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SUMMARY

The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite
mobile radio channel is addressed for speech and data transmissions. Different convolutionat
codes (CC) using Viterbi decoding with soft decision are examined with inter-block interleaving.
Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis
decoding combined with block interleaving are also investigated. A concatenated arrangement
employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions
via minimum shift keying (MSK) over Gaussian and Rayleigh fading channels. For an interblock
interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36), over the Galois field
GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of
42dB for a BER of 1074, and an uncorrectable error detection probability of 1-107°.
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INTRODUCTION

In this age of information technology it is becoming
essential to communicate information to people who
are on the move, and may be difficult to locate
precisely. The nineteenth century concept of a fixed
telephone network that requires its customers to sit
near their telephones in order to receive calls is
antiquated. Cellular mobile radio systems are being
deployed world-wide at a rapid rate and a new
communications network is evolving whereby the
fixed network enables communications between
users having mobile terminals.'= The urban, and
indeed rural, services are best served by terrestrial
systems, with cell sizes having dimensions from
100m to 5km. These small cells are essential to
accommodate vast numbers of mobile users.

Less populated areas, including the vast oceans
and seas, can be efficiently handled by mobile
satellite communications. At the present time the
INMARSAT* system having three geostationary
satellites above the Atlantic, Pacific and Indian
Oceans provide global coverage, except over the
polar regions. The system can support three types
of terminal services which are designated as Standard
A, B and C. The Standard-A service has been
approved, and ship earth-stations (SES) operate
with a 1-0 m diameter stabilized 23dB gain parabolic
antenna. The communication capabilities include
analogue FM voice, telex, facsimile and data trans-
mission rates up to 56 kb/s. The Standard-B service
is the future extension of Standard-A and is expected
to be introduced in the early 1990s. It is designed
to be smaller and less expensive than the Standard-
A equipment and will appeal to users of small
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vessels, such as fishing boats. It will provide digital
voice at 16 kb/s, telex, data and telematic services.
Recently deployed to cover low bit-rate services,
the Standard-C terminal operates with an antenna
that is sufficiently small (about 15cm) for it to be
mounted on a small boat for maritime communi-
cations, or to be attached to cars for land mobile
communications. It provides telex and low-speed
data transmission at rates up to 600b/s.

In satellite mobile communications the down-link
channels are usually more hostile than the up-link
ones because of the shadowing effects and the
multipath scatterings from objects close to the earth
mobile station. The carrier frequencies used on the
down-links of the maritime mobile channels’® of the
INMARSAT are in the 1-530 to 1-545 GHz band.
The coherence bandwidth for these transmissions is
greater than 100 kHz, and hence the time-varying
multipath fading channel can be assumed to have
non-frequency-selective properties for narrowband
data transmissions at 16 kb/s. In the case of maritime
communications the multipath fading arises from
signal reflections from the sea’s surface, shadowing
effects due to the ship’s superstructure and Doppler
offset due to the ship’s motion. The channel can be
characterized by a Rician fading model with a direct
signal power C and a diffuse scattered signal of
mean power M. The Rician parameter C/M at the
edge of the satellite coverage with the satellite
operating with a 5° elevation angle is 8-9dB and
this C/M decreases with low elevation until no
dominant signal is observed, whence the Rayleigh
fading model is applicable. Similar comments can
be made regarding land satellite mobile communi-
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cations, as found with the MARECS A satellite’
operating at 1-54 GHz in L-band.

The Rician channels associated with mobile satel-
lite communications approach either a Gaussian or
a Rayleigh fading channel depending on C/M, and
consequently we consider both of these channels
when designing mobile satellite data transmission
links. We note that the Rayleigh fading channel,
characterized by deep fades, can by judicious choice
of interleavers be rendered into a near look-alike
Gaussian channel. This is because interleaving the
data prior to transmission, and de-interleaving at
the receiver, enables the Rayleigh-fading-induced
error bursts to be dispersed. To accommodate the
error bursts the forward error correction (FEC) must
have sufficiently long memory and appropriately
powerful error correcting capability. Long codes are
preferable because their higher error averaging
capability enables both random and bursty errors
to be corrected. By employing long codes the
number of errors in the block is, to a first
approximation, independent of the channel behav-
iour. On the other hand, long codes imply a long
coding delay which might be unacceptable in a
system context. We may therefore view the same
satellite mobile channel quite differently depending
on the FEC employed. A very high integrity channel
for the transmission of computer data may be
realized by increasing the system delay. However,
for speech communications this delay must be
considerably lower. In the case of block codes the
coding delay can easily be adjusted to any arbitrary
value, but for convolutional codes the delay arises
from the necessity of employing interleavers to
disperse the error bursts. In our deliberations we
explore effective ways of signalling over satellite
channels. Theoretical and simulation results are
presented for both Guassian and Rayleigh fading
channels as they constitute the best and worst types
of satellite mobile environments.

Figure 1 shows the system block diagram used in
our studies. Two layers of codes are concatenated
and two interleavers are used to combat the error
bursts. The strategy is for an inner FEC decoder to
correct the random errors, leaving the outer decoder
to remove the error bursts that they may arise from
the channel, or may have been induced due to the
over-loading of the inner decoder. The combined
inner and outer channel coding rate is selected
to be half-rate to provide good error correcting
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Figure 1. System block diagram

capability in both FEC layers and an acceptable
channel throughput. This rate is also used for
the Groupe Speciale Mobile (GSM) Pan-European
mobile radio speech communication system.® Differ-
ent FEC coding and interleaving strategies are
described for this rate. Minimum shift keying (MSK)
modulation is employed because of its reasonable
bandwidth efficiency coupled with its continuous
phase transition characteristics that result in only
minor envelope distortions when the modulated
signal is bandlimited in a satellite repeater.

The theory of Viterbi decoding (VD) of convol-
utional coded (CC) signals is well documented in
classical references,”!! and the background of the
Berlekamp—Massey  decoding  algorithm  for
Reed-Solomon (RS) codes is also well under-
stood.!>!* Consequently neither will be discussed
here. However, because trellis decoding of block
codes is not widely known we provide in Section 2
a rudimentary description of this procedure. Empha-
sis is given to interleaving techniques in Section 3
as they play a prominent role in combatting the
fading behaviour of the channel. In Sections 4 and
5, we derive the theoretical results for the BER
performance of CC and RS, together with simulation
results that verify their validity. The final Section
discusses the implications of our findings.

2. TRELLIS DECODING OF BLOCK CODES

In our quest for a powerful FEC coding scheme for
satellite mobile communications we investigate the
performance of the trellis decoding!® of both binary
and non-binary block codes. We commence by
considering the decoding process of the non-binary
maximum separable distance subclass of block codes,
namely RS codes. These codes are represented by
RS(n, k), where k information symbols are encoded
into n symbols. The code is defined over GF(g™),
where ¢ is a prime and m is an integer. An RS(n,k)
code word containing up to t = (n — k)/2 error
symbols can be corrected by using the
Berlekamp—Massey decoding method. For system-
atic codes the generator polynomial g(z) =
gxz¥+--+g1z + g formulates a code word by
appending (n—k) parity symbols P, _,_,,...,P,,P, to
k information symbols. The encoder employs a shift
register (SR) having (n — k) stages, as depicted in
Figure 2.

