1
2

0

−
6
0

−
1
2

0

−
6
0

0

00

Figure 4.10: Spatial phases for atmospheric ATH1 and ATH2. Contour interval
is ±60◦. Since the phase is computed over half cycle (π) the nodes appear to be the
double. The phase degrees indicate a westward propagation in the two variables.

equivalent barotropic state with the same initial arbitrary phase.
Finally we can nicely represent the propagation of the atmospheric and oceanic

wave with a sequence of maps, computed at 90◦ intervals, multiplying the real
and imaginary part of the spatial components by the cosine and sine of the phase
respectively as shown in Fig.4.11.

This should be read from top to bottom, following weights of the same sign
during the half cycle evolution. Each variable is initialised with the same arbitrary
phase. The oceanic wave is observed to propagate as a wavenumber-2 baroclinic
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Figure 4.11: Phase sequence of the oceanic CEOF-2 and atmospheric CEOF-4
over half cycle at φ=40. The plot should be read from top to bottom, following
weights of the similar sign, giving a westward sense of propagation for all variables
at approximately the same speed.

wave with a defined and coherent pattern over the entire basin. The atmospheric
wave is instead equivalent barotropic with a wavenumber-3 structure, following the
oceanic wave at approximately the same speed. The meridional extension of the
atmospheric wave is given by the dimension of the ocean basin, represented by the
rectangular dashed box, and oceanic anomalies are observed to be in phase with
atmospheric anomalies.

Summarising the results obtained so far, we identified Rossby waves in the Q-
GCM travelling faster than the linear theory predicts. These waves are observed
to break, possibly because of an instability mechanism similar to the one proposed
by LaCasce and Pedlosky (2004), but are able to counteract the instability and
propagate much longer reaching the western side of our extremely wide ocean basin.
The baroclinic instability process involved in the inverse energy cascade driving an
initial baroclinic Rossby wave to barotropic vortices would be even stronger in our
3-layer ocean, which allows mode-1/mode-2 interactions. Thus, since we are inclined
to be believe the results by LaCasce and Pedlosky (2004) because Rossby waves are
known to be unstable in the real ocean and are indeed observed to be so in our
simulations, we must understand why they resist against dissipation processes.

After characterising the oceanic Rossby waves at both central latitudes we looked
at the atmospheric response, finding atmospheric waves that are able to propagate
westward. The major peak in the spectra of these waves match the oceanic Rossby
wave period. From the statistical eigenanalysis employed, an oceanic wavenumber-2
baroclinic Rossby wave, dominating the frequency-wavenumber spectrum, seems to
be coupled with an atmospheric equivalent barotropic wave travelling in phase with
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the first oceanic interface height.
The amplitude of the baroclinic oceanic wave is given by the signals identified

in the Hovmöller plots in Fig.4.1, and these are characterised by anomalies of the
order of 30 meters. In the other hand, the amplitude of the equivalent barotropic
atmospheric wave can be inferred by the temporal amplitudes in the CEOF analyses,
revealing anomalies of the interface heights between 100 and 200 meters, increasing
with height.

We also noticed when plotting the longitude-time evolution of OCH2 (Fig.4.1)
that the amplitude of the wave, which corresponds to the main Rossby wave de-
scribed above, seems to increase as it propagates westward indicating the existence
of a positive ocean-atmosphere feedback producing an unstable mode growing in
amplitude. We have not tested yet the possibility of a coupling between the oceanic
and atmospheric waves although their periods give us a good reason to think so.

So is there a real coupled Rossby mode taking place in this process and is this
responsible for the features observed in the oceanic Rossby waves propagation?

Following the same technique of analysis pursued in previous sections, we proceed
to try correlate the signals identified in the ocean-atmosphere data sets and find a
coupled mode of variability associated with the patterns described with standard
and complex EOF analysis.

4.4 The coupled Rossby wave

Canonical Correlation Analysis (CCA) is a powerful multivariate linear statist-
ical methodology that identifies and isolates correlated patterns between two fields
(Bretherton et al., 1992; von Storch and Navarra, 1999; von Storch and Zwiers,
2001). A way of reducing the intrinsic noise and possible spurious patterns was first
proposed by Barnett and Preisendorfer (1987), whereby the CCA is performed after
transforming the original fields into a EOF space.

Hence our subset of re-normalised leading EOF patterns and PCs are used as
a base for the CCA analysis. A singular value decomposition (SVD) of the cross-
covariance of an oceanic and an atmospheric variable will produce pairs of patterns
- the Canonical Correlation Patterns (CCP) - maximising the correlation coefficient
between them. The eigenvalues of the SVD - the canonical Correlation Coefficients
(CC) - are ordered in descending order and represent the strength of the linear
association between each pair of spatial patterns (more details are given in Appendix
A).

CCA is a technique that had been widely used in climatology studies (Barnett
and Preisendorfer, 1987; Bretherton et al., 1992; Pierce et al., 2001) and has a close
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Figure 4.12: First two Canonical Correlation Patterns of the SST-AST analysis
with their respective canonical correlation values. SSTs are in phase in CCP-2. The
rectangular dashed box in the atmospheric panels stands for the ocean basin domain.
Negative weights are shaded.

relationship with the standard SVD technique. When the CCA is applied to the
investigation of coupled modes between two geophysical fields it is believed to be
more efficient than the SVD technique because its temporal CC (equivalent to the
PCs in the EOF analysis) are more correlated than the PCs from the SVD analysis
for each pair of patterns (Venegas, 2001) and because the SVD has more chances
of producing spurious patterns and correlations (Cherry, 1996). The CCA in EOF
space is, by definition, even more accurate. However, one must be cautious when
using any correlation-based analysis as the identification of a high association does
not necessarily reflect any physical pattern or exclude the interaction of a third
variable (Cherry, 1996; Venegas, 2001; von Storch and Zwiers, 2001).

We will again focus on the results at φ = 40◦ discussing only the differences for
the other central latitude. We thus perform the CCA on the unfiltered EOFs and
compute the first six CCP between all oceanic and atmospheric variables, ordered
in descending order of importance.

The patterns obtained can be divided into two groups. A strong correlation
between some oceanic and atmospheric vectors with a baroclinic response in the at-
mosphere, and a less strong correlation, but still very significant, where the concept
of ”equilibration“ (Shutts, 1987) takes place and the atmosphere is equivalent baro-
tropic. In the latter, quasi-stationary atmospheric waves are forced by an external
thermal source, i.e. oceanic temperature anomalies, and can actively couple with
the oceanic SST giving rise to resonance (Held, 1983; Frankignoul, 1985; Colin de
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Figure 4.13: Spectra of the
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Verdière and Blanc, 2001). The equilibrated atmospheric wavenumber-3 response
observed so far (see for example Fig.4.11) is also found in Goodman and Marshall
(1999) and ?? as the resonant regime where their coupled mode possesses maximum
growth and is the wavenumber at which equivalent barotropic external Rossby waves
resonate to localised thermal forcing (Held, 1983).

This is exactly the atmospheric configuration of the fastest growing mode pro-
posed by Goodman and Marshall (1999), in which high (low) pressure anomalies are
associated with warm (cold) SST, growing in amplitude with height.

Baroclinic and equivalent barotropic structures have been both modelled and
observed; an appropriate simulation of the eddy feedback is believed to be crucial
for the generation of equivalent barotropic responses, as reviewed by Ferreira and
Frankignoul (2005). Moreover, the atmospheric structure is frequency dependent
with baroclinic responses dominating at interdecadal periods and equivalent baro-
tropic atmospheres present for interannual periods (Colin de Verdière and Blanc,
2001).

The atmospheric response to SST forcing has been studied extensively and un-
der different approaches (Latif and Barnett, 1994, 1996; Nilsson, 2001; Liu and
Wu, 2004). In our model, heat flux exchanges between the ocean and atmosphere
components are directly expressed through both mixed layers by their respective
temperature equations. The correlation between SST and AST is thus expected to
be very high as the SST-AST feedback takes place at short time scales and locally
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Figure 4.14: Phase relationships
between ocean and atmosphere for
the fastest growing mode of Goodman
and Marshall (1999) extended to our
3-layer model [adapted from Good-
man and Marshall (1999)]. Atmo-
spheric pressures are denoted by sym-
bols H and L, the size of the symbols
relates to the magnitude of the an-
omaly. Symbols W and C refer to
warm and cold SST while the undu-
lating lines indicate the positions of
the oceanic interface heights.
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in space (Pierce et al., 2001).
Indeed in Fig.4.12 CCP-1 and CCP-2 are characterised by high correlations and

in both modes SSTs are found to be in phase with ASTs.
Fig.4.13 shows the spectra of CCP-1 (thin line) and CCP-2 (thick line) for the

CCA analysis between oceanic and atmospheric temperatures. CCP-1, the strongest
correlated pattern, takes place at high frequencies, with peaks at P=1.5 yr and 2.5
yr, not corresponding to any particular energy peak for Rossby wave propagation at
this central latitude. CCP-2 however peaks at P ∼3 yr, exactly like the Rossby wave
identified in the CEOF analysis does. We will show that this pattern is repeated
in all different CCPs, where the most correlated mode, CCP-1, has a baroclinic
atmospheric response at periods unrelated to the main Rossby wave while CCP-2
has an equivalent barotropic atmosphere structure with the oceanic Rossby wave
coupled underneath.

At this stage it should be useful to remember the mechanism proposed by Good-
man and Marshall (1999) through which they found growing decadal Rossby waves
propagating as coupled modes in the ocean-atmosphere system in their idealised
analytical study. Their fastest growing coupled mode was given by the phase re-
lationship schematised in Fig.4.14 corresponding to both their “entrainment case”
and “advective case”. The only situation in which a coupled mode can develop is
when the atmosphere is equilibrated, or is in an equivalent barotropic structure,
with amplitudes of anomalies increasing with height. High (low) pressures cause
anomalous down-(up-)ward Ekman pumping that deepens (shoals) the first inter-
face height leading to warm (cold) SST anomalies. Therefore the resulting phase
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Figure 4.15: A) Top four panels: CCP-1. Warm SSTs are 90◦ out of phase with
high atmospheric pressures but with a phase shift while the atmospheric structure
is baroclinic. B) Bottom four panels: CCP-2. Warm SSTs are in phase with high
atmospheric pressures and negative atmospheric interface heights. The atmospheric
structure in the first and second mode, corresponding to the coupled Rossby wave
mode, is equivalent barotropic.

relationships are equivalent barotropic positive pressure anomalies on top of warm
SST and downward displacement of OCH1 and the opposite for negative atmo-
spheric pressure anomalies. Goodman and Marshall (1999) found that both cases
- entrainment and advective dominated - were equally important but the entrain-
ment case produced the biggest growth rate. The advection mechanism, rather than
the vertical entrainment, is thought to be both more important and efficient within
Rossby wave dynamics and it has been theorised that anomalous meridional geo-



4.4 The coupled Rossby wave 72

strophic advection of SST by westward-travelling Rossby waves is the link in the
ocean-atmosphere coupling leading to growing coupled waves (White et al., 1998;
White, 2000b). Later, we will try to identify which of the two mechanisms is active
in our simulations by partially decoupling the SST equation in the ocean.

