The Development of Parkbench and
Performance Prediction

Tony Hey and David Lancaster

Electronics & Computer Science

University of Southampton
Southampton SO17 1BJ, U.K.
(djl@ecs.soton.ac.uk)

Abstract

We present a brief overview of the development of benchmarks for parallel
performance analysis and show how a set of widely accepted parallel bench-
marks has emerged from the Parkbench initiative. At the lowest level, basic
node parameters are captured by the LINPACK benchmark and the Gene-
sis Communication benchmarks which give information on message-passing
latency and bandwidth. At kernel and application level, results are widely
available for the NAS Parallel Benchmarks. A new release of the Genesis
communications benchmarks is described which addresses the important is-
sue of the effect of memory hierarchy on message transfers.

The remainder of the paper is concerned with the way in which bench-
mark results can be used to predict performance of full applications. Three
studies are considered: the PERFORM estimation tool and WHITEBOX
benchmarking are research projects indicating some possible directions for
progress, while INTREPID is the basis of a commercial system for schedul-
ing meta-applications based on performance models for the components.



1 Introduction

Benchmarks have progressed a long way from simply generating single fig-
ures of merit for a kind of consumer guide to the “best computer”. Nowadays
there is strong need for performance prediction, for example for the schedul-
ing necessary for the Information Power Grid (IPG)[1] and other distributed
systems. An important requirement for such scheduling is the ablility to
rapidly and reliably extrapolate the behavior of applications as their size is
scaled up and they are run on larger systems. Such performance modeling
needs measured machine parameters as input. These are the parameters
that are ascertained by low-level benchmarks: for example, communication
latencies and bandwidth curves are the kind of parameters vital in modeling
any parallel process. Performance on modern machines is also strongly de-
pendent on how well the code utilizes the memory hierarchy, and low-level
benchmarks to measure parameters that describe the memory hierarchy will
also be needed.

Much work has yet to be done in developing appropriate performance
models, but here we present some of the benchmarking techniques that will
be used to measure the input parameters of these models. We attempt to
place this discussion in context by providing a short overview of the develop-
ment of parallel benchmarking. We illustrate how the Parkbench initiative
has adopted techniques learned from the historical development. Then, con-
centrating on the low-level class, we present a new release of Genesis low-level
communications benchmarks that are intended to be used for precisely the
purposes outlined above.

In the final section we discuss performance modeling, mainly concentrat-
ing how modeling is implemented in INTREPID[2], a present day scheduler
for meta-applications. It is interesting to see the level of complexity required
even with very simple models, and it is important to recognise the need for
rapid scheduling decisions and for modeling without disclosure of the source
code. Although results reported for INTREPID are encouraging, certain fea-
tures such as the memory hierarchy are not treated well and we report on
some research projects, PERFORM[3] and WHITEBOX]|4] benchmarking,
which attempt to do better.



2 Overview of Benchmark Development

We give a brief overview of the development of benchmarks for parallel per-
formance analysis, emphasizing some of the lessons that can be learned for
future work.

2.1 Single Processor Benchmarks

Whetstone: An early attempt to simulate a typical scientific workload
using portable codes was the Whetstone benchmark[6] devised in 1972. The
benchmarks were synthetic, consisting of artificial kernels intended to rep-
resent the computationally intensive part of certain scientific codes. The
timing of this benchmark on different machines was compared and reported
in terms of a unit called Whetstone instructions per second.

Livermore Loops: The Livermore Fortran Kernels [7] are a set of 24
loop kernels extracted from operational codes used at Lawrence Livermore
National Labs. These became widely used and publicized the concept of the
Mflop unit. For scientific codes, speed measured in floating point operations
per second is useful, and has less dependence on the instruction set than
simply measuring the total number of instructions emitted per second. The
Livermore loops also assign a nominal flopcount to common floating point
operations and allow measurements to be made in the absence of a hardware
counter.

SPEC: In 1989 a set of machine vendors agreed on a set of real pro-
grams and run conditions to use as common benchmarks. The strong back-
ing from vendors has been important in the success of SPEC, as has been
the wide dissemination of results. The contents of the suite have evolved
in time and presently SPEC95(8] contains 8 integer and 10 floating point
codes. The precise content of the suite has been subject to some criticism
and presently SPEC95 is regarded as more relevant to the workstations than
supercomputers (though there are now benchmarks from the SPEC High
Performance-Group[9]).



