Mobile Radio Communications (2nd Ed.)

Second and Third Generation Cellular and WATM Systems

R. Steele, L. Hanzo (Editors)

WWW Page

Contents

     Preface to the Second Edition xix
     Acknowledgements xxiii
     Contributors xxv
1      {\bf Introduction to Digital Cellular Radio 1
1.1      The Background to Digital Cellular Mobile Radio 1
1.2      Mobile Radio Propagation 3
1.2.1      Gaussian Channel 5
1.2.2      Rayleigh Fading Channel 5
1.2.3      Rician Channel 10
1.2.4      Wideband Channels 14
1.2.4.1      GSM Wideband Channels 20
1.2.4.2      The Two-ray Rayleigh Fading Channel 21
1.2.4.3      Real Channel Impulse Responses 22
1.2.5      Path Loss 22
1.2.6      Propagation in Microcells for Highways and City Streets 24
1.2.6.1      Path Loss 24
1.2.6.2      Fading in Street Microcells 29
1.2.7      Indoor Radio Propagation 35
1.2.7.1      Path Loss 36
1.2.7.2      Fading Properties 37
1.2.7.3      60 GHz Propagation 39
1.3      Principles of Multiple Access Communications 42
1.3.1      Frequency Division Multiple Access 42
1.3.2      Time Division Multiple Access 43
1.3.3      Code Division Multiple Access 45
1.4      First-Generation Mobile Radio Systems 51
1.4.1      Network Aspects 54
1.4.1.1      Control Channels 57
1.4.1.2      Supervision 58
1.4.1.3      Call Origination 59
1.4.1.4      Call Receipt 59
1.4.2      Power Levels and Power Control 60
1.4.2.1      Call Termination 60
1.5      Digital Cellular Mobile Radio Systems 60
1.5.1      Communication Sub-systems 61
1.5.1.1      Speech Codec 61
1.5.1.2      Channel Codec 62
1.5.1.3      Modulation 63
1.5.2      FDMA Digital Link 66
1.5.3      TDMA Digital Link 67
1.6      Second-Generation Cellular Mobile Systems 69
1.6.1      Qualcomm CDMA 70
1.6.1.1      Qualcomm CDMA Down-link 70
1.6.1.2      Qualcomm CDMA Up-link 74
1.7      Cordless Telecommunications 76
1.7.1      CT2 System 76
1.7.2      Digital European Cordless Telecommunications System 78
1.7.3      Parameters of CTs and Cellular Systems 80
1.8      Teletraffic Considerations 82
     Bibliography 86
2      Mobile Radio Channels 91
2.1      Complex Baseband Representation 92
2.1.1      Bandpass Signals 92
2.1.2      Linear Bandpass Systems 95
2.1.3      Response of a Linear Bandpass System 98
2.1.4      Noise in Bandpass Systems 101
2.2      Mobile Radio Channel Types 102
2.2.1      The Propagation Channel 103
2.2.2      The Radio Channel 103
2.2.3      The Modulation Channel 104
2.2.4      The Digital Channel 104
2.2.5      A Channel Naming Convention 105
2.3      Physical Description of the Channels 105
2.3.1      The Propagation Channel 105
2.3.1.1      The Received Signal 107
2.3.1.2      The Impulse Response of the Channel 107
2.3.1.3      The Effect of Time Variations on the Channel 108
2.3.1.4      Channel Effects on Systems of Finite Delay Resolution 111
2.3.1.5      Channel Effects on Systems of Finite Doppler Resolution 114
2.3.2      The Radio Channel 114
2.3.3      The Modulation Channel 117
2.3.4      The Digital Channel 118
2.4      Classification of Channels 118
2.4.1      Time Dispersion and Frequency-Selective Fading 118
2.4.2      Frequency Dispersion and Time-Selective Fading 122
2.4.3      Channel Classifications 123
2.5      Linear Time-Variant Channels 126
2.5.1      The Variables Used For System Characterisation 126
2.5.2      The Bello System Functions 127