Inspection of the second CCPs of the SST-ATH1 and SST-ATH2 analyses (Fig.4.15)
reveals that warm SSTs are indeed underneath low ATH1 (high pressures) and vice-
versa with an equivalent barotropic atmosphere. This corresponds to the case de-
scribed by CCP-2 of Fig.4.12 in which SSTs are in phase with ASTs and peaks at
the Rossby wave period. Instead, the first CCP of the SST-ATH1 and SST-ATH2
analysis has a baroclinic atmosphere, corresponding to CCP-1 of Fig.4.12 with a
clear phase shift between SST and ATH1. In both CCPs the correlation is relatively
strong.

We observed that phase shifts between SST and ATH1 occur in CCP-1 (these are
very small and difficult to detect with a single example). Although direct comparis-
ons with, for example, the works of Frankignoul (1985), Shutts (1987) and Goodman
and Marshall (1999) can be difficult because of the inclusion of both an atmospheric
and an oceanic temperature equation in the Q-GCM, without parameterizations of
a forcing function as in the aforementioned studies, the phase shift would always
imply a baroclinic response in the atmospheric pressure field.

The spectra of their canonical coefficients, together with the SST-ATPA1 and
SST-ATPA2 spectra, are shown in Fig.4.16 and confirm what was previously said
for the SST-AST evolution. In all four pairs of spectra in Fig.4.16 the main coupled
peak is characterised by a period of 3 yr for the second mode (thick line) while for
the first baroclinic mode (thin line) there is evidence of a coupling taking place at
decadal periods. This might be related to the interdecadal periods at which the
atmosphere responds in a baroclinic way (Colin de Verdière and Blanc, 2001).

The second strongest relationship between the ocean and atmosphere is then
equivalent barotropic. The ocean should always be in a baroclinic state and the
phase relationships between OCH1, OCH2 and atmospheric temperature are well
reproduced in the CCA analysis as depicted in Fig.4.17. Here the ocean is again
baroclinic resembling the structures identified in Fig.4.6 for the Rossby wave. The
first ocean interface height is out of phase with the atmospheric temperature be-
cause this last is phase-locked with SST. The correlation coefficient is diminished
for OCH2 but still significantly high. The corresponding spectra are also analysed
and while OCH1-AST peaks at the Rossby wave period, P=3 yr, we could not
find the appropriate peak for the thermocline displacement, possibly because the
strength of the correlation was weak in this case. We were able to trace the Rossby
wave period in the thermocline patterns during other analysis, as for example in
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Figure 4.16: Normalised spectra of, from left to right, SST-ATH1, SST-ATH2,
SST-ATPA1 and SST-ATPA2. Thin lines are for CCP-1 and thick lines for CCP-
2. The second correlation occurs at P=3 yr between an oceanic baroclinic Rossby
wave and equivalent barotropic atmospheric wave. The first correlated pattern seems
to have at 5 to 10 yr.

the canonical correlation of OCH2-ATH1 and OCH2-ATH2 whose spectra are again
shown in Fig.4.18, although the peak is not as sharp but distributed over a small
amount of frequencies. Other results could have been shown but they all reflect the
same mechanism and phase relationship described so far. An example involving both
the baroclinicity of the ocean and the equivalent barotropic structure of the atmo-
sphere is given by the OCH2-ATPA analysis. In Fig.4.19 the atmosphere is clearly
responding in the “equilibrated” way while thermocline anomalies are in phase with
atmospheric pressures and OCH1 (not shown) is out of phase with respect to these.

So far, we have described the behaviour of the coupled system at φ=40◦. To
include the patterns and spectra for φ=30◦ would have been most of the time repet-
itive as the main features remain the same; significant differences between the two
runs exist though. The coupled patterns observed when the model is moved towards
the Equator are less coherent and the correlations much weaker. The spectra of the
canonical analysis still peak at the Rossby wave main period with an equivalent
barotropic atmosphere above it but it is more difficult to differentiate the modes
associated with the baroclinic Rossby wave and its relation with the equilibrated at-
mosphere. This seems to indicate a weaker coupling of the ocean-atmosphere system
under the mechanism described for higher latitudes. An explanation might be given
by the period of the main ocean wave involved in the coupling. Oceanic Rossby
waves have a meridional profile for their zonal phase speed, with westward phase
speeds decreasing as the inverse square of the latitude (Gill, 1982). It is possible
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Figure 4.17: CCP-2 of the OCH1-AST (cc=0.536) and OCH2-AST (cc=0.303)
correlation. The ocean has a Rossby wave-like structure with cold atmospheric tem-
perature anomalies over positive interface anomalies.
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Figure 4.18: Normalised spectra for CCP-1 (thin line) and CCP-2 (thick line) of
the OCH1-AST (left panels), OCH2-ATH1 (middle panels) and OCH2-ATH2 (right
panels) correlation analyses.

that oceanic Rossby wave speeds, as we move towards the Equator, become too fast
to maintain the phase relationship necessary to induce the equilibrated atmospheric
waves that are able to positively couple with the external thermal forcing. In or-
der to test this hypothesis we should perform other runs at different latitudes and
confirm whether a band of latitudes at which the coupling is maximised really exists.

This however goes together with the latitude-dependent instability mechanism
acting on the Rossby wave. LaCasce and Pedlosky (2004) computed the distance a
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Figure 4.19: CCP-2 of the OCH2-ATPA1, OCH2-ATPA2 and OCH2-ATPA3 cor-
relation analyses. The baroclinic oceanic Rossby wave has positive thermocline an-
omalies beneath high atmospheric pressures, which have an equivalent barotropic
structure. OCH1, as sketched in Fig.4.14 would be out of phase with ATPA1.

plane wave could travel before being destroyed by the instabilities. In their best case,
a wave at φ=40◦ could propagate 1×103km and a Rossby wave at φ=30◦ a maximum
of 2.5×103km (their Figure 10). Inspecting several Hovmöller plots similar to the
ones in Fig.4.1, we estimated distances of propagation of ∼5×103km and ∼7×103km
for waves at φ=40◦ and 30◦ respectively, then the wave begins to be destroyed by
the instability. This means that, although Rossby waves are clearly observed to
propagate longer and with a more compact structure at lower latitudes, the biggest
influence of the ocean-atmosphere coupling is acting upon waves propagating at
higher latitudes increasing their resistance to instability processes. This could also
be an explanation for the greater increase in phase speeds found with the FFT
analysis at φ=40◦: since the coupling is stronger there, a potential coupling speed-
up should also be stronger at that latitude.
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4.4.1 The importance of horizontal advection and entrain-

ment of temperature anomalies

Goodman and Marshall (1999) proposed two different but equally important mech-
anisms for the generation of SST anomalies causing a positive ocean-atmosphere
feedback. The first is the entrainment mode, in which vertical advection processes
during the transit of the oceanic wave generate anomalous warm and cold SSTs.
When the atmosphere response is equilibrated, the anomalous Ekman pumping will
work to reinforce the SST anomalies and the amplitude of the wave. The second
mechanism is the advection mode, in this case the horizontal advection of mean SST
by geostrophic flow generated by undulations in the ocean’s interfaces is responsible
for establishing SST anomalies out of phase with the first interface height. The latter
case was involved in the unstable coupled interactions of Qiu et al. (1997) and van
der Avoird et al. (2002). For instance, the coupled instability of van der Avoird et al.
(2002) was due to horizontal advective processes only, having neglected entrainment
in the ocean.

By modifying the SST equation in order to suppress one or the other mechanism,
we will try to understand which mode is responsible for the couple Rossby wave in
our model.

The entrainment mode

We will first eliminate the horizontal advective terms in the SST tendency equation,
in this case (3.3) reduces to the entrainment-only case:

∂tT =
woek

Hm

T +K2∇2T −K4∇4T − F0 − Fm

ρoCpoHm

. (4.1)

Thus, vertical entrainment through interfaces is still active but the ocean circulation
is not able to advect the temperature field. We continued the previous run at
φ=40◦ for another 50 years and investigated the correlation and wave response in
all oceanic and atmospheric variables. The spatial patterns of the second most
correlated mode between SST, ATH1 and ATH2 are shown in Fig.4.20. The SST
patterns are much smoother but still resemble the patterns related to the Rossby
wave propagation plotted in Fig.4.15 for CCP-2. Also, the atmospheric response
is again a wavenumber-3 equilibrated wave. The spatial relationship between the
different variables is maintained for the coupled Rossby mode with the same shared
peak at P ∼3 yr (not shown). Only the correlation coefficients are significantly
different, having decreased, for the case shown, to 0.350 for the SST-ATH1 analysis
and 0.292 for the SST-ATH2 analysis.
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Figure 4.20: Second canonical correlation patterns of SST-ATH1 and SST-ATH2
for the case with no advection of oceanic temperature anomalies. Phase relation-
ship are conserved and the atmospheric response is equivalent barotropic. However,
correlation coefficients are weaker (SST-ATH1 CC=0.350, SST-ATH2 CC=0.292).
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Figure 4.21: Spectra of the
SST-ATH1 and SST-ATH2
canonical correlation ana-
lyses for CCP-1 (thin lines)
and CCP-2 (thick lines) of
Fig.4.20. The shaded area in
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and 0.4 s−1 and highlights
the common Rossby peak at
P = 3 yr.

The spectra of the PCs reveal the existence of the Rossby wave peak in both
the oceanic and the atmospheric variables with little difference with the case for
the full SST equation. Indeed, in Fig.4.21 are plotted the spectra of the first (thin
lines) and second (thick lines) CCP of the SST-ATH1 and SST-ATH2 analyses: the
shared Rossby peak is strong in the oceanic temperature and atmospheric heights
while there has been an increase in the variance at lower frequencies.
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Overall, the results obtained with the entrainment-only SST equation are very
similar to the full-SST analyses and the coupled Rossby wave is still generated with
similar characteristics without the horizontal advection of temperature anomalies.
This result underlines the importance of the entrainment processes of SST for the
generation and maintenance of the coupled mode while not requiring advection by
the ocean circulation. However, the correlation between the ocean and atmosphere in
the coupled mode are much weaker indicating that when both horizontal and vertical
processes are present they mutually work to reinforce the equilibrated atmospheric
response and the resulting positive feedback.