Information
Symbols

Figure 2. Systematic encoder for block codes
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At the beginning of the encoding process, the SR
is cleared and both switches SW1 and SW2 are
placed in position 1. The first £ information symbols
are passed directly to the encoder output forming
the information part of the code word and they are
also multiplied over GF(q™) by the coefficient g5,'.
This product is buffered in register B. The value of
register B is multiplied by g,,,, followed by GF
(g”) addition with P,_,_, to form a new parity
symbol P,_,_,. Again, the new P,_, , value is
calculated by muitiplying the content of register B
by g»—» and then adding P,_,_; to this product.
Similar multiplications and additions are performed
to achieve new values from P,_, 5 to P, sequen-
tially. The second information symbol enters the
encoder, and the cycle of multiplications and
additions is repeated to yield a new set of (n — k)
parity symbol values. After the kth information
symbol has entered the encoder and has produced
the parity symbols, the switches are turned to
position 2, preventing data from entering the SR.
The n — k parity symbols are removed serially from
the encoder.

Each parity symbol has m bits, and (n — k) parity
symbols result in ¢™'~% different states in the SR.
The sequential change of states during the process
of encoding a code word can be catalogued as a
particular path in a trellis. There are (¢™)* unique
paths in the trellis and each path represents a
particular code word. The trellis has (g™)"~* rows
and a depth of n + 1 columns. The nodes on the
same row represent the same state value, whereas
the nodes on the same column correspond to the
possible states. The state-changes between adjacent
columns in the trellis are marked by the transition
vector to which a symbol is attached that specifies the
information symbol activating the state transition.

Initially all the parity symbols in the SR are set
to their zero states. The number of encoder states
increases as each new information symbol enters
the encoder. The symbol-signalling instants corre-
sponding to the column positions in the trellis are
indexed by the integer j. On inserting the first
information symbol into the encoder, j = 0, g™
different nodes are possible. The arrival of the
second information symbol when j = 1 causes the
number of possible nodes to increase to (¢”")2. The
number of possible nodes continues to increase with
j until the maximum number (¢")" * is reached.
This maximum number of states is reached when
j = n — k, and the number of possible states is kept
constant until the last information symbol to be
encoded has entered the SR at j = k. At this
moment, the switches SW1 and SW2 are turned to
position 2 and the SR is cleared one parity symbol
at a time as the symbols are removed from the
encoder to leave the all-zero state in the SR. The
number of possible states is thus divided by ¢ at
every column in the trellis merging towards the all-
zeros state, which is reached after clocking the
encoder (n + 1) times.

Encoded
Symbols

Information
Symbols

Figure 3. Systematic encoder for RS(3,2) over GF(4)

Column: 7 =0 j=1 ji=2 ji=3

States:
a=0

Figure 4. Trellis diagram for RS(3,2) over GF(4)

Table I. Arithmetic table for GF(4) operations

+ 0 o o' o * 0 o' o' a?

0 0 o o o 0O 0 0 0 o

o o 0 o o & 0 o o o

o o o2 0 o o 0 o o o

o o o a" 0 a2 0 o o o
(a) (b)

To aid exposition we consider the example of
RS(3,2) code over GF(2?%) that consists of a set of
four field elements {0,a”,a!,0?}, where o is the
primitive element of the field. The encoding arrange-
ment is shown in Figure 3 and its trellis diagram is
displayed in Figure 4. From the basic theory of RS
coding,'? the generator polynomial of this code is
g(z) = z — a!, where the coefficient g, = a'. This
code has one parity symbol P, and the SR has a
single stage.

The trellis contains n+1 = 4 columns (j =
0,1,...,3) and the maximum number of states is
(g™)"~* = 4. The possible states are 0,a",a! and a?
which are represented by the nodes a,b,c and
d, respectively. In our example, when the first
information symbol o enters the encoder at instant
j = 0, the new state of the SR at j = 1 is computed
over GF(4) using the arithmetic operations given in
Table I.
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Table I1. State transition table for
RS(3,2) code over GF(4)

To From nodes
nodes a b c d
a 0 a2 o o
b o a0 o?
¢ ol o o 0
d o2 0 ol o

From the encoder diagram in Figure 3 we observe
that parity symbol P, becomes (0 + ") * o! = o!,
and this transition in the trellis diagram is shown in
Figure 4. From this state o' at j = 1 the encoder
can change at j = 2 to any of the possible states
depending on the information symbol to be encoded.
The state transition in Table II provides the change
of states from the current node to any other for the
transition from j = 1 to j = 2. Thus if the next
information symbol is o2, the GF(4) addition with
Py, i.e. o' gives o® (see Table I(a)), and on GF(4)
multiplication by a' we have o' (see Table I(b))
and the state ¢ is reached at j = 2. At this point
SW1 and SW2 are changed to position 2 and the
parity symbol «' is removed from SR whence the
encoder returns to its all-zero state.

This trellis for the RS(3,2) code is suitable
for maximum likelihood decoding by the Viterbi
algorithm®'® to improve the BER performance.
Furthermore, an improved performance can be
achieved by soft-decision decoding.

3. INTERLEAVING TECHNIQUES

Interleaving is a process of rearranging the ordering
of a sequence of symbols in some unique one-to-
one deterministic manner. The reverse of this process
is de-interleaving, which restores the sequence to
its original order. Interleaving techniques'® are
generally deployed to disperse burst errors when
the received signal level fades, and thereby reduce
the concentration of errors that are applied to the
channel decoder for correction. Before a sequence
of symbols is transmitted the symbols from several
code words are interleaved. When an error burst
occurs the errors on de-interleaving will be shared
among numerous code words that require a less
powerful code to correct them. Thus interleaving
effectively makes the channel appear like a random
error channel to the decoder. As the interleaving
period increases, the error performance can be
expected to improve in the sense that noise bursts
are more dispersed. On the other hand, the delay
due to interleaving and de-interleaving increases.
Consequently, there is always a trade-off between
error performance and interleaving delay. In the
forthcoming discourse we give a short introduction
to some effective interleaving methods.

— W width —
Information Parity
— symbols —+ +« symbols _,
Input
= s S} s} sl P |
53+| Séﬂ SI?H Sk P12 Py?—k D
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Figure 5. Block interleaver
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Figure 6. Modified block interleaver

3.1 Description of interleaving techniques

3.1.1. Block interleaving. A block interleaver
takes a code word of n symbols and writes them a
row at a time into a matrix of depth D rows and
width W columns, as shown in Figure 5. Suppose
W is equal to n, then a row of symbols in the
interleaver corresponds to a code word composed
of k information symbols and (n — k) parity symbols.
After the matrix is completely filled, the symbols
are serially removed from the matrix a colum at a
time and transmitted over the channel. At the
receiver, the de-interleaver performs the inverse
permutation by sequentially feeding in the data a
column at a time until the matrix is filled. The
symbols along each row are removed and decoded.
This interleaver is able to disperse any burst of
errors of lengths b=D, as this results in no more
than a single error in any code word. However, a
periodic sequence of single channel errors spaced
by D symbols cause a single code word to be totally
in error. The interleaver and de-interleaver end-to-
end delay is 2WD symbols. The memory requirement
is WD symbols in both the interleaver and de-
interleaver.