2.5.3      Description of Randomly Time-Variant Channels 137
2.5.3.1      Autocorrelation of a Bandpass Stochastic Process 137
2.5.3.2      General Randomly Time-Variant Channels 139
2.5.3.3      Wide-Sense Stationary Channels 142
2.5.3.4      Uncorrelated Scattering Channels 144
2.5.3.5      Wide-Sense Stationary Uncorrelated Scattering Cahnnels 147
2.5.3.6      Quasi-Wide-Sense Stationary Uncorrelated Scattering Channels 147
2.6      Characterisation by Bello Functions 148
2.6.1      Space-variance 148
2.6.2      Statistical Characteristics 149
2.6.3      Small-Area Characterisation 150
2.6.4      Large-Area Characterisation 152
2.7      Practical Channel Description 152
2.7.1      Propagation Pathloss Law 154
2.7.1.1      The Hata Pathloss Models 156
2.7.2      Slow Fading Statistics 162
2.7.3      Fast Fading Evaluation 163
2.7.3.1      Analysis of Fast Fading Statistics 163
2.7.3.2      The Relation of Rician and Gaussian PDFs 169
2.7.3.3      Extracting Fast Fading Characteristics 169
2.7.3.4      Goodness-of-fit Techniques 172
2.7.3.4.1      Chi-square Goodness-of-fit Test 173
2.7.3.4.2      Kolmogorov-Smirnov (KS) Goodness-of-fit Test 173
2.7.3.4.3      Goodness-of-fit of the Hypothesis Distribution 174
2.7.4      Summary 177
     Bibliography 181
3      {\bf Speech Coding 187
3.1      Introduction 187
3.2      Model for Analysis-by-Synthesis Coding 190
3.2.1      The Short-Term Predictor 191
3.2.1.1      The Autocorrelation Method 194
3.2.1.2      The Covariance Method 196
3.2.1.3      Considerations in the Choice of LPC Analysis Conditions 198
3.2.1.4      Quantization of the LPC parameters 200
3.2.1.4.1      Reflection Coefficients 201
3.2.1.4.2      Line Spectrum Pairs 204
3.2.1.4.3      Interpolation of LPC parameters 206
3.2.2      The Long-Term Predictor 209
3.2.2.1      Adaptive Codebook Approach 213
3.2.2.2      Quantization of LTP parameters 218
3.2.3      The Error Weighting Filter 219
3.3      Multi-pulse and Regular-pulse Excitation 222
3.3.1      Formulation of the Pulse Amplitudes and Positions Computation 222
3.3.2      The Multi-pulse Approach 228
3.3.3      Modification of the MPE Algorithm 232
3.3.4      Evaluation of the Multi-pulse Algorithm 234
3.3.4.1      Number of Pulses per Excitation Frame 234
3.3.4.2      The Length of the Excitation Frame 237
3.3.5      Regular-Pulse Excitation Approach 239
3.3.6      Evaluation of the RPE Algorithm 240
3.3.6.1      Pulse Spacing 240
3.3.6.2      Excitation Search Frame Length 243
3.3.7      Simplification of the RPE Algorithm 244
3.3.7.1      The Autocorrelation Approach 245
3.3.7.2      Eliminating the Matrix Inversion 245
3.3.8      Quantization of the Excitation in MPE and RPE Coders 252
3.4      Code-Excited Linear Prediction 258
3.4.1      CELP Principle 262
3.4.2      Simplification of the CELP Search Procedure Using the Autocorrelation Approach 266
3.4.2.1      Using Structured Codebooks 268
3.4.2.2      Sparse Excitation Codebooks 269
3.4.2.3      Ternary Codebooks 270
3.4.2.4      Algebraic codebooks 271
3.4.2.5      Overlapping Codebooks 273
3.4.2.6      Self-Excitation 276
3.4.3      CELP Performance 277
3.5      Binary Pulse Excitation 278
3.5.1      Transformed Binary Pulse Excitation 283
3.5.2      Excitation Determination 286
3.5.2.1      Efficient Exhaustive Search: The Gray Code Approach 288