The advective mode

In order to suppress entrainment in the mixed layer and retain horizontal advective
processes only, entrainment heat fluxes defined in (3.4) are set to zero and (3.3) now
reads

∂tT + u · ∇T = K2∇2T −K4∇4T − F0

ρoCpoHm

. (4.2)

Similarly as for the entrainment mode case, we continued the run for 50 years and the
results of the CCA analyses between SST and ATH1-ATH2 are shown in Fig.4.22.

There is no trace left of the equilibrated response in the atmosphere and the
two most correlated pattern show a baroclinic atmospheric wave with high cor-
relation coefficients (SST-ATH1 CC=0.417 and SST-ATH2 CC=0.405 for mode-1;
SST-ATH1 CC=0.396 and SST-ATH2 CC=0.353 for mode-2). The spectra of the
first four most correlated patterns (bottom panels of Fig.4.22) reveal no peak at the
Rossby wave period for ATH1 and ATH2.

Therefore we conclude that the advective mode alone is not able to sustain
the coupled Rossby wave in our model and only in the presence of entrainment
processes can the coupled oscillation develop. Following these results we believe
that entrainment fluxes in the ocean cannot be neglected, as some authors did (Qiu
et al., 1997; van der Avoird et al., 2002)), if a coupled instability of the Goodman
and Marshall (1999) type is pursued.

A different test on the coupling could also be performed by removing the fluxes at
the top of the mixed layer, F0, and therefore testing the need of thermodynamical
forcing on the existence of the coupled mode; in this case we could qualitatively
define the coupled Rossby wave as thermodynamically or mechanically driven, or a
mix of both.
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Figure 4.22: First two most correlated patterns of the SST-ATH1 and SST-ATH2
CCA analyses for the advective-only SST. Both CCP-1 and CCP-2 show a baroclinic
response in the atmosphere and the equivalent barotropic structure is absent in the
remaining modes. The ATH1 and ATH2 spectra of the first four modes do not peak
at the Rossby wave period as expected (bottom panels).
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4.5 Relationship with Rossby basin modes

Rossby waves reflecting in bounded basins generate the so-called Rossby basin
modes. These are formed by long Rossby waves with westward group velocities and
short reflected Rossby waves with eastward group velocities; the theory of unforced
Rossby basin modes is well known (Pedlosky, 1987). Recently, new theoretical works
addressed this problem using an equivalent integral mass conservation condition in
QG dynamics (Cessi and Primeau, 2001; LaCasce and Pedlosky, 2002) resulting in
a new class of weakly-dissipated basin modes. These results have attracted con-
siderable attention and generated several theoretical studies. We will not try to
address any of the issues raised in Rossby basin modes theory but only discuss the
possibility of finding such modes in our model and whether they are involved in the
atmospheric coupling.

The basin modes discussed in LaCasce and Pedlosky (2002) and LaCasce and
Pedlosky (2004) resemble free long Rossby waves with zonal wavelengths that are
multiples of the basin width. They were found to be easily excited by an analytical
wind stress and are believed to be able to effeciently couple with the atmosphere
because of their weak dissipation (Cessi and Paparella, 2001).

For a layered ocean, in the inviscid linear case, the PV equation reads

∂t[∇2ψ − Fψ]t + βψx = 0 (4.3)

with F = a−2, where a is the Rossby radius of deformation.
Looking for solutions of the kind ψ = Ψexp[−i(γx+σt)], where γ = β(2σm,n)−1,

we find the solutions for the stream functions as mode oscillations in a rectangular
basin with sides a and b (Longuet-Higgins, 1965)

Ψ = cos(γx+ σm,nt)sin(mπxa−1)sin(nπyb−1), (4.4)

where m,n are the nodes in the x and y direction and whose frequencies are given
by

σm,n = β/2
[
m2π2a−2 + n2π2b−2 + F

]−1/2

. (4.5)

Their phase velocities are readily found to be

Cx = −σm,nγ
−1 = −β

2
[π2m2a−2 + π2n2a−2 + F ]−1. (4.6)

Although the group velocity of barotropic Rossby waves is much higher than
the velocity of the mean circulation away from boundaries, making Rossby wave
dynamics close to be linear and inviscid (Sheremet et al., 1997), this is not true in
the baroclinic case and both viscosity and the mean flow modify the basin modes
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Figure 4.23: Examples of baroclinic planetary basin modes propagating westward
in an ocean domain similar to the one used in this study for φ = 40◦.

of Rossby waves. We will not try to model these effects or even the mass-conseving
boundary condition used in LaCasce and Pedlosky (2002), focusing on the simple
free and inviscid case.

Using our first Rossby radius of deformation for both central latitudes and the
dimension of our ocean basin we get phase velocities of around 2.8 and 4.9 cm/s
for φ=30◦ and 40◦ respectively. These are approximately the phase speeds of the
Rossby waves in our model and their shape can be seen in Fig.4.23 for different
combinations of nodes.

LaCasce and Pedlosky (2004) points out that in QG dynamics the new class
of basin modes would have meridional crests parallel to the north-south boundary
and in fact we see this happening in the first CEOF of Fig.4.4, for example. But
these are not the modes that we found to be involved in positive feedback with
the atmosphere. The second kind of modes, with wave crests not parallel with the
boundaries and found in both the CEOF and the CCA analysis, is responsible for
the phase relationship highlighted so far similar to the one introduced by Goodman
and Marshall (1999). We conclude that, although the basin modes shown in Fig.4.23
have similarities with the ones found in the previous studies and the mechanisms
of positive coupling between these basin modes and the atmosphere might still take
place, the new class of weakly damped modes made of free long Rossby waves studied
by LaCasce and Pedlosky (2002, 2004) do not take part in the Rossby wave coupled
mode.
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4.6 A forced solution

To test the previous hypotheses that the coupled feedback between the oceanic
Rossby wave and the equilibrated atmosphere can induce changes in the Rossby wave
phase speed and stability, we employed the Q-GCM in an ocean-only configuration.
The ocean is forced by winds and heat fluxes computed from the previous coupled
simulations, the runs are continued for an extra 150 model years and the Rossby
wave response is analysed in a forced and not coupled framework.

In the Hovmöller plots of Fig.4.24 there is evidence of stronger instabilities oc-
curring at both central latitudes and the Rossby waves cannot travel as far as in
the coupled case. In fact, waves are observed to travel only up to 3.5×103 km at
φ = 40o and 5×103 km at φ = 30o, which is around 2×103 km less than in the
coupled case. However, these distances are still greater than the ones predicted by
LaCasce and Pedlosky (2004), where Rossby waves propagation was studied in a
two layer unforced model.

So far, the results seem to agree on the hypothesis that the coupled feedback
sustains Rossby wave propagation against instabilities but can we also discern a
difference in the speed of propagation? The FFT analyses of the westward filtered
OCH2 from the forced runs reveal a significant slow down of the Rossby wave speed

h
2
 @lat=30° h

2
 @lat=40°

Figure 4.24: Hovmöller plots
of the second interface heights
OCH2 (in meters), represent-
ative of the thermocline dis-
placements, for φ = 30o

and 40o. Note the increas-
ing breaking of the waves as
the latitude increases. Rossby
waves are observed to break
more and after shorter dis-
tances than when the waves
are coupled with the atmo-
sphere.
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(Fig.4.25). While the wavelength of the main peaks remain similar to the coupled
runs, the frequencies have clearly diminished resulting, for both central latitudes,
in slower phase speeds that are now very close to the perturbed dispersion relation.
To allow comparison, the position of the main Rossby peak in the coupled runs
is indicated by a black circle. Besides, in the western part of the basin the FFT
shows higher energetic activity resulting from the intense breaking of the original
baroclinic wave.

Thus, both results have been confirmed by the forced experiments. Rossby waves,
when coupled to the atmosphere with the mechanism described in the previous
sections, receive an energetic input which allows them to partially resist against
dissipation and instabilities. The positive feedback with the equivalent barotropic
atmospheric wave also induce an extra speed-up, which is added to the one generated
by the vertical mean shear. The generation, mechanism and quantification of the
atmospheric-induced speed-up will be the subject of future studies.
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Figure 4.25: Fast Fourier Transform of the westward filtered OCH2 in the forced
runs at φ = 30o (left panels) and φ = 40o (right panels). The Rossby wave main
peaks are considerably slower than in the coupled runs, of which the main peaks are
drawn with a black circle. Also, more energetic peaks are found in the western part
of the basin, where Rossby wave break into faster waves.
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4.7 Summary and conclusions

Rossby waves have been studied in the framework of a quasi-geostrophic coupled
ocean-atmosphere model. The model configuration has three layers in both the
oceanic and atmospheric component, the horizontal resolution in the ocean basin
is relatively coarse (∆x=40 km) and viscosities between layers are chosen to be as
low as possible. The oceanic domain was chosen to be relatively wide, resulting in
a “Pacific-like” basin of ∼11500 km.

Two classes of waves were identified: a baroclinic slow wave and fast barotropic
waves resulting from the instability and breaking of the first. These results are
in partial disagreement with LaCasce and Pedlosky (2004) as the slow baroclinic
Rossby wave is able to propagate far longer distances than suggested in the afore-
mentioned theoretical work. The characteristics of Rossby waves in the ocean and
atmosphere have been identified with statistical eigenvalue techniques for the two
central latitudes considered (φ=30◦ and 40◦). An equivalent barotropic atmospheric
wave was found to travel westward with similar periods as, and in phase-lock with,
the oceanic baroclinic Rossby wave suggesting a coupling between the two. Linear
nearly stationary equivalent barotropic atmospheric waves can be generated by, for
example, a thermal forcing (Held, 1983); in a coupled system these equilibrated
waves can represent the quasi-stationary atmospheric waves that couple with the
oceanic SST anomalies (Frankignoul, 1985; Goodman and Marshall, 1999; Colin de
Verdière and Blanc, 2001; Kravtsov et al., 2005c).