Another block interleaver,'® shown in Figure 6 is
a derivation from the interleaver shown in Figure
5. Instead of writing rows of symbols into the matrix
and appending the parity symbols to the k successive
information symbols, the symbols are now written
a column at a time. The parity symbols are encoded
from a row of k information symbols each separated
by D symbols in their natural order.

As symbols S}, 53, 53,...,88, occur, they are
placed into the matrix and are also transmitted at
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the same time. By the time S},,, arrives, symbols
1 83,..., S8 have been transmitted. When all the
mformatlon symbols S} to SZ, are in the matrix and
have been transmitted, the parity symbols
Pito P, are calculated immediately following
symbol S£5 arrival in the matrix. The advantage of
this mterleavmg scheme is that information symbols
are transmitted in their natural order. Hence, the
interleaver delay is negligible, and the end-to-end
delay of WD symbols is due to the de-interleaver.
The interleaver parameters D and W are selected
so that all expected burst Iengths are less than D.
However, this type of interleaver lacks robustness
when a periodic sequence of single errors spaced
by D symbols occurs. In this situation all the symbols
in a row are erroneous and this overloads the
channel decoder. The interleaving scheme described
in the next section has the ability of dispersing
bursty noise as well as periodic noise.

3.1.2. Inter-block interleaving. The inter-block
interleaver takes an input block of NB symbols and
disperses N symbols to each of the next B output
blocks. Consider an encoded symbol x from the
encoder and an output symbol y from the interleaver.
The mapping from the mth symbol of the ith coded
input block to the (j+ Bf)th interleaved symbol of
the (i+j)th output block is given by

y(i+j, j+ Bt)=x(i,m) (1)

for all i, with j=m mod B, and t=m mod N.

An example of inter-block interleaving with B=3
and N=2 is illustrated in Figure 7. The symbols of
the three successive ith, (i+1)th and (i+2)th coded
input blocks are denoted as a,b and c respectively.
Here, y(i+j, j+31) = x(i,m), for all i, with j =
mod 3, and + = m mod 2. For m = 0, y(i,0) =
x(i,0) and for m = 1, y(i + 1,4) = x(i,1), and so
on.

It is noted that the successive symbols of the ith
input block are mapped to the next B output blocks
consecutively, but with the irregular offset position
of (j+Bt) in each block. This irregular offset has the
advantage of randomizing any periodic noise in the
channel. In order to make sure that the mapping is
a unique one-to-one operation, B and N cannot
have a common multiple. This may place a constraint
on the block size of BN symbols. Disadvantages of

Input blocks:
(i+1)-th (i+2)-th
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Output bIoclc-
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2 l H L) fobed Tl febedele] [ Jeded o] [T o T

Figure 7. Example of inter-block interleaving with B = 3 and
N=2

this interleaving scheme are that the output sequence
is expanded by (B—1) blocks, and that the interleav-
ing delay is B2N symbols (composed of the delay
BN due to buffering the input block, plus the extra
delay (B—1)BN due to the dispersion of the
symbols).

3.2. The impact of interleaving on channel
characteristics

The RS encoded symbols consisting of m bits are
serially transmitted. The receiver performs symbol
regeneration prior to RS decoding. If the channel
is Gaussian, or if sufficient interleaving is employed
in the case of a fading channel, the probability of
any bit being in error is p,. The probability of the
regenerated symbol being erroneous depends on the
value of m. For example, Figure 8 shows the
probabilities of a transmitted two bits symbol 00
being regenerated as 00, 01, 10 and 11.

In general, the probability of receiving an error
symbol with / bits in error is

Psi= (’7)[){)(1 —pu)"t 2

and the average symbol error probability p is

m

b= 3(7) a1 = oy 3

i=1

The assumption of the memoryless channel explicit
in equation (3) can be fulfilled for mobile radio
channels by bit interleaving over a sufficiently long
period. The delay that can be tolerated for digital
speech communication restricts the interleaving
period, and the assumption of memoryless channel
is not always feasible.

Figure 9 shows the probability density function
(PDF) of the bit errors in an 8-bit window for MSK
data transmissions over Rayleigh fading channels
for various bit-interleaving algorithms. Bench-mark
PDFs for non-interleaving, and for the memoryless
channel for which equation (3) applies are also
presented. When block bit interleaving was
employed the interleaving delay was 2280 bits, as
D = 40 and W = 57, whereas for inter-block bit
interleaving B = 19 and N = 6, giving a delay of
2166 bits, i.e. similar to that used for our block bit
interleaver. Without interleaving the PDF of bit
errors in a symbol was significantly different from

2
—m) 5 — 00

So =00
pe(1—ps)
S51=01 e S =
po(1 = ps)
S2=10 e S, =10
S3=11 e S3 =11

Figure 8. Non-binary and non-symmetric channel
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Figure 10. The effect of bit interleaving on 8-bit symbols over a Rayleigh fading channel

that of the memoryless channel. When block bit
interleaving was deployed the PDF changed, indicat-
ing that the channel was beginning to approximate
to a memoryless channel. By introducing the inter-
block bit interleaving we experienced a PDF that
closely matched the theoretical curve obtained from
equation (3). The experiments were repeated for
different window lengths and on each occasion the
inter-block interleaving yielded a PDF that was a
good approximation to a memoryless channel.
Thus our experiments demonstrated that inter-
block bit interleaving randomized the burst errors.
This process is desirable for Viterbi decoding of
convolutional codes and for trellis decoding of block
codes, as both decoding methods operate on bit-by-
bit basis. However, the random distribution of bit
errors increases the symbol error probability. This

is demonstrated in Figure 10, where we display
simulation results of channel symbol error prob-
ability as a function of channel bit error probability
for the same interleaving parameters as in Figure
9. The average number of bit errors in a symbol
can be seen to be reduced as a result of interleaving
due to the errors in a burst being distributed into
neighbouring error-free symbols. The higher symbol
error probability is undesirable for decoding methods
that operate on a symbol basis, such as the
Berlekamp-Massey decoding of RS codes. In this
case, symbol interleaving rather than bit interleaving
is preferred as it does not alter the bit error
distribution within symbols, and consequently the
symbol error probability is not increased. The
symbol error probability p, (see equation (3))
increases with the symbol size m. Simulation results
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Figure 12. Convolutional encoder for the CC(2,1,7) code

that demonstrate this are presented in Figure 11.
This increased symbol error probability discouraged
the use of large symbol sizes employed in long code
words of block coding.