3.5.2.2      Non-exhaustive Search 289
3.5.3      Evaluation of the BPE Coder 291
3.5.4      Complexity Comparison Between BPE and CELP Codecs 296
3.6      Postfiltering 298
3.7      Speech Coding at Rates Below 2.4kbps 301
3.7.1      Overview and Background 301
3.7.2      Wavelet-Based Pitch Detection 303
3.7.3      Voiced-Unvoiced Decisions 307
3.7.4      Pitch Detection 307
3.7.5      Basic Zinc-excited Coding Algorithm 309
3.7.6      Pitch Prototype Segment 310
3.7.7      Zinc Function Excitation 311
3.7.8      Excitation Optimization 313
3.7.9      Complexity Reduction 313
3.7.10      Voiced-Unvoiced Transition 316
3.7.11      Excitation Interpolation 316
3.7.12      1.9kbps ZFE-WI Codec Performance 318
3.7.13      Multiband Excited Codec 320
3.7.14      The MMBE Coding Algorithm 320
3.7.15      2.35kbps ZFE-MMBE-WI Codec Performance 321
3.7.16      Summary and Conclusions 323
     Bibliography 325
4      {\bf Channel Coding 335
4.1      Introduction 335
4.2      Interleaving Techniques 336
4.2.1      Diagonal Interleaving 337
4.2.2      Block Interleaving 338
4.2.3      Inter-Block Interleaving 340
4.2.4      Convolutional Interleaving 341
4.2.5      Discrete Memoryless Channel 342
4.2.6      The Effect of Interleaving on Symbol Error Distribution 343
4.2.7      Effect of Symbol Size on Symbol Error Probability 346
4.3      Convolutional Codes 346
4.3.1      Convolutional Encoding 347
4.3.2      State and Trellis Diagrams 350
4.3.3      Maximum Likelihood Decoding 353
4.3.3.1      Hard-decision Decoding 354
4.3.3.1.1      Correct Decoding 356
4.3.3.1.2      Incorrect Decoding 356
4.3.3.2      Soft-decision Decoding 357
4.3.3.3      The Viterbi Algorithm 359
4.3.4      Distance Properties of Convolutional Codes 363
4.3.5      Punctured Convolutional Codes 369
4.3.6      Hard-decision Decoding Theory 372
4.3.7      Soft-decision Decoding Theory 375
4.3.8      Convolutional Code Performance 377
4.3.8.1      Convolutional Code Performance via Gaussian Channels 378
4.3.8.2      Convolutional Code Performance via Rayleigh Channels 381
4.3.9      Conclusions on Convolutional Coding 386
4.4      Block Codes 388
4.4.1      The Structure of Block Codes 388
4.4.1.1      Finite Fields 389
4.4.1.2      Vector Spaces 391
4.4.1.3      Extension Fields 393
4.4.1.4      Primitive Polynomials 395
4.4.1.5      Minimal Polynomials 398
4.4.2      Cyclic Codes 405
4.4.3      BCH Codes 408
4.4.3.1      Binary BCH Codes 409
4.4.3.2      non-binary BCH Codes 410
4.4.3.2.1      Reed-Solomon Codes 411
4.4.4      Encoding of Block Codes 413
4.4.4.1      Binary BCH Encoder 415
4.4.4.2      Reed-Solomon Encoder 417
4.4.5      Decoding Algorithms for Block Codes 419
4.4.5.1      The Syndrome Equations 420
4.4.5.2      Peterson-Gorenstein-Zierler Decoding 422
4.4.5.3      Berlekamp-Massey Algorithm 428
4.4.5.4      Forney Algorithm 437
4.4.6      Trellis Decoding for Block Codes 442
4.4.6.1      Trellis Construction 442
4.4.6.2      Trellis Decoding 444
4.4.7      Block Decoding Theory 445
4.4.7.1      Probability of Correct Decoding 446
4.4.7.2      Probability of Incorrect Decoding 447
4.4.7.2.1      Number of Weight-$h$ Codewords 451
4.4.7.3      Post-decoding Bit and Symbol Error Probabilities 452
4.4.8      Block Coding Performance 453
4.4.8.1      Block Coding Performance via Gaussian Channels 454