Following a statistical correlation analysis, a clear coupled Rossby wave mode,
coherent in all oceanic and atmospheric variables was found. The coupled Rossby
wave mode has spatial characteristics and periods of the main baroclinic oceanic
Rossby waves in the system and resemble the unstable coupled mode mechanism
proposed by Goodman and Marshall (1999). The correlation coefficients are gener-
ally stronger for the case at φ = 400 and the spatial structures are also more coherent.
This is a possible indication that coupled Rossby modes are more likely to develop
as we move polewards, as the Rossby wave phase speed in the ocean slows down
with increasing latitude and positive phase relationships with the quasi-stationary
atmospheric response are possible since slowly propagating waves have more time
to develop SST anomalies that will in turn influence the overlying atmosphere.

We thus argue that a positive feedback is taking place whereby oceanic Rossby
waves are efficiently coupled with an atmospheric equilibrated wave travelling in
phase and with the period of the oceanic wave. This mechanism, whether gener-
ating an unstable or a weakly-damped coupled mode, is pumping energy into the
oceanic Rossby wave, which uses that extra energy to counteract the baroclinic in-
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stability processes acting during its propagation. Moreover, partially decoupling
the SST tendency equation, the coupled Rossby mode existence has been proved to
depend on entrainment processes of SST anomalies, whereas horizontal advection of
temperature anomalies would only strengthen the mechanism.

Whether the coupled mode is ocean- or atmosphere-driven is difficult to say from
this kind of analysis. Goodman and Marshall (1999) proposed as a source of energy
for the development of the coupled mode the release of available potential energy
(APE) in the ocean; whereby the atmosphere transforms thermal energy stored in
the thermocline to mechanical energy through wind stress. Colin de Verdière and
Blanc (2001) instead suggested the atmospheric APE as a source of energy in its
thermal resonance process. Which of these is happening in our modelling study
could be inferred by studying the down-gradient wave heat fluxes in the atmosphere
and ocean as suggested by Colin de Verdière and Blanc (2001).

In a similar study, Kravtsov et al. (2005a) found an interdecadal coupled Rossby
mode propagating westward with a time scale given by the crossing time of the
oceanic Rossby wave. Using a lagged covariance analysis regressing oceanic and
atmospheric fields onto ocean kinetic energy they argued that, as the SST were
larger than the AST anomalies, the mode was forced by the ocean and the APE
was released from the thermocline in a similar way as in Goodman and Marshall
(1999). From the CCA analysis depicted in Fig.4.12 AST anomalies seem slightly
larger than SST anomalies, possibly suggesting that the source of energy in our case
is in the atmosphere.

The positive coupling with the atmosphere is not only providing energy to the
oceanic Rossby wave. In fact, the main peaks in the FFT analysis suggest that
the coupling is also able to give an extra speed-up other than the baroclinic main
flow effect, as the Rossby waves were found to travel faster than the phase speed
computed with the inclusion of the mean zonal flow. The calculations of the per-
turbed dispersion relations are roughly in agreement with the speed-up values given
by de Szoeke and Chelton (1999) for our parameter values and show speed-ups of
around 1.2, whereas the coupled Rossby waves are observed to propagate at about
twice the unperturbed phase speed. We showed that, when the ocean is simply
forced at the surface by winds and heat fluxes with no ocean-atmosphere feedback,
these peaks appear at lower frequencies close to the perturbed dispersion relation,
indicating that the coupling is indeed a possible mechanism in the speed-up of the
observed Rossby waves. Finally, coupling speed-ups are observed to be greater for
higher latitudes, because the coupled Rossby wave is stronger there.

Increased phase speeds due to atmospheric coupling have been suggested in dif-
ferent works (White et al., 1998; Ferreira et al., 2001; Colin de Verdière and Blanc,
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2001). For instance, White et al. (1998) proposed a zonal and meridional coupling
speed due to the interaction between the SST field, generated by meridional advec-
tion, and meridional wind anomalies. This extra phase speed was linearly added
to the uncoupled linear wave resulting in significant speed-ups at middle and high
latitudes. This seems to agree with our results, since a higher increased in phase
speeds is observed for higher latitudes. In a later study, White (2000a) studied the
coupled response at latitudes lower than 30◦, suggesting entrainment processes con-
trolling the negative feedback between SST and the atmospheric response resulting
in slower phase speeds. The negative feedbacks proposed in White (2000a) are tak-
ing place closer to the Equator and are not possible to reproduce in our QG coupled
model. However, a more detailed study of the latitudinal response, ranging from,
for example, 25◦ to 50◦, would give us a stronger indication of any variation in the
strength of the coupling and subsequent effects in the Rossby wave phase speeds,
allowing us also to directly compare our results to observational results such as the
ones previously discussed.

Statistical eigentechniques have been useful in the identification of the properties
of both oceanic and atmospheric waves. We were also able to characterise the
coupled Rossby wave with its spectral and spatial components. However, we do not
know if this coupled mode is unstable and at this stage we can only speculate on its
most important feature, arguing that the mode is weakly-damped, with a decaying
rate diminished by the coupling. This would agree with what Goodman and Marshall
(2003) obtained after the inclusion of meridional boundaries for the ocean in their
original model (Goodman and Marshall, 1999). They could still identify the presence
of the unstable mode but in this case it was found to be weakly damped due to the
reflection of Rossby waves at the western boundary.

To corroborate and shed more light onto the results obtained, a linear stability
analysis is proposed as the continuation of this study. The coupled eigenmodes of
the ocean-atmosphere system will be easily identified after the manipulation of the
Q-GCM equations and the construction of a coupled tendency matrix; hopefully
the coupled Rossby wave patterns will be reproduced and its eigenspectra will give
us information on changes in both frequency and decay rates when different mean
state are tested as well as the sensitivity to different parameters. This problem
is currently underway. In the next chapter we set-up a high horizontal resolution,
6-layer ocean in order to test the results obtained with the “Pacific-like” basin, and
carry out similar analyses. The effects of horizontal resolution and number of layers
in the ocean on the coupled mode strength, resulting Rossby wave speed-up and
stability are studied in an ocean of reduced dimension, which will represent our
“Atlantic-like” experiments.



Chapter 5

Coupled Rossby waves in the

Q-GCM: A high-resolution

multilayer study

In this chapter we investigate the Rossby wave response in a high-resolution 6-
layer ocean of Atlantic-like dimensions. Although the ocean is more turbulent and
the responses noisier, coupled Rossby waves of the same kind identified in Chapter
4 are observed and the propagation of the waves is stable throughout the basin.
Smaller oceans are therefore capable of generating faster coupled Rossby waves and
the tridimensional higher resolution is not found to be enlightening in any of these
processes.

5.1 Introduction

In the previous chapter we studied the response of the coupling between a “Pacific-
like” ocean and the overlying atmosphere. A positive feedback involving a baroclinic
Rossby wave and an equivalent barotropic atmospheric response, in which oceanic
Rossby waves can sustain themselves against instabilities, was identified. Also, ob-
servations of an additional speed-up (other than the one generated by the mean
flow) associated to the coupled Rossby wave were shown. The general characterist-
ics of the model simulations were the presence of a wide oceanic basin (the so-called
Pacific-ocean experiments), a 3-layer configuration for both the oceanic and atmo-
spheric component of the coupled model and a relatively coarse resolution in the
ocean (40 km). Although a thorough sensitivity study looking at different paramet-
ers such as diffusivity, viscosity and strength of the heat flux coefficients could not
be carried out due to the computational cost of the lengthy simulations, results from
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Figure 5.1: Sea surface
temperature anomalies con-
tour for the the 3-layer low-
resolution study (upper panel)
and the 6-layer high-resolution
study (lower panel) and the re-
spective atmospheric temper-
ature fields during the spin-
up. Contour interval is ar-
bitrary. The horizontal exten-
sion of the ocean basin for the
6-layer experiment is 2/3 of
the basin in the 3-layer study.

a high-resolution ocean basin in both the horizontal and the vertical are presented
in this chapter.

The atmospheric component of the model will remain unaltered while the di-
mension of the ocean basin in the x-direction is reduced to 2/3 (Fig.5.1) and the
horizontal resolution doubled (∆x=20 km), as is the number of layers (6-layer). The
reasons for the aforementioned changes are very simple. First, the coupled Rossby
mode identified in the previous chapter had a specific wavenumber structure in both
the oceanic and atmospheric response. We will try to understand in the next con-
figuration whether the dimensions of the oceanic basin are crucial for generating
the right atmospheric response or if the equilibrated atmospheric structure can be
induced by a smaller (“Atlantic-like”) ocean. Second, both the baroclinic instability
to which Rossby waves are subject and the mean flow speed-up are dependent on the
horizontal resolution of the ocean; by doubling the spatial resolution in our ocean
we will be able to test the effect of resolving the second Rossby radius of deforma-
tion on the instabilities of the wave. Finally, we will explore the results of a more
accurate tridimensional representation of the ocean by using a vertical resolution of
six vertical modes: though mean flow speed-ups are not expected to vary signific-
antly (Dewar and Morris, 2000), we are able to better represent the effects of mode
couplings and the inverse cascade involved in the baroclinic instabilities (Barnier
et al., 1991) as well as the response of higher modes to the atmospheric coupling.
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Next, we give a brief description of the changes in the Q-GCM set-up. In section
3 we perform similar analyses as in Chapter 4 for the identification of the Rossby
wave and the coupled wave, again at the two central latitude of φ = 30o and φ = 40o.
Then we conclude, summarising the results and comparing them with those of the
previous configuration.

5.1.1 The 6-layer high-resolution set-up

In order to test the effects of higher accuracy in the tridimensional resolution of
the ocean, the Q-GCM was run with a 6-layer ocean configuration at a horizontal
resolution of 20 km for 200 years. In doing so, we dramatically increased the CPU
time and the size of the output data arrays. However, the importance of the hori-
zontal extent of the ocean in generating the coupled ocean-atmosphere mode was
also tested. In particular, the length of the basin was reduced to 2/3 of the original
configuration. The dynamics of the model is unchanged with the only difference be-
ing in the number of layers in the oceanic domain, where the QG potential vorticity
equation is now simply

∂tqi + J(qi, ψi) = 0, i = 1, ..., 6. (5.1)

An example of the two ocean basins and their relation with the overlying at-
mospheric channel is given in Fig.5.1. Here, the atmospheric surface temperature
anomalies are contoured during the model spin up, revealing the oceanic domains
beneath them, where the SST fields are pictured. Although reduced, the ocean basin
is still very wide (more than 7500 km) and with the new set-up we are still able
to study the propagation of Rossby waves under the atmospheric effects over long
distances. The new oceanic part of the model is schematised by the dashed black
box in the right panel of Fig.5.2 together with the previous Pacific-like ocean (left

Parameters Value Description

Zi 6 No of layers
∆x 20 [km] Horizontal grid spacing

(X, Y ) (7680,4800) [km] Domain size
Hi (300, 300, 500, 500, 1000, 1400) [m] Mean layer thicknesses
Ti (278, 268, 258, 248, 248, 248) [K] Layer’s potential temperature
g′i (25, 20, 15, 6.3, 3.1)×10−3 [ms−2] Reduced gravity
ai (55.0, 38.1, 25.5, 15.1, 8.5) [km] Rossby radii at 30o

ai (44.5, 29.5, 17.4, 12.5, 12.1) [km] Rossby radii at 40o

Table 5.1: As Table 3.1, but only for the parameters that differ from the 3-layer
configuration.
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Figure 5.2: North Pacific and North Atlantic topography, together with the ocean
Q-GCM represented by the heavy dashed box in the two different configurations.

panel) for comparison. It is evident how both configurations relate well with the
realistic dimensions of the two oceans and how the addition of topography would be
of particular interest in the case of the Atlantic because of the presence of the steep
mid-Atlantic ridge there.

