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In order to solve multidimensional tunneling problems that cannot be treated by the nor-
mal instanton techniques, we introduce the path decomposition expansion formalism, and
show its usefulness by solving three generic examples: the symmetric and asymmetric double
well, and the decay problem. The technique allows us to handle excited states and back-

scattering effects in nonseparable potentials.

PACS numbers: 03.65.Sq, 03.65.Db

Multidimensional quantum mechanical tunneling
phenomena, such as the splitting between the sym-
metric and antisymmetric states in a symmetric
double well or the decay of a metastable state, can-
not be treated by use of standard perturbation
theory. Recently, however, instanton techniques,’
which are in a sense multidimensional generaliza-
tions of the WKB method, have been successfully
applied to a number of these problems. The basic
idea of this approach is that ground-state tunneling
effects are dominated by paths in the vicinity of
classical paths which involve infinite imaginary
time, which is to say the zero-energy classical
motions in the inverted potential.

There are serious limitations to this technique as
it involves paths only in the classically forbidden re-
gion of configuration space, and contains little in-
formation about the classically allowed regions.
Thus, it does not lend itself to problems involving
tunneling from an initially excited state of a poten-
tial well nor to problems in which backscattering
final-state effects are significant (i.e., the effect of
the spectrum of final states?). In one dimension
these difficulties can be surmounted elegantly by
summing over complex-time classical paths® which
traverse both the allowed and forbidden regions.
The classical path analysis in the classically allowed
region* is, however, enormously complicated in
more than one dimension; it appears quite intract-
able for nonseparable potentials.

Here, we outline a method that can avoid these
difficulties. The technique is based on the observa-
tion that, although the contribution of the allowed
region is hard to calculate from a classical path
analysis, it can often be calculated with other con-
ventional techniques (e.g., low-order perturbation
theory). We work with a path-integral representa-
tion of the Green’s function. We introduce a new

multidimensional connection formula, which we
call the path decomposition expansion (PDX). This
enables us to break configuration space into regions
(which we will normally choose to be the various al-
lowed ““well’’ and forbidden ‘‘barrier’’ regions) and
to calculate the contribution of different regions
separately. In particular, it allows us to use the clas-
sical path analysis in the forbidden region, where it
is relatively simple, without being forced to handle
the permitted region in the same cumbersome
fashion.

We wish to consider the effects of tunneling in a
potential ¥ (x) where x is a vector in an N-
dimensional configuration space, Q. We therefore

outside

m

FIG. 1. (a) Schematic representation of the path
decomposition in Eq. (2). The solid path contributes to
G (xg,x;E) and the dashed path to G (x;,x,;E). (b)
Path decomposition for G’ in a double-well tunneling
problem. Regions I and III are classically allowed,
V(x) < E. The solid path X(#) is the instanton path
which dominates Gb. The other path is a typical path
from Xq, tO xél where the dashed pieces contribute to the

two G's, and the dotted pieces to G
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express the Green'’s function, G, as the Laplace transform of the Feynman path integral

x(T)-xf

G(xf,x,;E)=j:°dT Dx exp((i/r){SIX]+ (E+ie)T}), (1a)

x(0)=x;

where S is the action functional
T
Slxl= [ atl$mid~ v (). (1b)

Our first step is to derive the decomposition formula which allows us to isolate the contribution to G from
some region of Q. We therefore consider a closed surface 3 in Q which breaks Q into two regions, an ‘‘in-
side’’ and an “‘outside.” See Fig. 1(a). All paths which start at a point x; inside X, and end at a point x, out-
side 2 must pass through at least one point x, € %. We can decompose all paths into an initial segment
which starts at x; and ends at x, (although it may cross X many times), and a final segment which goes
directly from x, to x;. The sum over these segments (from x, to x;) is called the restricted Green’s func-
tion G”. To obtain the sum over all paths we must integrate over points x,. The result is the path-
decomposition formula,

G (xp,x3E) = fxda G (xs,x0,E) [ (i/2m YW olG(xg,x3E), (2a)

where fd o is the surface integral over X, and (i#/2m )5,, is the average of the incoming and outgoing ve-
locities at x ., which is defined equivalently by the expression

F(x)V 08 (xs) =61f(x)8,8(x) — g(x)0,f(x)] | =, (2b)

where & is the outward normal to 3, at x,. This velocity operator is the Jacobian of the transformation from
Eq. (1) to (2), as can be seen by a careful analysis of the discrete time-step version of the path integral.*
G(7 is defined by the expression

x(7)

"2 90y exp((i/i) (SIxl+ E), 3)

x(0) = x,

G (x5,x1;E) =J:°dT

where 2" x is the sum over each path which stays strictly outside 2 and does not touch it (except possibly at
its initial point x; if it is on ). We will use the following shorthand for rewriting the decomposition formula
in Eq. (2);

G (xp,x3E) = (x| G [2] G(’)le), )

where [2] implies the integration over the surface 2 including the appropriate normal derivatives (Jacobian).