4.4.8.2      Block Coding Performance via Rayleigh Fading Channels 459
4.4.8.3      Soft/Hard Decisions via Gaussian Channels 462
4.4.9      Conclusions on Block Coding 465
4.5      Concatenated Codes 467
4.5.1      Nested Codes 467
4.5.2      Product Codes 469
4.6      Comparison of Error Control Codes 470
     Bibliography 476
5      {\bf Quaternary Frequency Shift Keying 481
5.1      An S900-D Like System 481
5.2      QFSK Trans{ 489
5.2.1      Demodulation in the Ab{ 490
5.2.1.1      Coherent Demodulation 490
5.2.1.2      Non-coherent Demodulation 495
5.2.2      Single Cochannel Interferer with Non-coherent Demodulation 502
5.2.3      Multiple Cochannel Interferers 506
5.2.3.1      Coherent Demodulation 506
5.2.3.2      Non-Coherent Demodulation 507
5.3      QFSK Transmission Over Rayleigh Channels 509
5.3.1      Coherent Demodulation 511
5.3.2      Non-Coherent Demodulation 511
     Bibliography 514
6      {\bf Partial-response Modulation 515
6.1      Generalised Phase Modulation 515
6.1.1      Digital Phase Modulation 516
6.1.2      Digital Frequency Modulation 521
6.1.3      Power Spectra 531
6.1.3.1      Modulated Signal Power Spectral Density Estimation 534
6.1.4      TDMA Format for DPM and DFM Transmissions 534
6.1.5      Hardware Aspects 536
6.2      CPM Receivers 537
6.2.1      Optimal Receiver 537
6.2.2      Probability of Symbol Error 541
6.2.3      Principle of Viterbi Equalisation 545
6.2.4      RF to Baseband Conversion 552
6.2.5      Baseband Processing 553
6.2.6      Viterbi Equalisation of Digital Phase Modulation 569
6.2.7      Viterbi Equalisation of GMSK Signals 576
6.2.8      Simulation of DPM Transmissions 580
6.2.8.1      DPM Transmissions over an AWGN Channel 581
6.2.8.2      DPM Trans{ 583
6.2.8.3      DPM Trans{ 585
6.2.8.4      DPM Trans{ 585
6.2.9      Simulations of GMSK Transmissions 588
6.2.9.1      GMSK Transmissions over an AWGN Channel 588
6.2.9.2      GMSK Transmissions over Frequency Selective Rayleigh Fading Channels 589
6.2.9.3      Comment 590
     Bibliography 592
7      {\bf Frequency Hopping 595
7.1      Introduction 595
7.2      Principles of SFHMA 596
7.2.1      SFHMA Protocols 597
7.2.2      Reuse Cellular Structures 598
7.2.3      Propagation Factors 602
7.3      Description of an SFHMA System 605
7.3.1      Multiple Access Protocol 605
7.3.2      Time Division Multiplexing 605
7.3.3      Modulation and Equalisation 605
7.3.4      Speech and Channel Coding 606
7.3.5      Transmitted Signal Structure 607
7.3.6      Frequency Reuse 607
7.4      BER Performance 608
7.4.1      BER Performance of the MLSE Detector 608
7.4.2      BER Performance of the MSK-Type Detector 610
7.4.3      Channel Models and System Assumptions 614
7.4.4      BER Analysis of the SFHMA System in a Static AWGN Channel 617
7.4.5      BER Analysis in a Rayleigh Fading Channel 621
7.5      BER Performance 623
7.5.1      BER Analysis in a Noiseless Static Channel 624
7.5.2      BER Analysis in a Static AWGN Channel 627
7.5.3      BER Analysis in a Rayleigh Fading AWGN Channel 630
7.5.4      BER Analysis of a Noiseless Rayleigh Fading Channel 632
7.6      Estimation of Spectral Efficiency 634
7.6.1      Spectral Efficiency of the SFHMA System: MethodA 636
7.6.2      Spectral Efficiency of the SFHMA System: MethodB 646
7.6.3      Spectral Efficiency of the TD/FDMA System 650
7.7      Conclusions 655