The values of the parameters that differ from the previous simulations are shown
on Table5.1; the layer depths and density jumps were chosen in order to result in
similar Rossby radii as in the 3-layer experiments. In fact, since the basin dimensions
have changed, there is no need to reproduce the exact deformation radii, but the
aim is to keep the background conditions as similar as possible.

The density profiles for the two cases and the 6 vertical modes are shown in
Fig.5.3. The vertical density structure is very similar in both configurations while,
inevitably, the vertical normal modes differ (not shown). In the right panels of
Fig.5.3 we plot the vertical normal modes for the 6-layer case, where mode-0 is the
barotropic mode. Higher modes tend to be more sensitive to vertical resolution
but at the same time they are less energetic and less important for both mean flow
interactions and atmospheric couplings (Barnier et al., 1991), making our vertical
level depths a good approximation for our purposes.

With a higher resolution, a better identification of Rossby wave instabilities is
possible thus making the comparisons with the instability theory of LaCasce and
Pedlosky (2004) more significant (was the weak instability observed in the previous
chapter up to a certain degree an artefact of the poor resolution?). Also, the choice
of the new dimensions for the ocean will shed light on the possibility of developing
such Rossby coupled modes in smaller basins such as the Atlantic ocean and on
whether the horizontal extension of the ocean actively coupled to the atmosphere is
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Figure 5.3: a) The density profiles for the 3-layer (solid line) and the 6-layer
(dashed line) ocean configurations. The horizontal lines denote the layers depths.
b)-c) The 6 vertical modes for the 6-layer stratification. Mode 0 is the barotropic
one.

hence of crucial importance.
Dewar and Morris (2000) studied Rossby wave-mean flow interactions in a QG

model forced by the time-dependent subtropical gyre Ekman pumping, using 10 km
horizontal resolution in 2-, 3-, and 6-layer experiments. They suggested that a 3-
layer configuration is able to capture all the essential wave-mean flow interactions.
In the following sections we will test if this is still true under an active atmosphere
and whether other Rossby couple modes can appear. For instance, high baroclinic
modes have been shown to play a catalytic role in energy transfers and therefore in
the eddy-driven circulation (Barnier et al., 1991) and this effect could possibly have
an impact in any ocean-atmosphere mode coupling.

5.2 Results

As for the previous configuration, the Q-GCM is run for 200 years at the central
latitudes of φ=30o and φ=40o for the Atlantic-like ocean. In the 6-layer resolution
the thermocline displacements will be given by the evolution of the third interface
height, located at a depth of 1100 m.

The identification of the Rossby wave activity is again carried out by inspection
of Hovmöller diagrams and the use of FFT techniques. The westward-filtered (but
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Figure 5.4: Left panels: Hovmöller plots of the third interface height (OCH3)
for φ = 30o and 40o. Different periods of propagation are present and waves are
consistent throughout the whole basin. Right panels: FFT analyses of OCH3 at the
two central latitudes. Several peaks are observed to fall into the unperturbed (dashed
lines) or perturbed (solid lines) solutions. Quasi-annual peaks in both cases are
much faster than predicted, while only at 40o a biannual peak is observed to possess
a further speed-up.

unfiltered in the frequency domain) Hovmöller plots of the third interface height
(OCH3) are for the period 190-195 years and the FFT analyses were carried out
applying a band pass filter between 6 months and 3 years after inspection of the
unfiltered results. The results for both central latitudes are plotted in Fig.5.4.

Two main characteristics arise from the Hovmöller diagrams. First, Rossby waves
do not seem to break and faster waves (either barotropic or baroclinic) are not
generated from an original “mother wave”. Second, there is a much larger variability
in wave periods at both latitudes. Both results seem to agree with middle-latitude
observations in basins of these dimensions (Cipollini, pers. comm.). In fact, Rossby
waves are not observed to change their characteristics abruptly and generate much
faster waves. Also, different periods of propagation are generally observed and is
common to lose track of a particular crest or trough in the middle of the basin to
then recover the signal (of similar frequency) in the western part of the basin. All
these features are visible in the left panels of Fig.5.4 for both central latitudes.

The FFT analyses indeed confirm the results previously observed (right panels
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Figure 5.5: Unfiltered CEOF of the second and third ocean interface heights
(OCH2, OCH3) and of the first and second atmospheric interface heights (ATH2,
ATH3). The third CEOF mode in the ocean is characterised by a baroclinic Rossby
wave and the second CEOF mode in the atmosphere corresponds to westward-
propagating wave response.

of Fig.5.4). Here, we did not divide the basin into a western and eastern side as
done in the previous chapter because there is no evidence of significantly different
peaks away from the boundaries in the two parts of the basins. For the two latitudes
considered, two main peaks of quasi-annual and biannual period are present. Peaks
of different periods are observed to either fall into the unperturbed (dashed line) or
the perturbed1 (solid line) theory for the two cases considered, suggesting a variety

1As in Chapter 4, we refer here to “perturbed solution” to the dispersion relation computed
with the inclusion of a zonal mean flow. For computations of perturbed solutions see Appendix B.
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Figure 5.6: Unfiltered spectra of the CEOF modes plotted in Fig.5.5 and of the
same modes for SST and AST. Dashed areas highlights the periods of the two main
peaks (P ∼2 and 1.2 yr).

of different responses. The quasi-annual and biannual peaks are both faster than the
unperturbed theory (with a general speed-up of about 1.6-1.7) but only in the case
of φ=40o the biannual peak has a significantly greater frequency than the predicted
by the perturbed solution. Also, speed-ups of the coupled waves are observed to be
greater at φ=40o as found in the Pacific-like configuration of Chapter 4.

The spatial structures of the Rossby wave corresponding to the main peaks
previously identified are extracted from a CEOF analysis. An example for φ=40o is
given in Fig.5.5, where a baroclinic Rossby wave corresponding to the third CEOF
mode of OCH2 and OCH3 is showing the quasi-annual (P ∼1.2 yr) and biannual
(P ∼2 yr) peaks in its spectrum (Fig.5.6). The westward propagating atmospheric
response is present at both central latitudes and is given by the second CEOF
mode of the atmospheric interface heights (bottom panels of Fig.5.5). Moreover,
the spectra in the equilibrated atmospheric response match once again the peaks of
the oceanic Rossby wave (Fig.5.6). In the case of φ=30o only the peak at P ∼1.2
yr appears in both the oceanic and atmospheric CEOFs, showing that the biannual
wave in this case does not trigger a coupled response and its phase velocity stays in
the range predicted by the perturbed solution.
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5.2.1 The coupled Rossby waves

We performed a CCA analysis on the data sets obtained from the two runs simil-
arly to the Pacific-like configuration. The results are qualitatively similar at both
latitudes: for φ=30o a coupled Rossby wave with the characteristics described in
Chapter 4 is found for the main peak of quasi-annual period, while at φ=40o two
coupled modes are captured by the CCA, one of quasi-annual period and one of
biannual period. The spatial relationships between all the oceanic and atmospheric
variables in the coupled modes of the Atlantic-like experiments are again the ones
given by Goodman and Marshall (1999) model, as described in detail in the previous
chapter.

We will focus from now on on the existence of the two separate coupled modes
present at φ=40o with biannual and quasi-annual period. We did not find a baro-
clinic atmospheric response, leading to a possible damped mode through temperat-
ure anomalies, as we did in the Pacific-like simulations. Here, the only oceanic and
atmospheric temperature anomaly CCPs with propagating-like structures possess
energy peaks at the Rossby wave periods as shown in Fig.5.7 and will be associ-
ated with an equivalent barotropic response in the atmospheric column. However,
as previously mentioned, we found two separate ocean-atmosphere modes carrying
the characteristics of the growing mode described by Goodman and Marshall (1999),
both sharing the quasi-annual and the biannual peak but preferentiating one of them
in each case.

In Fig.5.8 the third CCPs mode between SST and the atmospheric pressure
anomalies are plotted together with their respective spectra. The phase relationship
are the ones described in the positive feedback of Goodman and Marshall (1999),
i.e. positive SST anomalies lying under positive pressure anomalies and vice-versa.
The atmospheric response is equilibrated and, although we modified the extension
of the ocean basin, the coupled response has the same wavenumber. The spectra
at the bottom of Fig.5.8 show the common peaks at both Rossby wave periods but
that of the biannual period seems to be the strongest.

The second coupled mode between SST and ATPA, CCP-4, is shown in Fig.5.9.
It has the same characteristics as the previous one, and therefore satisfies the spa-
tial relationships of the positive ocean-atmosphere feedback with weaker correlation
coefficients. The spectra of CCP-4, although showing a weak common peak at
P ∼2 yr, are dominated by the quasi-annual period. Thus, we are in presence of
two coupled baroclinic Rossby waves of different periods, generated by the same
mechanisms and identified by two separate coupled ocean-atmosphere modes that
retain the signature of the propagation of both waves but are mainly defined by one
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Figure 5.7: Unfiltered Canonical Correlation Analysis between SST and AST.
Shown is the third Canonical Correlation Pattern (CCP-3) mode with correlation
coefficient 0.482. The dashed box in the atmospheric panel represent the oceanic do-
main sitting underneath. Negative weights are shaded. On the right panels, in bold
lines, the spectra of the temporal coefficients showing coupled peaks at the Rossby
wave period (P ∼2 and 1.2 yr) for CCP-3; other lines correspond to the spectra of
CCP-1 and CCP-2.

of them. The CCA analyses gave conclusive results for all variables in the case of
the two coupled modes, showing the presence of the mechanisms described schemat-
ically in Fig.4.14, but the canonical patterns and associated spectra are not shown
since they have been described in detail in Chapter 4.