Since GV is an unfamiliar quantity, it is worthwhile to examine its properties in a little more detail. It is
defined by a path integral with the same action as G so it satisfies the same differential equation everywhere
outside the surface X:

[— @Y2m)d2V (%) — E'1G (xx,E) =i o (x — x')0(x,3), (5)

where 0(x,3) is 1 when x s outside 3, and 0 for xon 3. Like G, G” is symmetric under interchange of its
arguments (x+ x'), and it satisfies all the same boundary conditions as G on their common boundary sur-
faces. In addition, however, it satisfies both the unusual homogeneous boundary conditions on 3 represent-
ed by the function @ in Eq. (5), and the integral condition

(x]|GP[21GP|x") =0, (6)

for any x and x’ not inside 3. Equations (5) and (6) can be viewed alternatively as the definition of G in
terms of a differential equation. Since Z"x excludes all paths which touch X at any point other than the ini-
tial point, the boundary conditions on G‘” correspond to a perfectly emitting wall on 3. In one dimension
this can be seen from Egs. (5) and (6) to yield the boundary condition at point x,

— i 35 InG Y (x' % E) | gm g, = + (2m[E— V(x,) V2. @)

It is possible to iterate the PDX [Egs. (2) or (4)] so as to break configuration space Q into many disjointed
regions. We will demonstrate this by considering the double-well potential illustrated schematically in Fig.
1(b). We choose to make the decompositions at the surface of constant energy E, 3; and 3,, which defines
three regions: regions I and III enclosed by X, 3,, respectively, which are the classically allowed regions,
and region II, the forbidden region, which is everywhere else. The different restricted Green’s functions are
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G, restricted outside 3,; G, restricted outside 3;; and GU, restricted to the outside of both allowed regions.
G"is therefore doubly restricted and has a direction corresponding to paths which start on 2; and end on 2,,
G"(— ), or, vice versa, G''(— ). In the tunneling problems in which we are interested, E is well below the
barrier which separates regions I and III. Because of this, G! is only weakly dependent on the boundary con-
ditions (or even the potential) at 3,. Thus, to accuracy O(e~2"/) [where W (E) is the classical action
under the barrier, defined below] G'(E) is well approximated by the Green’s function of the single-well
problem in which the potential in region III is replaced by a potential V > E, so

YR (x)
G (xx"E) =% ¥ —"———2——
275 g
where R signifies a regular function of E and the poles, E,, and residues, ¥} (x), are the spectrum and eigen-
states, respectively, of the corresponding single-well problem. Note that in cases of practical interest, we
cannot actually compute G's exact poles and residues with accuracy remotely approaching O(e~2Vh)y,
Nevertheless, we will see that small errors in calculating G' only produce proportionate errors in the tunnel-
ing effects we shall consider This is the power of the PDX approach, in that it allows us to use any suitable
approximation to calculate G\,
In order to sum over all paths contained in G it is convenient to define a composite quantity called the
“bounce,” G®, which is the sum over all single return trip paths to region III which begin and end on 3; but
never enter region I [see Fig. 1(b)],

G¥(xg Xe E) = (x5 | GM(— ) [2,] GM[5,] GM(—)xg, ). ©9)

+ R (xx";E), ®

G? contains two surface integrations on 3,. Finally, G is obtained by summing over all bounces. For exam-
ple if xand x’ are both in region I,

PO (x') o 1 N
G(xx3E) =k 3} ————— 3, |9%(E) + R (E)
5{ E'—E] Ngo E'—é||,.
— I* 1 1 ’
_h'%\p,, (x) ET—eI—ﬁg”(E)]n"/¢”'(X)+R(E)' (10)
where we have used the ] basis to define the various matrices
gb(E)’ml‘—"l’l,I,* [21] Gb[EI]‘l"I'u (lla)
= 1
e’lm,—SM,E,,. (11b)

The poles of G occur at energies E, where
DetlE) — -5 9*(E,)1=0. (12)

Typically ¥%(E) is small compared with the splitting between energy levels, AE'= |E;— E', |, and hence the

sum over bounces produces only a small shift in the energy which can be computed with use of low-order
perturbation theory in 2. In the case of resonant tunneling, when GM(E) [and hence ¥%(E)] has a pole at
energy EM which is nearly equal to E;, Eq. (12) must be solved with use of near degenerate perturbation
theory; the sum over bounces produces important effects (see examples below).