7.8      Appendix A: 656
     Bibliography 659
8      GSM 661
8.1      Introduction 661
8.2      Overview of the GSM System 665
8.3      Mapping Logical Channels 668
8.3.1      Logical Channels 668
8.3.2      Physical Channels 671
8.3.2.1      Mapping the TCH/FS and its SACCH as well as FACCH onto Physical Channels 672
8.3.2.2      Mapping Broadcast and Common Control Channels onto Physical Channels 678
8.3.2.3      Broadcast Control Channel Messages 682
8.3.3      Carrier and Burst Synchronisation 683
8.3.4      Frequency Hopping 685
8.4      Full-rate 13 kbps Speech Coding 687
8.4.1      Candidate Codecs 687
8.4.2      The RPE-LTP Speech Encoder 688
8.4.3      The RPE-LTP Speech Decoder 692
8.5      The Half-rate 5.6 kbps GSM Codec 695
8.5.1      Half-rate GSM Codec Outline 695
8.5.2      Half-rate GSM Codec Spectral Quantisation 698
8.5.3      Half-rate GSM Error Protection 699
8.6      The Enhanced GSM codec 700
8.6.1      EFR Codec Outline 700
8.6.2      Operation of the EFR-GSM Encoder 702
8.6.2.1      Spectral Quantisation in the EFR-GSM Codec 702
8.6.2.2      Adaptive Codebook Search 704
8.6.2.3      Fixed Codebook Search 705
8.7      Channel Coding and Interleaving 706
8.7.1      FEC for the 13kbps Speech Channel 707
8.7.2      FEC for Data Channels 712
8.7.2.1      Low-Rate Data Transmission 714
8.7.3      FEC in Control Channels 714
8.7.4      FEC Performance 716
8.8      Transmission and Re{ 720
8.9      Wideband Channels and Viterbi Equalisation 727
8.9.1      Channel Models 727
8.9.2      Viterbi Equaliser 729
8.9.3      GSM System Performance 731
8.10      Radio Link Control 733
8.10.1      Link Control Concept 733
8.10.2      A Link Control Algorithm 740
8.10.2.1      BS Preprocessing and Averaging 740
8.10.2.2      RF Power Control and HO Initiation 741
8.10.2.3      Decision Algorithm 741
8.10.2.4      HO Decisions in the MSC 745
8.10.2.5      Handover Scenarios 746
8.11      Discontinuous Transmission 747
8.11.1      DTX Concept 747
8.11.2      Voice Activity Detection 748
8.11.3      DTX Transmitter Functions 752
8.11.4      DTX Receiver Functions 753
8.11.5      Comfort Noise Insertion and Speech/Noise Extrapolation 756
8.12      Ciphering 757
8.13      Telecommunication Services 759
8.14      Summary 765
     Bibliography 768
     Glossary 771
9      Wireless QAM-based Multi-media Systems 777
9.1      Motivation and Background 777
9.2      Speech Coding Aspects 780
9.2.1      Recent Speech Coding Advances 780
9.2.2      The 4.8 kbit/s Speech Codec 781
9.2.3      Speech Quality Measures 784
9.2.4      Bit Sensitivity Analysis 785
9.3      Video Coding Issues 789
9.3.1      Recent Video Coding Advances 789
9.3.2      Motion Compensation 790
9.3.3      A Fixed-rate Videophone Codec 794
9.3.3.1      The Intra-Frame Mode 794
9.3.3.2      Cost/Gain Controlled Motion Compensation 794
9.3.3.3      Transform Coding 797
9.3.3.3.1      One-dimensional Transform Coding 797
9.3.3.3.2      Two-dimensional Transform Coding 798
9.3.3.4      Gain Controlled Quadruple-Class DCT 801
9.3.4      The H.263 Standard Video Codec 803
9.4      Graphical Source Compression 806
9.4.1      Introduction to Graphical Communications 806
9.4.2      Fixed-Length Differential Chain Coding 806
9.4.3      FL-DCC Graphical Codec Performance 809
9.5      Modulation Issues 810
9.5.1      Choice of Modulation 810