The correlation analyses on the data set at φ=30o showed the existence of one
coupled mode, with the quasi-annual period of the Rossby wave. In general, spatial
patterns have been found to be less coherent for the Atlantic-like ocean than for
the Pacific-like experiment and correlation coefficients in the CCA analyses weaker.
This is due to many factors. First the ocean is considerably shorter and the coupled
wave does not have as much time as before to propagate. Then, the existence of
different periods in the propagation of Rossby waves in the ocean generate not a
single atmospheric response but two - and possibly more - coupled modes partition-
ing different levels of correlation between the ocean and atmosphere. Last, the use
of a 6-layer ocean model, although giving us insight into the response of the wave-
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Figure 5.8: CCP-3 of the SST-ATPA unfiltered CCA analysis. SSTs are in phase
with atmospheric pressure anomalies and these have an equivalent barotropic struc-
ture. In the bottom panels, the corresponding spectra in bold lines. The common
peaks at P ∼2 and 1.2 yr (shaded areas) are both present but the biannual period
seems predominant. Thin solid line is for CCP-1 and the dotted line for CCP-2.
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Figure 5.9: As in Fig.5.8 but for the CCP-4 of the SST-ATPA analysis. The
correlation coefficients are slightly weaker but the overall patterns are similar. The
spectra (bold lines) share again the common Rossby wave periods but in this case the
interannual peak is the dominant. Thin solid line is for CCP-1 and the dotted line
for CCP-2.
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mean flow and ocean-atmosphere interactions in a tridimensional consistent ocean
configuration, introduced more degrees of freedom in the multivariate analyses.

5.3 Conclusions

In this chapter a different experiment was carried out in which the strength of
the coupled Rossby wave was tested. An Atlantic-like ocean underneath the same
atmospheric model as used in Chapter 4 was set up. Both horizontal and vertical
resolution have been doubled, resulting in an horizontal grid space of 20 km and
6 vertical levels. Rossby waves were characterised in the ocean at the two central
latitudes of φ=30o and φ=40o and the coupled Rossby modes identified with the help
of the statistical eigentechniques introduced in the previous chapter and formulated
in Appendix A.

First we noted how Rossby waves, despite the high tridimensional resolution,
were not revealing the instability mechanism proposed by LaCasce and Pedlosky
(2004) in a smaller basin. Only at φ=40o do waves seem to break into faster waves
but only very close to the western boundary, managing to travel more than double
the distance predicted by LaCasce and Pedlosky (2004) at those latitudes. The
frequency-wavenumber analyses did not show any new energy peak generated at the
western side of the domain contrary to the Pacific-like experiments.

The ocean was rich in waves of different periods, some of them characterised
by the unperturbed linear dispersion relation, others by the perturbed dispersion
relation computed with the addition of the effect of the mean zonal flow, and fi-
nally waves of quasi-annual and biannual period were seen to propagate at a higher
phase speed than that predicted by any dispersion relation at both central latitudes.
In particular, at φ=40o we identified both quasi-annual and biannual waves to be
coupled with the atmosphere following the mechanism proposed by Goodman and
Marshall (1999) and described in the previous chapter. At φ=30o, only the quasi-
annual wave presented an additional speed up and a coupling with the equilibrated
atmosphere, while the biannual period wave followed the perturbed dispersion rela-
tion.

Making use of the statistical eigentechniques applied in the former experiments,
we described the spatial relationships and strength of correlation between the baro-
clinic Rossby waves and the equivalent barotropic atmospheric response through
thermal coupling. Different coupled modes carrying the periods of the oceanic
Rossby waves involved in the coupling are present, each mode identifying one wave
in particular.

As in the Pacific-like configuration, it is argued for the Atlantic-like experiments
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that the ocean-atmosphere coupling is responsible for the additional speed up ob-
served in some of the Rossby waves present in the basin. Therefore the modifications
applied to the model were not crucial for the existence of the coupled feedback. An
ocean of similar dimension to the Atlantic, and thus much smaller than a Pacific
ocean, is capable of developing such coupled modes and generating faster Rossby
waves. Also, the coupling is involved in the stability of the waves, as they are ob-
served to propagate coherently to the western boundary with small modifications,
contrary to LaCasce and Pedlosky (2004) predictions.

The tridimensional consistency of the resolution in the Atlantic-like ocean, able
to better capture the wave-mean flow interaction and represent the higher modes
role in the ocean dynamics, was probably responsible for introducing more variety
in the wave propagation and confirmed the results obtained with a coarser hori-
zontal and vertical resolution. However, the increased degrees of freedom in the 6
layer experiments made the identification of spatial patterns and correlation between
variables in the statistical analysis poorer, without introducing new information or
modifying the coupling mechanism. Thus we conclude that, as for the propagation
of forced Rossby waves in a mean flow (Dewar and Morris, 2000), a high horizontal
resolution 3-layer experiment is the most suitable set up for determining coupled
Rossby waves in the model.



Chapter 6

Summary and future projects

6.1 Summary

In the last years, the basic characteristics and properties of Rossby waves in a
realistic ocean have been the interest of many authors. Especially, the phase speed
and stability of the waves have gained a particular attention. So far, the problem
has been addressed in two ways: analytical and modelling efforts have concentrated
on ocean-only studies or highly idealised coupled models, while fully non linear
ocean-atmosphere interaction studies have been the focus of observational and data
analyses. Modelling studies on the propagation of Rossby waves in eddy-resolving
coupled models are scarce in the literature and the subject of this thesis is an attempt
to partially fill this gap.

We begun by analysing simple couplings with the atmosphere in Chapter 2. In
order to gain insight into the response of a wave under different boundary conditions,
simple thermodynamical couplings were formulated, ranging from a simple heat
flux to an atmospheric energy balance model. We found that few modifications
occurred on the structure and propagation speed of the first modes for all the cases.
Furthermore, we identified a growing mode in the case where the energy balance
model is present, which has no physical energy source. It was argued in Chapter 2
that the simplified atmosphere was the responsible for the existence of such unstable
modes; in fact, when we added physical mechanisms to the energy balance model
the unstable mode responded by damping out. The decadal period and growth rate
of the growing mode might mislead climate modellers using simplified atmospheres
coupled to an ocean model, and the low order in the vertical might highlight this
mode and be mistakenly believed to be a Rossby mode responding to the atmospheric
forcing.

The poor damping of the first Rossby wave modes by thermodynamical processes
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encouraged us to look for positive effects due to the atmospheric dynamics, as also
suggested in previous theoretical and simple coupled models. We employed a fully
non linear, fully coupled ocean-atmosphere model with quasi-geostrophic dynamics
(Hogg et al., 2003b). The model was recently developed and has the ability of
performing fast computation of coupled runs, resolving the turbulent characteristics
of the ocean and variability of the climate system (Hogg et al., 2005). A review of
the model formulation and the set-up utilised in this thesis is given in Chapter 3.

In Chapter 4 we looked for the Rossby wave response in a coupled ocean-
atmosphere system at the two central latitudes of 30o and 40o. The identification of
the Rossby wave properties in the model showed fast waves, travelling faster than
the speed computed with the inclusion of the zonal mean flow, capable of propagat-
ing very long distances against dissipation and instability processes. The phase
speed of the main Rossby waves at both latitudes were approximately double the
unperturbed speed, while the speed-up by the mean shear accounted for only 20%
of the discrepancies. The waves were observed to break into faster barotropic waves,
with increasing effect with latitude, with the instability taking place at 3 to 4 times
the distance predicted by LaCasce and Pedlosky (2004). Since topography is absent
from the model and the mean flow effects have been already taken into account, the
only mechanism that could be responsible to significantly modifying the planetary
wave propagation was the atmospheric forcing and coupling.

We then looked for the role of the atmosphere in the wave response. With the
help of statistical eigenanalysis, we identified a clear coupled Rossby wave mode of
the kind proposed by Goodman and Marshall (1999). The coupled mechanism, ex-
tensively studied in Goodman (2001), works as follows: the westward propagation of
the Rossby wave produces SST anomalies through both advection and entrainment
- although we proved the latter to be critical for the development of the coupled
mode - exciting an equivalent barotropic stationary atmospheric wave response. The
atmospheric wind stress feeds back to the ocean through Ekman pumping, enhan-
cing the ocean anomalies. The stationary atmospheric wave then moves westward,
phase-locked with the oceanic Rossby wave, resulting in a coupled Rossby mode
with the period of the oceanic component. The coupling permits the Rossby wave
to resist longer distances against instability processes and adds an extra speed up
other than the baroclinic mean flow. In fact, when the model was simply forced by
the atmosphere, Rossby waves were observed to slow down and break sooner than
when coupling effects are present.

Unfortunately, the statistical techniques did not allow for an inspection of the
stability of the coupled mode. Is this an unstable coupled mode? it is more probable
that we are looking at a decaying mode. The original Goodman and Marshall
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(1999) coupled mode was in fact found to be a growing mode, but when several
simplifications were addressed and notably meridional boundaries added in the ocean
basin, the coupled mode became damped because of the western boundary effect on
the Rossby wave.

The model used in Chapter 4 was set up for a “Pacific-like” ocean of coarse
resolution in both the horizontal and vertical. These characteristics of the model
configuration, possibly influencing both the coupled mode and the oceanic Rossby
waves, were tested in Chapter 5. In this chapter, an “Atlantic-like” ocean with
tridimensional high resolution was employed for the ocean component of the model,
while the atmospheric channel remained unmodified. The high resolution resulted
in a broad range of Rossby waves of different periods in the runs. Some of these
were coupled to the atmosphere in the same way as in the previous configuration,
and manifested the extra speed up together with a coherent propagation throughout
the basin. The results demonstrated the ability of generating such coupled modes
in smaller basins with similar dimensions to the Atlantic ocean; moreover, while
the increased horizontal resolution generated a better representation of the Rossby
waves propagation and of the wave-mean flow effects, the vertical consistency in
the resolution added degrees of freedom to the system resulting only in a reduced
correlation between the oceanic and atmospheric variables.