4. BER PERFORMANCE OF
CONVOLUTIONAL CODES

Based on an approach suggested by Viterbi,!® we
now derive the transfer function of the convolutional
code CC(n,k,K), where k/n is the coding rate R
and K is the constraint length, which is defined by
the number of input stages of the encoder. Armed
with this transfer function we find the weight
distribution of the code and use it to determine the
post-decoding error probability of the code by a
union bound technique.

4.1. BER performance of the CC(2,1,7)code

The generator polynomials'” of CC(2,1,7) used
in the encoder depicted in Figure 12 are given by

go(D) =1+ D?*+D3+D5+D°

149

8-bit symbol
4-bit symbol )
I-bit symbol
1-bit symbol ]

30
(dB>

Figure 11. The effect of symbol size on symbol error probability over a Rayleigh fading channel

35

and

g1(D) = 1+D+D?*+D3*+D° 6]
As the code is linear, so that the deduction of the
result for this code is independent of the input data
sequence, we consider the case when an all-
zero information data sequence is encoded and
transmitted. At the receiver, if the Viterbi algorithm
selects a non-zero path a decoding error ensues.
As the transfer function represents the distance
properties of all the possible incorrect paths, it is
found by solving 2K~ state equations. For the
binary code where k 1, the complexity of
the computation grows exponentially with K. The
alternative way of obtaining the transfer function
for large values of K is to trace through every
possible non-zero path in the trellis by an exhaustive
computer search and record the path distances. The
weight distribution of code CC(2,1,7) can also be
obtained by recording the total weight of all
information sequences which produce paths of
distance d from the all-zero path. From our computer
search we found the weight distribution to be

ch217(d) =36d'" + 211d'? + 14044 + ... . (5)

The coefficient W, of the first term in equation (5)
indicates that a total of 36 information bit errors
are associated with all distance d 10 paths.
Similarly, the coefficients W,, and W, of the second
and third terms have 211 and 1404 information bit
errors associated with distances of 12 and 14 from
the all-zero path, respectively. Let the coefficient
W, be the total number of information bit errors
for paths having a distance d from the all-zero path,
then the minimum distance d,,;, among all of these
paths is 10, and therefore W, = 0 for d<d

min-
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The union bound on the post-decoding bit error
probability p,, for codes of rate R is given by!?

Pop =

d:; WaPicp(d) (6)

x| -

where Picp(d) is the probability of incorrect decod-
ing, i.e. the probability that the decoder selects a
path at distance d from the correct path.

For hard-decision decoding, the decoder receives
a sequence of demodulated bits having an average
channel bit error probability of p,. If the number
of error bits in the demodulated sequence exceeds
d/2 from the correct path, an incorrect path is
favoured, as it has a distance of less than d/2 from
the demodulated sequence resulting in an incorrect
decoding. The union bound of the probability of
the incorrect decoding can be expressed by'®

{ A .
> (.)p{,(l—pb)d_' :d is odd
i=(d+r1y2 \!
Picp(d) =
a

d\ . .
> (,.)pa,(l—pb)d~'
i=d/i2+1

™)
L é(d‘fz)pgfz(l - pp)¥?  ;diseven

The above hard-decision decoding is independent
of the modulation. Let us now consider soft-decision
decoding which is modulation dependent. For MSK
modulation, the demodulator output C(T) at the
sampling instant 7 is'®

o =%+ M) (®)

where A, is the transmitted signal amplitude, T is
the bit duration, N(7T) is a Gaussian random noise
with zero mean and variance 0% = 1,778, and my/2
is the double-sided power spectral density of the
receiver’s thermal noise. Hence C(T) is also a
Gaussian random variable with mean p = A,7/2 and
variance o2 = o%. If the incorrect path is at a
distance d from the correct path, the difference in
accumulated metrics occurs in those d erroneous
bit positions and is described by dC(T) with mean
equal to dp and variance equal to do? The
probability Picp of selecting the incorrect path is
the probability of the metric dC(T) having a negative
value and is given by

Preo(d) =yerfe (VD)

%
[var?)

= —;:erfc

where I' = A2T/n, is the channel signal-to-noise
ratio (SNR) and E,, is the energy per information
bit. The post-decoding bit error probability for soft-
decision demodulation is obtained by substituting
equation (9) into equation (6).

4.2. BER performance of the punctured
PCC(3,1,7) code

For a convolutional code of rate k/n there are 2%
merging paths at each state in the trellis. The
decoding of this code by the Viterbi algorithm
selects the path with the highest metric out of the
2% possibilities at each state. The number of
calculations per selection grows exponentially with
k, and implementation at high speed is a serious
limitation, particularly in the case of high-rate codes.
Fortunately, the Viterbi decoding of high-rate codes
where & > 1 can be significantly simplified by
employing punctured convolutional codes.!*-?* This
technique allows us to obtain a high-rate code by
periodically deleting parts of the coded bits from a
low-rate encoder output. In addition, puncturing of
the low-rate 1/n code results in the decoding trellis
operating with k equal to unity.

We have used the low-rate convolutional code
PCC(3,1,7), punctured to a 2/3 coding rate. This
code is appropriate to the inner layer of a concat-
enated scheme with overall coding rate of 1/2. The
generator polynomials of this code are

go(D) =1+ D+ D?+ D5+ D
gi(Dy=1+D?+ D3+ D%+ D¢

and
g2(D)=1+ D+ D*>+ D%+ D° (10)

which are designed to produce an optimum code at
BER=10"3 in the presence of an AWGN channel.!®
The puncturing pattern of the encoded bit sequence
is to delete every alternate output bit, starting from
the first bit generated by g,(D) and g,(D), and also
every alternate output bit, starting from the second
bit produced by g.(D).

The weight distribution of this code after punctur-
ing was found by computer search to be

Wpecar(d) = d® + 44d7 + 23845 + -+ (11)

from the all-zero path. The post-decoding bit error
probability py, is found by substituting this weight
distribution, and the probability Picp of either
incorrect decoding using hard decisions given by
equation (7) or of using soft decisions given by
equation (9) into equation (6).

5. BER PERFORMANCE OF
REED-SOLOMON CODES

In this section we consider the abilities of
Reed-Solomon (RS) codes to combat transmission
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errors when the Berlekamp-Massey decoding pro-
cedure is employed. The RS code has linear
properties. We may therefore analyse its behaviour
by considering that a particular code word is
transmitted, say the all-zero code word, knowing
that our findings are applicable for the transmission
of any other code word.

The concept of geometric coding space is particu-
larly useful for visualizing the decoding situation.
Figure 13 represents the coding space containing
(g™)" words, of which (¢™)* are code words. If the
received word lies within the all-zero code word
sphere, it can be corrected. The probability of
correct decoding is therefore represented by the
ratio of the volume of the all-zero code word sphere
to the volume of the total coding space, and the
probability of an incorrect decoding is the ratio of
the volumes of the code-word spheres to the total
volume of the coding space. The probability of error
detection is the percentage of the coding space that
does not contain coding spheres. Thus we may
express the error detection of a code word as

Pep =1— Pep — Piep (12)

where P, and P are the probabilities of correctly
decoding and incorrectly decoding into another valid
code word, respectively. Another useful probability
is the relative error detection probability

_ PED
PEDR - PED + PlCD (13)

which is the probability of detecting an uncorrectable
error in a code word.