9.5.2      Quadrature Amplitude Modulation 813
9.5.2.1      Background 813
9.5.2.2      Modem Schematic 814
9.5.2.2.1      Gray Mapping and Phasor Constellation 814
9.5.2.2.2      Nyquist Filtering 817
9.5.2.2.3      Modulation and Demodulation 819
9.5.2.2.4      Data Recovery 821
9.5.2.3      QAM Constellations 822
9.5.2.4      16-QAM BER versus SNR Performance over AWGN Channels 825
9.5.2.4.1      Decision Theory 825
9.5.2.4.2      QAM Modulation and Transmission 828
9.5.2.4.3      16-QAM Demodulation in AWGN 828
9.5.2.5      Reference Assisted Coherent QAM for Fading Channels 832
9.5.2.5.1      PSAM System Description 832
9.5.2.5.2      Channel Gain Estimation in PSAM 834
9.5.2.5.3      PSAM Performance 837
9.5.2.6      Differentially Detected QAM 837
9.5.2.7      Burst-by-burst Adaptive Modems 841
9.5.2.8      Summary of Multi-level Modulation 845
9.6      Packet Reservation Multiple Access 845
9.7      Multi-mode Multi-media Transceivers 847
9.7.1      Flexible Transceiver Architecture 847
9.7.2      A 30 kHz Bandwidth Multi-media System 850
9.7.2.1      Channel-coding and Bit-mapping 850
9.7.2.2      Performance of a 30-kHz Bandwidth Multi-media System 853
9.7.3      A 200 kHz Bandwidth Multi-mode, Multi-media System 857
9.7.3.1      Low-quality Speech Mode 858
9.7.3.2      High-quality Speech Mode 860
9.7.3.3      Multi-mode Video Transmission 861
9.7.3.4      PRMA-assisted Multi-level Graphical Communications 862
9.7.3.4.1      Graphical Transmission Issues 862
9.7.3.4.1.1      Graphical Packetisation Aspects 863
9.7.3.4.2      Graphics, Voice and Video Multiplexing using PRMA 865
9.7.3.5      Performance of the 200 kHz Bandwidth Multi-mode, Multi-media System 865
9.7.3.5.1      Speech Performance 865
9.7.3.5.2      Video Performance 869
9.7.3.5.3      Graphical System Performance 870
9.8      Summary and Conclusions 875
9.9      Acknowledgement 877
     Bibliography 879
     Glossary 893
10      Third-Generation Systems 897
10.1      Introduction 897
10.2      UMTS/IMT-2000 Terrestrial Radio Access 900
10.2.1      Characteristics of UTRA/IMT-2000 900
10.2.2      Transport Channels 904
10.2.3      Physical Channels 905
10.2.3.1      UTRA Physical Channels 907
10.2.3.2      IMT-2000 Physical Channels 910
10.2.4      Service Multiplexing and Channel Coding in UTRA/IMT-2000 914
10.2.4.1      Mapping Several Speech Services to the Physical Channels in FDD Mode 916
10.2.4.2      Mapping a 2.048 Mbps Data Service to the Physical Channels in TDD Mode 918
10.2.5      Variable Rate and Multicode Transmission in UTRA/IMT-2000 920
10.2.6      Spreading and Modulation 922
10.2.6.1      Orthogonal Variable Spreading Factor Codes in UTRA/ IMT-2000 923
10.2.6.2      Uplink Spreading and Modulation 925
10.2.6.3      Downlink Spreading and Modulation 927
10.2.7      Random Access 928
10.2.8      Power Control 931
10.2.8.1      Closed-Loop Power Control in UTRA/IMT-2000 931
10.2.8.2      Open-Loop Power Control During the Mobile Station's Access 932
10.2.9      Cell Identification 933
10.2.10      Handover 936
10.2.10.1      Intra-frequency Handover or Soft Handover 936
10.2.10.2      Inter-frequency Handover or Hard Handover 936
10.2.11      Inter-cell Time Synchronization in the UTRA/ IMT-2000 TDD mode 937
10.3      The cdma2000 Terrestrial Radio Access 939
10.3.1      Characteristics of cdma2000 939