We think this study was successful in many ways, although in depth analyses
of the atmospheric effects on the Rossby wave propagation with the help of simpler
semi-analytical models are still needed. First of all, the Goodman and Marshall
(1999) coupled mechanism was identified, and confirmed, in a non linear coupled
climate model, being this the primary future project planned by Goodman (2001).
Secondly, we emphasised the role of the atmosphere on the Rossby wave phase
speed discrepancy, which has been tackled so far in simple idealised coupled models
and mainly in observations (several studies by W.B. White, for instance). Even
though we did not give an explanation for the atmospheric-generated speed up
(which will be the scope of future studies), we clearly showed its existence under
different configurations, where no other factors might be involved in the process. We
also observed the instability mechanism of LaCasce and Pedlosky (2004) take place
as well as the different repercussion on the Rossby wave propagation when these are
coupled or not.

As expected, the modelling work presented here gives rise to many questions,
which can be tackled theoretically, with the use of a more complete coupled general
circulation model and by looking at observations. We try to suggest some of these
projects in the next section.
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6.2 Future work

Several different projects could be suggested in the light of the results presented in
this thesis. The most pressing studies are the confirmation and understanding of the
effects of the atmospheric coupling on the Rossby wave phase speed and stability.

A detailed study of the baroclinic instability processes occurring in the model,
and its relation with the continuously stratified theory, should be addressed, in both
coupled and forced configurations. This would enable us to thoroughly compare
the idealised theory and results proposed by LaCasce and Pedlosky (2004) with our
coupled solutions, giving estimates for the atmospheric input. The study of the
enhanced phase speed of the oceanic Rossby wave needs modelling work at different
latitudes. In this case, running the model in a wide range of central latitudes, with
both the coupled and forced configuration, would present us with the familiar latit-
udinal dependence of the propagation speed, resulting in a wide spectrum of phase
speeds for the coupled and forced waves. Both lines of research should be imple-
mented with the use of a different, and more complete, coupled general circulation
model (CGCM). In particular, a CGCM would allow us to directly compare the
results with observations of both the phase speeds and stability of the waves and
test the numerous hypotheses brought forward by W.B. White in his observational
studies.

The coupled Rossby mode identified in our model was clearly of the type proposed
by Goodman and Marshall (1999). However, as pointed out in Chapter 4, the
tools employed here for its detection could not give information on whether the
couple mode is unstable or damped. To this end, we are carrying out a linear
stability analysis on our model and a simplified version of the Q-GCM equations
have been developed for analytical purposes. The eigenmodes of the coupled system
will be compared to the previous results and tests on the parameter dependence and
coupling strength will be performed. The system is cast into ∂tφ = Mφ, where φ is
the state vector consisting of the unknowns (ψa1,ψa2,ψa3,ψo1,ψo2,ψo3,Ta,To) and M is
the coupled tendency matrix. A linear stability analysis is pursued and numerically
solved with the ARPACK package (Lehoucq et al., 1998). Solutions of the form φ =

eσtφ̂(x, y) are considered, where φ is any of the oceanic and atmospheric variables and
σ = (σr+iσi). The coupled modes are given by the eigenmodes of the linear operator
M; the real part of the growth rate σr will determine whether perturbations will grow
or decay with time, and thus whether the stationary flow is stable or unstable respect
to these perturbations (Katsman, 2001). The eigenmodes are sorted by the most
positive real part and the system is unstable when σr > 0. A complex conjugate
eigenvector is associated with each pair of complex conjugate eigenvalues and the
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spatial patterns of the modes are given by the real part of the eigenvectors and
the time periodic pattern evolution of the unstable/stable solutions during a cycle
by φ(x, y, t) = [φrcos(σit) − φisin(σit)]e

σrt (Simonnet and Dijkstra, 2002), where
φ = (φr + iφi) and the period of the oscillation is given by P = 2π/σi (Dijkstra and
Katsman, 1997). In summary, this technique will permit us to compare the coupled
mode behaviour with the one previously identified, to understand what kind of
couple mode is been generated (stable/unstable) and under what conditions, and
finally to test its dependence on different background mean flows. A useful technique
to identify ocean-atmosphere patterns could also be the computation of the neutral
vectors in the system as suggested by different authors (Navarra, 1993; Marshall and
Molteni, 1993; Goodman and Marshall, 2002, 2003) and this might be an extension
of the linear stability study.

As explained in Chapter 3, the oceanic component of the Q-GCM might be set
up for a channel configuration. This would have two advantages. First, to study the
coupled Rossby waves in a meridionally unbounded basin and second, to reproduce
coupled ocean-atmosphere interaction in the Antarctic circumpolar belt and look
for signals related to the so called Antarctic Circumpolar Wave (ACW, White and
Peterson, 1996).

There are many other possible issues to address, for instance, the atmospheric
response to SST forcing, which is still subject to controversy (for a review see Ferreira
and Frankignoul, 2005). This would involve decoupling the Q-GCM and let the
atmospheric component be forced by SST anomalies to see whether we can excite
an equivalent barotropic atmospheric response similar to the one observed in the
coupled runs. The model also allows the introduction of variable topography in the
ocean: in that case the idealised topographic effects on the propagation of Rossby
waves could be addressed.

Finally, in the context of oceanic Rossby wave propagation, we feel that more
effort is needed in the analysis of realistic models and that the role of atmospheric
influences cannot be ignored any longer.



Appendix A

Statistical Eigentechniques

In this appendix we give a brief overview of the statistical eigentechniques used in
the previous chapters. More detailed and accurate derivations and explanations,
as applied in the case of climate analysis, are given by Preisendorfer and Mobley
(1988), von Storch and Navarra (1999), von Storch and Zwiers (2001) and Venegas
(2001), to cite only a few.

A.1 Empirical Orthogonal Functions

When dealing with a large data set we are obliged to find a way of compressing the
information and we want to be able to identify its main features and variability in
both space and time.

The most common multivariate analyses applied in these cases are Empirical
Orthogonal Functions (EOFs) as they provide a succinct information of the dominant
spatial and temporal variability of the original data set in terms of uncorrelated
modes, each representing a fraction of the variance explained.

Having a time series of data F (t), we need to form the anomalies by de-meaning
the field and normalise it to variance one. Then, once our matrix F containing time
series at each location is ready, we construct the spatial covariance matrix as

RFF = F ∗ F†, (A.1)

where F† denotes the transpose of F. In fact, since F has been previously normalised
by its standard deviation, RFF is defined as a correlation matrix.

At this point we need to solve the eigenproblem

RFF ∗ E = E ∗Λ. (A.2)

The decomposition leads to two matrices: matrix E is the squared eigenvectors
matrix, whose k columns represent the modes. The eigenvectors are spatially uncor-
related, that is, orthogonal to one another and represent the spatial EOF pattern
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of each mode k. The diagonal matrix Λ contains the associated k non-negative
eigenvalues λk, ordered in decreasing order.

The temporal evolution of a particular mode is given by its principal components
(PCs), resulting from the projection of the original data onto the eigenvector Ek,
i.e.

P = E† ∗ F. (A.3)

Each EOF mode k represents a portion of the variability present in the original
data and this is given by its eigenvalue λk, which can be expressed in term of a
percentage of the variance of the total field F .

Finally, the original field F (t) can be reconstructed. Generally only the first j
modes (j < k) are sufficient in explaining the inner variability so that a truncation
of F (t) to a compressed field F̃ (t), that explain most of the variance, is used to
recover the initial field. This is achieved simply with the sum of the j EOF patterns
multiplied by their PCs:

F̃ (t) =

j∑
k=1

EkAk(t) (A.4)

A.2 Complex Empirical Orthogonal Functions

Traditional EOF analysis can only detect standing oscillations. However, two con-
secutive modes can vary coherently and be in quadrature (90 degrees out of phase),
giving a hint of the existence of a propagating feature in space. In this case, it is
useful to turn to Complex (or Hilbert) Empirical Orthogonal Functions (CEOFs)
analysis.

Here, we artificially complexify the original field F (t) by adding its Hilbert trans-
form F̂ (t), namely:

φ(t) = F (t) + iF̂ (t). (A.5)

The Hilbert transform of a vector field is also called its “quadrature function”, as it
is identical to the original time series except for a π/2 phase-shift.

The complexified field is de-meaned and normalised as for standard EOFs and a
new matrix F is built. As before, we compute the complex correlation matrix

RFF = F ∗ F∗, (A.6)

where the asterisk denotes complex conjugation. The eigenproblem to solve is once
again

RFF ∗ E = E ∗Λ. (A.7)
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The complex eigenvectors Ek can be expressed in term of a spatial amplitude
Bk and a spatial phase Θk:

Ek = BkeiΘk

. (A.8)

The principal components are constructed by projecting the spatial CEOFs onto
the original data set; the resulting time series Ak(t) are also complex and consist of
a temporal amplitude Ck(t) and a temporal phase Ψk(t):

Ak(t) = Ck(t)eiΨk(t). (A.9)

The four measures (spatial amplitude, spatial phase, temporal amplitude and
temporal phase) give a complete characterisation of any propagating feature and
periodicity in the original field.

The spatial amplitude of each eigenmode describes its spatial distribution of
variability and has the same interpretation of an EOF pattern, it is defined as:

Bk = (Ek∗Ek)1/2. (A.10)

The spatial phase shows the relative phase of a fluctuation in a given mode,
varying continuously from 0◦ to 360◦:

Θk = arctan

(
={Ek}
<{Ek}

)
. (A.11)

The temporal variability in magnitude of a mode, with the same interpretation
of the PCs in an EOF analysis, is provided by the temporal amplitudes

Ck(t) = (Ak∗(t)Ak(t))1/2. (A.12)

Finally, the temporal phases give the variation of the phases of a particular
oscillation with a given period. If the phase increases monotonically from 0◦ to 360◦

is an indication of the presence of a cyclicity in the data. They are expressed as:

Ψk(t) = arctan

(
={Ak(t)}
<{Ak(t)}

)
. (A.13)

As in standard EOF analysis, the complex field can be reconstructed as the sum
of the contributions of the leading j CEOF modes:

F (t) =

j∑
k=1

Ek∗Ak(t) (A.14)

The real field is recovered taking the real part of (A.14).
A very useful way of visualising propagating features in CEOF analyses is the

presentation of a series of maps. Animation sequences of spatial components are
constructed by multiplying real and imaginary CEOF spatial components Ek by
the cosine and sine of the phase respectively. For example, choosing times t at
which Ψ = 0, π/2, π, we obtain snapshots of the oscillation during half a cycle.
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A.3 Canonical Correlation Analysis

So far we have dealt with a data set of one particular field. Now we are going to
consider the case of two different data sets, say S(t) and P (t), and try to find the
correlation between the two vectors. The Canonical Correlation Analysis (CCA)
technique finds a linear relationship between the two fields by maximising the cor-
relation coefficient between them. In practice, it gives the spatial patterns of both
S(t) and P (t) that have maximum correlation.