Equations (10)-(12) are our principal results. ‘They permit us to employ a hybrid approximation scheme,
in which only G need be computed with use of a semiclassical approximation. We now conclude by briefly
illustrasting how this scheme works by examples. Many technical considerations are deferred for future publi-
cation.

As a demonstration we consider the symmetric and asymmetric double well in an arbitrary number of
dimensions [see Figs. 1(a) and 1(b)] and study the effect of asymmetry on the poles and residues of G. In
the symmetric case regions I and III are equivalent so G has the same poles as G'. (This is the simplest ex-
ample of resonant tunneling.) Thus, combining Eqgs. (9) and (12) for the case of a large barrier (G small),
we find that each energy level E, splits into a symmetric and an antisymmetric state

EX=El+A,+ 0(9%Aé) (13)
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where the splitting
A, =kl [21GE(— ) [2,]wl]. (14)

A, is a relatively straightforward object to compute semiclassically. It is dominated in most practical exam-
ples by a single path X () which minimizes the action W =S+ ETfrom 3, to 3, [GY= O (e~ "/)].

This path, which we call the instanton path, is a classical path with energy — E, in the inverted potential
from an initial point Xy on %y toa final point Xg, on 2. It will necessarily start and end with zero velocity.
In terms of this path all integrations in Eq. (14) can be carried out by the steepest-descent method to obtain
A to leading order inf:

xO’
A=} (Fo ) Rexpl =21 [2m (V (%) - ED1V2dR) 4, (15)
(71 N

A, is a factor of order #° with dimensions of (time) ~! (distance)”, arising from the quantum fluctuations
around the instanton path and the two surface integrations. In the near future a full discussion of 4, will be
published.’ Subtleties due to the fact that X, is a classical turning point? can be handled in a way analogous
to the usual WKB connection formula. In many cases of physical interest, 4, can be calculated to good ap-
proximation in closed analytic form. For the present we just point out that in the separable case the effect of
A, is to renormalize the potential ¥ (x) in Eq. (15) to V™"(x)= V+ E, (m ), where m, are the quantum
numbers of the directions not coupled to the tunneling coordinate. Note that as we commented earlier,
small errors in the computation of ¥} and E,} produce only small fractional errors in A,,.

In the asymmetric double well, when %°(E) is regular near E), it is clear from Eq. (12) that there is an
eigenstate with energy negligibly shifted from E), E,=EX+ O(e~2"/F). This eigenstate has an amplitude
(which we can calculate) in region III of O (e~ */*); the tunneling probability is of O (e “2%/*). In contrast,
in cases of resonance when |El— EM| < A,, 9° (E) is singular [9%(E) ~ e~2"//(E — EM)], and hence an
energy splitting of O(e~ Wty is obtained, JUSt as in the symmetric case. This resonance effect cannot, in
general, be obtained by normal instanton techniques.

The decay rate I',, of a metastable state is determined by the imaginary part of the pole, Im(E,) =#T,/2.
A finite decay rate can only occur if there is a continuum of states, s El(x), in region III. Formally, a contin-
uum of states in region III implies that GI! has a finite imaginary part proportional to the density of states,

ImG™M (x,x"; E) =k m PLO)y 2 (x) p™(E).

It is apparent from Eq. (12) that this gives rise to a complex pole with

xo
AT /2=, (% ) Pl EN (X5, IP0™ (E,) (4,)% exp ~ﬁ3f)_‘ 2[2m(V—E,,)]"ZzE]. : (16)
71

We have shown that the PDX provides a method for isolating the important factors in tunneling processes
in a way that enables us to develop controlled approximations to solve problems involving many coupled de-
grees of freedom. In future publications we will demonstrate the usefulness of this technique for specific
problems of physical interest. For instance we are currently completing a calculation of the cross section for
photoinduced soliton pair production in polyacetylene, including the effects of simultaneous phonon emis-
sion.
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