The RS codes considered here are over GF(g™),
where ¢ = 2 and m is the number of bits in a symbol.
The m-bit symbols are transmitted sequentially over

a binary channel, which is modelled as an asymmetric
memoryless channel, as discussed in Section 3.2.
The probability of receiving an error symbol for this
channel is given by equation (3), and the probability
of receiving a symbol with i bit errors is expressed
by equation (2).

5.1. Probability of correct decoding

An RS(n,k) code defined over GF(g™) with
minimum distance d,,;, = n — k + 1 is able to correct
t = (n — k)/2 symbol errors. Hence, the probability
of correct decoding, Pcp is the probability of
receiving an n-symbol word having ¢ or fewer symbol
errors, and is given by

Peo= 2 ()= = ot = oy
(14)

The index i is the number of error symbols in a
code word and ranges from zero to t. There are
(7) possible error patterns, and [1 — (1 — p,)™)" is
the probability of i symbols being received in error,
while [(1 — p,)”]"~ is the probability of (n — i)
symbols being received correctly. Notice that for
channels having a high SNR, p,, is very small and
Pcp approaches unity.

5.2. Probability of incorrect decoding

If the received word contains more than ¢ error
symbols, it is either decoded incorrectly, or an error
detection flag is raised after identifying uncorrectable
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errors in the received word. The probability of
incorrect decoding?! is

n

Piep = 2 PICD(h) (15)

h=dmin

where Picp(h) is the probability of incorrect decod-
ing to a code word having a symbol distance / from
the all-zero code word. In order to determine the
probability of incorrectly decoding to a weight-h
code word, we define N, (h) as the number of
weight-g error patterns that are at a distance s from
a particular weight-h  code word. When
s = tand h = d,,;,, each such error pattern is decoded
incorrectly into the weight-h code word. Suppose
P(g) is the probability of occurrence of a particular
weight-g error pattern and A, is the number
of weight-h code words, then the probability of
incorrectly decoding as a weight-k code word is the
sum of all the probabilities P(g) of weight-g error
patterns which lie inside the decoding sphere of a
particular weight-h code word, that is

! h+s

Picp(h) = A, 2 2 N,.(m)P(g),

s=0g=h-s

2t+1=h=n (16)

Suppose an all-zero RS(n, k) code word is transmit-
ted, then the probability of occurrence of single
error symbol, which we will refer to as producing
a weight-1 error pattern is

m

=3 (Tt -y ()

=1

The probability of a weight-2 error pattern is the
joint probability of two mutually independent error
symbols occurring, and is the product of their
individual probabilities, namely

=3 3 (M) o1 = pomeae

i1=lip=1
(18)

The probability of receiving a particular weight-1,
weight-2, ..., error pattern out of the possible
(2™ —1), (2™~ 1), ..., such patterns is found by
dividing P(1), P(2),..., by 27 —-1),(2" - 1)3, ...,
and the probability of receiving a particular weight-
g error pattern is

bigd m nt

2 2 X

11 lip=1 1~l

(%) (’ZZ)'--('Z)

p&(l—p)(’] (19)

P(g) = zm

The number of weight-g error patterns at a
distance s from the weight-h code word is?! expressed
by

Z max h s—2
Nes(h) = ,2, (h—s+z)(g—h+s—22>

(Il ) (2nl _ 2)g»h +y—2z (21" _ l)z (20)

where the summation limits z,,;, and z,,., are
Zmin = maX{O g h} (21)

and
—h+
Zmax — l:g—_z—ﬁjl (22)

where [x] is the truncated integer value of %,

To evaluate Picp(h) of equation (16) we must
compute the weight distribution A,. For any
maximum distance code such as a Reed-Solomon
code defined over GF(g™) with code-word length n
and minimum distance d, the weight distribution A,
is given by'?

P L

j=0

By substituting P(g), N, (k) and A, from equations
(19, (20) and (23) into equation (16) and then
substituting Picp(f) into equation (15), we have

Peo=3 [0S -1y

j=0

(e SIS

s=0g=h—s

PR [

(n ) 2 — gy es2z (g 1)2}

et 22 S0 6

phil+12+--~+ig (1 _ph)mn~(il+i2 b didg) :I:H (24)

2= Zmin

Observe that Pep, tends to zero if the SNR is high,
as py, is approximately zero. Armed with P. and
Picp the probability of error detection Pgp is
computed using equation (12), whereas the relative
error detection probability, Pgpgr is determined
using equation (13).
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5.3. Post-decoding bit and symbol error
probabilities

When the received code word contains more than
tsymbol errors they are either known to be incorrect,
or they are decoded into another code word and
the error is unknown. We will now determine the
probability of the symbols and the bits in the
regenerated code word being in error for the cases
when the errors are known and unknown.

When errors are detected a systematic RS code
conveys the information part of the code word
directly to the decoder output as decoded infor-
mation. Consequently, the post-decoding error prob-
ability is equal to the pre-decoding error probability.
Hence the contributions to the respective bit and
symbol error probabilities py,, and py,, are

Pop1 = PuPeD (25)

Pept = 2(’7) Phpr (1 = pop)™ ™ (26)

i=1

For error patterns that are undetectable the received
word is decoded as a weight-# code word, i.e. it
contains £ error symbols. The post-decoding symbol
error probability pg,, is given by

1 n
Psp2 = n 2 hPco(h) (27)

h=d

where Pjcp(k) is given by equation (16). The post-
decoding bit error probability due to incorrect
decoding can be evaluated from p,, as follows:

= (1 = pop2)” (28)

phpZ =1 — e#In( | 'I’spz) (29)

pspZ =1

The total post-decoding symbol error probability p,,
and the total post-decoding bit error probability py,,
can be expressed in terms of the probability of pre-
decoding bit errors p,, the probability of error
detection Prp and the probability of incorrect
decoding P\cp, namely

psp =pspl + pspZ

> [('7) (0oPeo) (1= poPeo)™™

1S hPicolh) (30)

and
Pop =Pbp1 T Pop2

n
=poPep + {1 — e#'“(‘_ﬁ wzg1P1cpt) (31)

6. TRELLIS DECODING OF BLOCK CODES

The method of trellis decoding of block codes is
similar to Viterbi decoding of convolutional codes.
The block decoder selects the path in the trellis
having the smallest distance from the received word
as the recovered code word. The distance properties
of the code determine its error-correcting capability.
In Section 6.1 and 6.2, we determine the code-word
distances of binary and non-binary block codes with
the same decoding complexity, i.e. with the same
number of states in the trellis. The codes with this
complexity equivalence, having 256 states, are the
BCH(15,7) code and the RS(4,2), GF(16) code. In
the following subsections their BER performances
are evaluated.