With data sets forming two matrices S and P we construct the covariance
matrices RSS = S∗S†, RPP = P∗P† and the cross-covariance matrix RSP = S∗P†.

Then, we form two matrices as combinations of the three above

QS = R−1
SS ∗RSP ∗R−1

PP ∗R†
SP (A.15)

QP = R−1
PP ∗R†

SP ∗R−1
SS ∗RSP, (A.16)

which are the base of the pair of eigen-equations

QS ∗Πs = ΠS ∗Λ (A.17)

QP ∗Πp = ΠP ∗Λ. (A.18)

Πk
s ,Π

k
p are the eigenvectors, or adjoint patterns, of each matrix with associated

eigenvalues λk; in fact the two matrices share the same non-zero eigenvalues in the
diagonal matrix Λ.

Now, for each field, we can derive the spatial Canonical Correlation Patterns
(CCP) from the adjoint patterns as:

ES = RSS ∗ΠS (A.19)

EP = RPP ∗ΠP. (A.20)

Finally, the temporal Canonical Correlation Coefficients (tCCC) are obtained
from the adjoint patterns in the following way:

AS = S† ∗ΠS (A.21)

AP = P† ∗ΠP. (A.22)

A way of simplifying the procedure, and reducing noise variability, is to compress
the data prior to performing the CCA.

Barnett and Preisendorfer (1987) proposed for the first time to perform a CCA
after transforming the original fields into EOF space. The data are pre-filtered by a
EOF analysis, retaining only a subset of re-normalised leading EOF patterns, and
helping emphasising true correlations.
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Imagine we retain only the first j leading EOFs: fields S
′ and P

′ are then built
from the EOFs principal components and the corresponding matrices QS′ and QP′ ,
since in these coordinates RS′S′ = RP′P′ = 1, simplify to:

QS′ = RS′P′ ∗R†
S′P′ (A.23)

QP′ = R†
S′P′ ∗RS′P′ , (A.24)

Performing a Singular Value decomposition (SVD) of the cross-covariance matrix
RS

′
P

′ results in its decomposition into three matrices, i.e. RS
′
P

′ = UΣV†. Matrix
Σ is a diagonal matrix of non-negative singular values ordered in decreasing mag-
nitude, while the columns of matrices U and V are called the left and right singular
vectors.

The adjoint patterns of S
′ and P

′ are again eigenvectors of (A.23)-(A.24), or
equivalently the left and right singular vectors of the SVD respectively, and the
eigenvalues, the diagonal matrix of singular values Σ, forming the correlation coef-
ficient vector.

The eigenvectors computed with the SVD are given in the coordinates of the EOF
space; the adjoint patterns can be expressed back to Euclidean space by reversing
the EOF transformation, and the spatial CCP are recovered in the following way:

ES = S
′ ∗U ∗ (λS′ )1/2 (A.25)

EP = P
′ ∗V ∗ (λP ′ )1/2, (A.26)

where λS
′ and λP

′ are the eigenvalues associated with the EOF-transformed fields.
Similarly, the CCC are given by:

AS = P†
S ∗U (A.27)

AP = P†
P ∗V, (A.28)

where PS and PP are the PC computed during the EOF analysis of fields S(t) and
P (t).



Appendix B

Rossby waves in a zonal mean flow

The dispersion relation of Rossby waves in the unperturbed problem was given in
Chapter 1. We are now going to compute the dispersion relations of Rossby waves in
different zonal mean flows extracted from the model runs. The problem is standard
and full derivations of the normal modes in mean flows are given by several authors
(Leblond and Mysak, 1978; Pedlosky, 1987; de Szoeke and Chelton, 1999).

We are interested in whether the Rossby wave activity observed in the quasi-
geostrophic coupled model is mainly explained by the inclusion of a mean zonal flow
in the phase speed calculation. The effect of a baroclinic mean flow on the phase
speed of planetary waves has been tackled by many theoretical studies (Killworth
et al., 1997; Dewar, 1998; de Szoeke and Chelton, 1999; Liu, 1999a,b; Dewar and Mor-
ris, 2000; Tailleux and McWilliams, 2001; Killworth and Blundell, 2005a,b; Colin de
Verdière and Tailleux, 2005). However, we will not attempt to do a thorough study
on this subject, which would include taking into account boundary layers, short
wave propagation, the presence of advective modes and other effects, which are still
currently being investigated. Here, we will use standard QG theory and derive the
dispersion relation of a Rossby wave in a 3-layer model in the presence of a zonal
mean flow taken at different locations of the ocean basin in the model employed in
this thesis. The resulting perturbed frequency-wavenumber relation will be tested
against the observations.

For a 3-layer system, the inviscid quasi-geostrophic potential vorticity (QGPV)
equation is

∂tqi + J(ψi, qi) = 0, i = 1, 3. (B.1)

If we consider the basic flow ψn = Ψn(y) of a purely zonal flow Un(y) = −∂Ψn/∂y

and look for disturbances so that ψn = Ψn(y) + φn(x, y, t), substituting into (B.1)
gives

(∂t + Un∂x)qn + ∂xφn∂yΠn + J(φn, qn) = 0, (B.2)
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Figure B.1: First layer mean zonal flow, ū1 (in arrows), computed from pres-
sure meridional gradients by the geostrophic relation f0u = −∂yP1. The P1 field is
contoured (Contour interval 10Sv). Four different locations, where the dispersion
relation of Rossby waves has been computed, are shown by letters A, B, C and D.

where the meridional PV gradients in each layer are given by

∂yΠ1 = β − F11(U2 − U1) (B.3)

∂yΠ2 = β + F21(U2 − U1)− F22(U3 − U2) (B.4)

∂yΠ3 = β + F32(U3 − U2), (B.5)

and the layer PVs are now defined as

q1 = ∇2φ1 + F11(φ2 − φ1)

q2 = ∇2φ2 + F21(φ1 − φ2) + F22(φ3 − φ2)

q3 = ∇2φ3 + F32(φ2 − φ3),

where Fm,n = f 2
0 /(Hmg

′
n) and g′n and Hm are the reduced gravities and layer depths

respectively.
After neglecting terms of O(φn

2), we seek solutions of the form φ = φ̂ei(kx−σt):

(kU1 − σ)[−k2φ1 + F11(φ2 − φ1)] + kφ1∂yΠ1 = 0 (B.6)

(kU2 − σ)[−k2φ2 + F21(φ1 − φ2) + F22(φ3 − φ2)] + kφ2∂yΠ2 = 0 (B.7)

(kU3 − σ)[−k2φ3 + F32(φ2 − φ3)] + kφ3∂yΠ3 = 0. (B.8)

The above equations can be cast into a generalised eigenvalue problem of the form
AΦ = σBΦ, where Φ = [φ1, φ2, φ3] are the eigenvectors and σ the eigenfrequency.
Thus, for different mean flows Ui, we will be able to study the wave response in
terms of its perturbed dispersion relation.
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The system of equations (B.6)-(B.7)-(B.8) can be explicitly written in matrix
notation as

B1 kU1 0

G2kU2 B2 kU2

0 kU3 B3



φ1

φ2

φ3

 = σ


−G1 1 0

G2 −G3 1

0 1 −G4



φ1

φ2

φ3

 ,
where we have defined

B1 = [k∂yΠ1 − kU1(k
2 + F11)]/F11

B2 = [k∂yΠ2 − kU2(k
2 + F21 + F22)]/F22

B3 = [k∂yΠ3 − kU3(k
2 + F32)]/F32

G1 = (K2 + F11)/F11

G2 = F21/F22

G3 = (K2 + F21 + F22)/F22

G4 = (K2 + F32)/F32

If the mean flow is set to zero, i.e. U1 = U2 = U3 = 0, the unperturbed solution
(1.1.1) is recovered.

The mean zonal flows are extracted from the layer pressure meridional gradients
via the geostrophic relation f0Ui = −∂yPi. Four cases with different shear are given
as an example of possible solutions; their location is shown in Fig.B.1 and their
values are listed on Table B.1.

Case A is the typical vertical shear found by meridional density sections at
the latitudes considered and was the example proposed in the study of de Szoeke
and Chelton (1999). This is also the location were the Hovmoöller plots where
constructed in the previous chapters and thus it will be the one considered in the
comparisons with the phase speeds observed in the model.

The barotropic, first and second baroclinic mode dispersion relation in the four
cases are plotted in Fig.B.2, together with a schematic of the three-layer vertical
shear. In general, small speed-ups of the first baroclinic mode are found, especially

Case Ui [cm s−1]

A (3.0, -0.75, 0.05)
B (-2.6, 0.9, 0.01)
C (-2.8, -1.0, 0.07)
D (3.5, 2.0, -0.05)

Table B.1: Mean zonal flows (ūi) from the model runs at four different locations.
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Figure B.2: Barotropic, first and second baroclinic mode perturbed dispersion rela-
tions (x-lines) for the different mean flows of Table B.1 and the unperturbed solutions
(blue lines). The vertical shears are schematised in each case.

in the long-wave limit. However, negative effects on the second baroclinic mode and
significant modifications in the behaviour of the barotropic mode for short wave are
evident.

de Szoeke and Chelton (1999) suggested that in a QG layered system the speed-
up of the planetary wave propagation speed is a function of the layer depths Hi and
the density difference ratio. The mechanism proposed by de Szoeke and Chelton
(1999) would indicate for our parameter values a speed-up of about 1.4 (their Fig-
ure 4). In our calculations we found a variable speed-up/-down depending on the
wavelength; for the long-wave region which characterises the Rossby waves observed
in the model, we found a maximum speed-up of about 1.2 in Case A (Fig.B.3). This
is the solution plotted as solid lines in Fig.4.2.

The choice of layer depths, density jumps and corresponding Rossby radii are
therefore crucial in the resulting Rossby wave phase speed if these are to be compared
with real data and if a true estimate is attempted. However, the purpose of this
exercise is to estimate the wave speed in the model employed, where a particular
mean flow on a flat-bottomed ocean is present, given by the slopes of the interfaces
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for specific parameter settings.
The system (B.6)-(B.7)-(B.8), although tedious, can be extended for a 6-layer

model. We repeated the dispersion relation calculations for our 6-layer results but
found no significant changes in the wave speed-up/-down (solid lines in Fig.5.4),
most likely due to the fact that the Rossby radii have been kept constant.
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Figure B.3: As in Fig.B.2 but for the phase and group speeds.
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