10.3.2      Physical Channels in cdma2000 941
10.3.3      Service Multiplexing and Channel Coding 944
10.3.4      Spreading and Modulation 944
10.3.4.1      Downlink Spreading and Modulation 945
10.3.4.2      Uplink Spreading and Modulation 947
10.3.5      Random Access 949
10.3.6      Handover 951
10.4      Performance Enhancement Features 952
10.4.1      Adaptive Antennas 952
10.4.2      Multiuser Detection/Interference Cancellation 953
10.4.3      Transmit Diversity 953
10.4.3.1      Time Division Transmit Diversity 953
10.4.3.2      Orthogonal Transmit Diversity 954
     Bibliography 955
     Glossary 961
11      {\bf Wireless ATM 965
11.1      Introduction 965
11.2      Overview of ATM 966
11.2.1      ATM Cell 967
11.2.2      Service Classes 969
11.2.3      Statistical Multiplexing 970
11.2.4      Virtual Connections 971
11.2.5      Service Parameters 973
11.3      Wireless ATM Mobility 976
11.3.1      Network Architectures for ATM Mobility 977
11.3.2      Handover Schemes 979
11.3.2.1      Cell Forwarding 979
11.3.2.2      Virtual Connection Tree 980
11.3.2.3      Dynamic Re-routing 982
11.3.3      Quality-of-Service 983
11.3.4      Location Management and Routing 985
11.4      Radio Access Infrastructure 986
11.4.1      Medium Access Control 989
11.4.1.1      Adaptive PRMA 991
11.4.1.2      Dynamic Slot Assignment 992
11.4.1.3      Distributed Queueing Request Update Multiple Access 992
11.4.2      Polling Scheme for Adaptive Antenna Arrays 993
11.4.3      Data Link Control Layer 994
11.4.4      Radio Physical Layer 995
11.5      Microcellular Architecture 995
11.5.1      Dedicated Link to BSs from a Remote ATM Node 996
11.5.2      BSs as Simple Private ATM Nodes 997
11.5.3      BSs as Full ATM Nodes 997
11.5.4      BSC for Semi-intelligent BSs 997
11.5.5      BSC for Dumb BSs 999
11.5.6      Plug-in BSs 1000
11.6      WATM Network Teletraffic Simulation 1001
11.6.1      WATM Simulation Tool 1002
11.6.1.1      Medium Access Control 1002
11.6.1.2      Service Characteristics 1003
11.6.1.3      Call Admission Control 1004
11.6.1.4      Handover 1006
11.6.2      Rectilinear Grid Network Simulations 1006
11.6.2.1      Dynamic versus Fixed Slot Assignment Schemes Transporting GSM-based Voice Traffic 1007
11.6.2.2      DSA Scheme Transporting Voice Traffic With WATM Characteristics 1009
11.6.2.3      DSA With A Mixture of Voice and Video Services 1011
11.6.2.4      Dynamic versus Fixed Slot Assignment with Voice and Video Traffic 1013
11.6.2.5      Allowing Call Attempts on a Secondary BS 1016
11.6.2.6      Allowing Handover on Cell Loss 1016
11.6.2.7      Accept All Calls Algorithm 1019
11.6.2.8      Accept All Calls Algorithm Combined with the Handover on Cell Loss Algorithm 1021
11.6.3      Campus Network Simulations 1024
11.6.3.1      Combined Voice, Video and Data Services 1026
11.6.3.2      Dynamic versus Fixed Slot Assignment Scheme with Voice, Video, and Data Traffic 1028
11.6.3.3      The Absence of Handover on Cell Loss 1030
11.6.3.4      High-Priority Video 1031
11.6.3.5      Equal Priority Services 1032
11.6.3.6      Delay Buffering 1033
11.6.3.7      Speed of Handover 1033
11.6.3.8      Increased Handover Hysteresis 1035
11.6.3.9      Absence of Minicell Coverage 1035
11.7      Summary of WATM Simulations 1037
11.8      WATM Conclusions 1038
     Bibliography 1040
     Index 1044
     Author Index 1054