6.1. The BCH(15,7) code

The distance properties of this binary block code
are derived in a similar way to those of the
convolutional code, which suggest that this code can
correct any combination of two-bit errors. For
convolutional codes the number of incorrect paths
increases exponentially and indefinitely with the
number of columns j in the trellis. However,
block codes have a fixed code-word length, and
consequently the trellis is truncated after n columns.
The paths in the trellis initially diverge from, and
finally converge to, the all-zero state at the code-
word boundaries. All the paths have the same length
of n bits, there is a total number of 2% possible
paths in the tréllis and the weight distribution,
Wacnis7(d), of the BCH(15,7) code was found by
computer search through all of these paths as

Wacnis7(d) = 42d° + 84d® + 4947 + 56d*
+ 126d° + 844"’ + 7d'° (32)

The minimum separable distance, d,,,;,,, between the
code words is 5 bits. We will represent the total
number of information bit errors for all those paths
having a distance d by the coefficient W,. Following
the procedure of Section 4.1, the union bound on
the post-decoding bit error probability py,, for binary
block codes is

n

Pop = 2 W.Picn(d) (33)

d=dnin

where Pjcp(d) is the probability of incorrect decod-
ing, i.e. the probability that the decoder selects a
path at distance d from the correct path. The value
of Picp(d) is found from equation (7) for hard-
decision decoding, or from equation (9) for soft-
decision decoding.

6.2. The RS(4,2) code

Reed-Solomon codes have a maximum separable
distance between code words of (n — k + 1) symbols.
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Figure 14. Post-decoding BER of CC decoded by using the Viterbi algorithm with soft-decision decoding
over a Gaussian channel

Optimum symbol-by-symbol decoding methods??-2*
that minimize the symbol error rate result in
increased complexity compared to Viterbi decoding,
while the performance is essentially the same.
Consequently, we decode using a bit-orientated
Viterbi algorithm and describe the properties of the
RS code in terms of bit-distance measures. For
the RS(4,2), GF(16) code the weight distribution
Wgsa2(d) is found by computer search to be

WRS42(d) = 14d4 + 58d5 + 86d6
+ 13447 + 21048 + 2184° + 170d"'°
+ 82d"' + 244" + 204"3 + 8d'* (34)

The union bound on the post-decoding bit error
probability py,, for this code is obtained by substitut-
ing Wgeas(d) into equation (33).

7. RESULTS FOR NON-CONCATENATED
CODES

In Figure 14 we display a set of theoretical
and simulation results for the convolutional codes
CC(2,1,7), CC(2,1,5) and the punctured 2/3-rate
convolutional codes PCC(3,1,7) and PCC(3,1,5). All
codes are decoded by soft-decision Viterbi decoding.
The transmissions were via MSK over an AWGN
channel. The theoretical and simulation curves are
seen to be in close agreement. The 2/3-rate punc-
tured code with constraint length 7 has a 0-5dB
coding gain in E,/N, at a BER of 107" compared
to the 1/2-rate code of constraint length S. Thus the
lower transmitted bit rate, but greater complexity
2/3-rate decoder has a better performance than that
of the 1/2-rate code which transmits at a higher bit
rate.

When the transmissions were over Rayleigh fading
channels we obtained the results shown in Figure
15 for the CC(2,1,7) 1/2-rate code and those
displayed in Figure 16 for the PCC(3,1,7) punctured
2/3-rate code. The effect of interleaving with a
period of 4032 bits compared to 2880 bits yielded a
gain in E/N, of only about 0-5dB. Consequently
the interleaving distance of 2880 bits was preferred.
The PCC(3,1,7) required a higher channel SNR for
a given p,, as shown in Figure 16, than the other
codes, but because of its lower bit rate and adequate
BER performance it was elected as the inner code
in our concatenated coding scheme.

We now compare the theoretical and simulation
results for a number of Reed-Solomon codes having
different code-word lengths operating at coding rate
1/2. The Berlekamp—Massey hard-decision decoding
method was used. Figure 17 shows the probability
of correct decoding as a function of E\ /N, for the
AWGN channel. The probability of correct decoding
Pcp using shorter RS codes was found to be higher
than for the longer codes for Ey/N, values below
approximately 6dB. This was because the symbol
error probability for codes with larger numbers of
bits per symbol was higher, as exemplified by Figure
11. This situation was reversed for higher E,/N,
values because longer codes generally have a higher
error correcting capability. The simulation and
theoretical results coincide.

The probability of incorrect decoding, Picp is
significantly lower for longer codes because the
minimum distance among code words is much larger
in the longer codes. Figure 18 shows Pcp as a
function of E./N, for RS(4,2) and RS(12,6) codes.
Although not displayed in Figure 18, the theoretical
result shows that P, of the RS(57,29) code is
10-2% at an E/N, of 3dB. However, the correspond-
ing Picp for the short RS(4,2) and RS(12,6) codes
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Figure 22. Probability of incorrect decoding of RS codes over a Rayleigh fading channel

are the much higher values of 6:5 x 1072 and 1-2
x 1072, respectively. Again the simulation and
theoretical values coincide.

A very important feature of RS codes is their
capability to detect uncorrectable error patterns, the
probability of which is characterized in terms of the
relative error detecting probability Pepg as defined
in equation (13). As we have experienced, Pgpg is
practically independent of E./N, for a particular
code. For the short RS(4,2) code, the average value
of Pepg is 073, for the RS(12,6) code it is 0-98,
whereas for the longest code the average Pgpg is
1 — 10~%. This suggests that the longest code offers
almost certain error detection, an important feature
when transmitting computer data.

The post-decoding bit error probability py,, is a
function of both Picp and Pgp (see equation (31)).
The simulation and theoretical results for a Gaussian
channel are displayed in Figure 19 for the three
codes. The py, curves exhibit again a cross-over
region for E/N, of between 5dB and 6dB. Below

this region the bit error rate of the RS(57,29) code
is the highest as it has a higher channel symbol
error rate than the other two codes, as shown in
Figure 11. For E, /N, in excess of 6dB the RS(57,29)
code has the highest p,,, performance as the noise
corrupting the transmitted code word is restricted
for most of the time to the confines of the decoding
sphere of that code word. The same tendency can
be observed in Figure 20, where the post-decoding
symbol error probability p,, is displayed for the
same conditions as those in Figure 19.

The performance of RS(12,6) and RS(57,29)
codes for MSK transmissions over Rayleigh fading
channels is considered next. In Figure 21, we display
the probability of correctly decoding a code word
as a function of E. /N, For EJ/N, = 11dB,
the probability of correctly decoding Pcp was
approximately 0-86 for the RS(57,29) code and 0-92
for the RS(12,6) code. The longer code performs
better than the shorter code over almost the whole
range of Ey/N,. When bit or symbol interleaving
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was deployed the Pcp was increased for both codes,
and the longer the interleaving period the better
was the performance. However, a bit-interleaving
period of 2880 bits appears to be sufficient to
randomize the error statistics of the channel, and
results in a performance very similar to the theoreti-
cal values. When symbol interleaving was used an
interleaving period of only 1368 bits yielded a
comparable performance at a considerably lower
system delay. This is in harmony with our expla-
nations in Section 3, where we show that symbol
interleaving guarantees a better performance for RS
codes than bit interleaving.

The probability of incorrect decoding, Picp, over
Rayleigh fading channels is displayed in Figure 22 for
the RS(12,6) code with inter-block bit interleaving
having a period of 2880 bits. Also the theoretical
Picp curve is depicted, to show the performance in
the case of infinitely long interleaving period, which
characterizes the performance over the memoryless
channel. For the RS8(57,29) code the Picp was less
than 10->* when E,/N, exceeded 10-5dB, and
therefore its performance curve cannot be shown in
Figure 22.

The BER performances of the RS(12,6) and
RS(57,29) codes are compared in Figure 23 in terms
of their post-decoding bit error probabilities with
2880 bits inter-block interleaving, as well as with
two different symbol interleaving periods. First, we
focus our attention on the RS(12,6) code, where
we observe that even if the bit interleaving period
is 2880 bits long, the BER performance is worse
than the theoretical bound, computed for the
memoryless channel. However, if symbol interleav-
ing is used over the same period via the Rayleigh
fading channel, a better BER performance is
achieved than that over the memoryless channel.
The same tendency is noted in the case of the longer
RS(57,29) code, where even a shorter symbol

interleaving period of 1368 bits resulted in higher
performance than that of the memoryless channel.
The BER curves of the two codes have a cross-over
zone around 10dB, and above this value the longer
code performs consistently better. In summary, for
non-binary RS codes, symbol interleaving has a
more favourable effect than bit interleaving. This
experience is confirmed in Figure 24 also in terms
of symbol error rates (SER).

In Figures 25 and 26 we explore the performances
of the RS(12,6) as well as the RS(57,29) code over
the Rayleigh fading channel in the case of various
interleaving periods, when rectangular block symbol
interleaving is used. Observe that the shorter
RS(12,6) code reaches its saturation at around an
interleaving delay of 912 bits, whereas the longer
RS(57,29) saturates at around a delay of 2280 bits.
However, this longer interleaving period results in
a superior BER performance when compared to the
shorter code.

In Figure 27 the bit error probabilities of the
RS(4,2) code over GF(16) and of the BCH(15,7)
code are depicted both with hard-decision decoding
and soft-decision trellis decoding over the AWGN
channel. In the case of both soft and hard decisions
the BCH(15,7) code performs better than the
RS(4,2) code, because it can correct any combination
of two bit errors, whereas the RS code copes only
with those cases when they occur in the same four-
bit symbol, since it can correct only one symbol
error per four-symbol code word.

8. RESULTS FOR CONCATENATED CODES

In Sections 2-6, we investigated the properties of
interleavers, convolutional codes and block codes
as separate entities. We now return to the complete
system block diagram shown in Figure 1, and
consider the assignment of channel coders to the
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Figure 28. Post-decoding BER of concatenated code for data and speech transmission on a Rayleigh
fading channel

outer and inner encoding positions. An appropriate
arrangement is where an inner convolutional coder
and an outer RS coder are used. As the inter-block
interleaver has a high capability of randomizing the
burst errors it is deployed as the inner interleaver
for the convolutional coder. The outer interleaver
is operating on RS code words and hence a block
mterleaver is selected having n columns.

The choice of the convolutional coder as the inner
coder is because it can deploy soft-decision Viterbi
decoding, and has an ability to be punctured to a
convenient coding rate. The output of the inner
channel convolutional decoder at the receiver may
contain burst errors, particularly when it is over-
loaded, and following symbol deinterleaving by the
outer deinterleaver the bursts are distributed across
a number of RS code words. This distribution is
such as to enable the RS decoder to be generally
successful in its error correction.

Proceeding on the basis that the inner and outer
interleavers have effectively randomized the error
bursts, we now determine the BER for the concat-
enated arrangement shown in Figure 1. To do this
we calculate the post-decoding bit error rate py,, for
the convolutional decoder which we obtain from
equation (6), and substitute it as p, in equation
(31) to give the overall post-decoding bit error
probability.

In our experimental arrangement the outer FEC
codec in Figure 1 was an RS(240,180) or RS(48,36)
code over GF(256) that wused hard-decision
Berlekamp-Massey decoding, and the outer inter-
leaver was not employed for the RS(240,180) code
because of the relatively long code-word length.
The inner FEC code was a PCC(3,1,7) 2/3-rate
punctured code with Viterbi decoding by soft
decision. The inner inter-block interleaver had B
= 24 and N = 5, yielding an interleaver delay of
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2880 b its duration for our long-delay, high-integrity
data channel, whereas the outer rectangular block
interleaver, used in conjunction with the RS(48,36)
code had the parameters D = 5 and W = 48. The
overall coding rate was %, resulting in a transmitting
rate of 32 kb/s, if 16 kb/s input rate was assumed.
Based on these parameters we derive two different
long-delay, high-integrity channels, which we refer
to as the data channel, having an interleaving period
of 2880 bits. A short-delay speech channel, having
an interleaving period of 576 bits is also introduced.

Figure 28 shows the variation of the post-decoding
bit error probability, as a function of E,/N, for the
Rayleigh channel in case of three different coding
schemes. Operating at an E,/N,, in excess of 10dB
ensured that the BER was significantly below 10~°
in the case of the 2880 bit delay schemes. The
overall delay of 180ms, computed at 16 kb/s input
transmission rate, is acceptable for data transmission.
Observe that although the two codes have the same
interleaving delay, the scheme with the RS(48,36)
outer code with the rectangular outer block inter-
leaver performs slightly better, owing to the random-
izing effect of the outer interleaver deployed,
although the RS(240,180) code is longer. The
concatenated arrangement has a further advantage
in that the RS outer codec has a powerful error
detection capability, as opposed to the CC(2,1,7)
convolutional codec. Namely, the RS(48,36) code
has a relative error detection probability of 1 —
1079, whereas the corresponding value for the
RS(240,180) code is effectively unity. For speech
transmissions we suggest the scheme constituted by
a PCC(3,1,7) inner code using soft-decision Viterbi
decoding, as well as an RS(48,36) outer code
combined with a 576 bits long inter-block interleaver.
The performance of this scheme is more modest,
according to its shorter delay of 576 bits, which
corresponds to an overall coding delay of 36ms. The
relative error-detection probability of this code has
been stated to be 1 — 1077, and it enables the RS
outer codec to initiate post-enhancement techniques

for improving speech quality. This approach has
been followed in Reference 24.

Finally, we summarize our experiences in a
condensed form to help the reader find his way
through the extensive results section. Coding gain
tables are presented as follows: for the non-
concatenated codes over the AWGN channel in
Table III and over the Rayleigh-fading channel in
Table 1V; and for the concatenated codes over the
Rayleigh-fading channel in Table V. The first
column describes the coding scheme used, the
second and third columns contain the E./N, values
for values of BER = 103 and BER = 107°, whereas
the third and fourth columns contain the actual
coding gains at BER=10"* and BER=10"°, respect-
ively. These BER values are of prominent import-
ance for data transmission and speech transmission,
respectively.

We first compare a number of scenarios in terms
of their coding gains at BER=107% over the Gaussian
channel. It is remarkable that the CC(2,1,7) code
has the best coding gain among the class of non-
concatenated codes over the AWGN channel. It has
1dB better coding gain than the CC(2,1,5) code,
which is attributed to its higher free distance.
Surprisingly, the PCC(3,1,7) punctured code has
nearly the same performance as the lower coding
rate CC(2,1,7) code at approximately the same
complexity. Whence, for most applications, the
punctured code is preferred. The short RS codes
have very low coding gains, whereas their long
counterparts perform better, but not as well as the
convolutional codes with soft-decision decoding. If
we employ soft-decision trellis decoding for RS
codes, the coding gains are improved, but the code-
word length is very much limited by the exponentially
increasing complexity.

Over Rayleigh-fading channels RS codes perform
better than convolutional codes, when no interleav-
ing is used, since they combat equally well both
random and bursty errors. However, if interleaving
is introduced, the situation is reversed, if the

Table III. Coding gain of non-concatenated codes over a Gaussian channel

EW/N, value, dB Coding gain, dB
BER=10"% BER=10"° BER=10"" BER=10"*

No coding 6-8 10.5 0 0
CC(2,1,7),R = 1/2[VD — SD] 27 4-6 4-1 59
CC(2,1,5),R = 1/2[VD - SD] 32 5-6 36 4-9
PCC(3,1,7),R = 2/3[VD — SD] 3.2 5.1 36 5-4
PCC(3,1,5),R = 2/3[VD — SD] 3.7 6-1 31 4-4
RS(4,2)GF(8)[BM — HD] 72 10:5 -04 0
RS(12,6)GF(16)[BM — HD] 62 85 0-6 2:0
RS(57,29)GF(256)[BM — HD] 6-1 72 0-7 3.3
RS(4,2)GF(8)[BM — HD] 7-5 10-4 -0-7 0-1
RS(4,2)GF(16)[TD — SD] 59 83 -0-9 22
BCH(15,7,2)GF(2)[BM — HD] 65 9-7 0-3 0-8
BCH(15,7,2)GF2}([TD — SD] 56 80 1-2 2-5
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Table IV. Coding gain of non-concatenated codes over Rayleigh fading channel

Ey/N, value, dB Coding gain, dB

BER=10"* BER=10"* BER=10"* BER=10""
No coding 23-0 52-0 0 0
CC(22,1,7),R = 12 [VD - SD]
No interleaving 17:3 25:0 57 270
IBI/B(8,7) 448bits 115 19:5 11-5 32:5
IBI/B(13,6) 1014bits 9-0 12:5 14-0 39-5
IBI/B(24,5)  2880bits 7-2 9-8 15-8 422
IBI/B(24,7)  4032bits 6-8 9-0 16-2 43-0
PCC(3,1,7),R = 2/3 [VD — SD]
No interleaving 192 30-0 3-8 22:0
IBI/B(8,7) 448bits 14-2 215 8-8 30-5
IBI/B(13,6) 1014bits 11-0 16-0 12-0 36-0
IBI/B(24,5)  2880bits 9-5 12:0 135 40-0
IBI/B(24,7)  4032bits 87 11-5 14-3 40-5
RS(12,6) GF(16) [BM — HD]
No interleaving 48bits 20-5 34-0 2:5 180
BI/S(9,12) 432bits 14-5 240 85 28-0
BI/S(19,12) 912bits 13-0 20-0 10-0 320
BI/S(47,12)  2256bits 12:5 19-0 10-5 33-0 '
BI/S(95,12)  4560bits 12-0 17-0 11-0 350
RS(57,29) GF(256) [BM — HD]
No interleaving 456bits 16-0 225 7-0 29-5
BI/S(2,57) 912bits 14-0 210 9-0 31-0
BI/S(5,57) 2280bits 12.5 155 10-5 36-5
BI/S(10,57)  4560bits 11-5 14-0 11-5 38-0
BI/S(20,57)  9120bits 11-0 13-0 12:0 39-0

Table V. Coding gain of concatenated codes over Rayleigh fading channel

E,/Ny value, dB Coding gain, dB

BER=10"* BER=10"% BER=10"* BER=10"*
No coding 23-0 52-0 0 0
RS(48,36) GF(256) [BM — HD]
PCC(3,1,7),R = 2/3 [VD — SD] 13.-3 15-5 9.7 36-5
IBI/B(8,9)  576bits
RS(48,36) GF(256) [BM — HD]
BI/S(5,48)  1920bits ‘
PCC(3,1,7),R = 2/3 [VD — SD] 9-0 10-2 14-0 41-8

IBI/B(24,5) 2880bits
RS(240,180) GF(256) [BM — HD]

PCC(3,1,7),R = 2/3 [VD — SD] 9.5 105 135 415
IBI/B(24,5) 2880bits

coder (CC) employed Viterbi decoding with soft
decision, whereas the RS coder used either

interleaving memory of the convolutional code is
set to the code-word length of the RS code.

In the case of concatenated codes the coding gain
is approximately as high as in case of the non-
concatenated CC(2,1,7) code, but at the price of
slightly higher complexity, reliable error detection
is achieved.

9. CONCLUSIONS

The performance of convolutional and Reed-
Solomon (RS) codes has been investigated both
analytically and by simulation. The convolutional

Berlekamp-Massey hard-decision decoding or soft-
decision trellis decoding. The interleaver selected
for the RS coder was the rectangular block inter-
leaver, and an inter-block interleaver was used in
conjunction with the CC. For the same coding rate
concatenating the RS and CC coders was shown to
have approximately the same coding gain as the CC
coders on their own, but the concatenated code had
the advantage of reliable error detections. The CC
was employed as an inner coder in order to correct
the burst errors randomized by the inter-block
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interleaver. However, when the CC was overloaded
a burst error resulted. The outer de-interleaver
working on a symbol basis distributed the errors
such that the RS decoder had, in general, less than
t errors per block.

For speech communications the encoded rate of
16 kb/s is concatenation coded to 32 kb/s, and the
interleaving introduced an overall delay of 36 ms.
For transmissions over a Rayleigh fading channel,
a BER<1072 was achieved from an E,/N, in excess
of 13-3dB. When computer data were transmitted,
the interleaving period was increased to 2880 bits.
We found that for a BER<107¢ an E,/N, value of
10-2dB was required, and that the probability of
detecting an uncorrectable error was 1 — 107°. The
latter characteristic may be used to activate an
automatic repeat request (ARQ) system.
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