2.2 Simple Performance Modeling

Amdahl’s law: Amdahl places an upper bound on the speedup (the
ratio of the speed on P processors to the speed on one) of a code by decom-
posing the runtime into a fraction that can be parallelized efficiently and an
inherently serial fraction. The maximum speedup occurs when the parallel
part of the code dominates the runtime. However, Amdahl’s assumption that
the decomposition is fixed is now known to be incorrect. Typically the frac-
tion of the runtime that is inherently serial depends on the problem size, and
the best speedups are found for large codes. This law is therefore no longer
considered a “show-stopper” for parallel computing, and indeed speedups in
excess of 90% for a 1000 processor system have been observed with the IFS
weatherforecasting code[5].

Hockney Parameters: The efficiency of computations on vector ma-
chines depends strongly on the vector length n. The simplest model for
the computational time is linear assuming some fixed overhead. In terms
of Hockney parameters[10] the runtime is given by ¢ = (n + n1/2)/7e. The
parameter r,, measures the asymptotic performance and n; /2 18 the vector
length needed to achieve half this performance. Performance models of this
type have been used in attempts to understand kernel (for example FFT)
performance[10], but the memory hierarchy in more recent cache based ma-
chines is more difficult to model. We need to find abstractions as simple and
useful as Hockney’s to understand and predict performance on parallel and
distributed systems.

2.3 Parallel Benchmark Suites

Perfect Club: For this benchmark suite[11], 13 complete application
codes running on shared memory vector systems were chosen. Unfortunately
the complexity of the codes meant that it was difficult to infer conclusions
about the architectures. It was also hard to quantify the effort that went
into optimizing the codes for different platforms (though the benchmarks
have been useful for other purposes[12]).

GENESIS: These distributed memory benchmarks[13] were based on an
Esprit project starting in 1988. The codes used PARMACS message passing



and Fortran 77 and introduced the idea of a hierarchy of benchmark levels.
A new version of these codes based on MPI is described later in this paper.

NAS: The original 1991 NAS benchmarks[14] were “paper and pencil”,
only defining the algorithms and leaving implementation up to the users. Sev-
eral important algorithms used in the CFD work at NASA were abstracted
to form 5 kernels (EP, MG, CG, FT, IS) and 3 simulated applications (LU,
SP, BT). Fortran codes were later provided to clarify the algorithms, and
following the NAS group’s involvement with the Parkbench initiative, these
have now been made available in both serial and parallel form. Results are
collected and published on the NAS web site.

LINPACK: is a simple kernel benchmark[15] based on solving a dense
system of linear equations. To accommodate improved processors, over time
the size of the problem has increased from 100 x 100, and the test can also be
used to measure how performance varies as a function of problem size. This
code is quite straightforward, compilers finding it easy to optimize, and it is
used to classify machines for the “Top500” list[16].

Euroben: was initially intended to provide a very detailed assessment
of a single scalar or vector node and was then extended to shared memory
parallel machines. The benchmark[17] is based on three modules that at the
simplest level test basic operations, memory conflicts and bottlenecks and at
higher levels test progressively more elaborate algorithms. The Euroben tests
have recently been used for a very detailed analysis of the Origin 2000[18]

RAPS: The Real Applications on Parallel Systems[19] consortium is
composed of both vendors and Furopean scientific centers, mainly working
on weather and climate modeling. The suite consists of large-scale applica-
tion codes, either the commercial production codes themselves or benchmark
versions. These codes are used as procurement benchmarks.

3 Benchmarking Techniques

As benchmarking techniques have developed, there has been a correspond-
ing increase in the sophistication with which benchmarks are used. This is
not always good, and there are many methods that can be used to inflate
performance figures[20]. Indeed, in the early days these tricks gave both
benchmarking and parallel computers a bad reputation, and it was to place
it on a more firm and scientific footing that the Parkbench initiative was



conceived. This initiative has incorporated many valuable lessons from the
development outlined above, for example the recognition that more than one
parameter is needed to model performance. We have identified three aspects
that seem particularly relevant at present: the benchmark content, the im-
portance of the memory hierarchy and the need for wide dissemination of
results. Below, we expand on the first two of these, the need for the third is
self evident.

3.1 Benchmark Content

As has been apparent from the very earliest days of benchmarking, there
is a major distinction between low-level synthetic benchmarks and larger
tests that represent real production codes. Based on the work of Genesis,
a hierarchical classification of benchmarks has been widely adopted. This
hierarchy consists of:

e Low-Level codes: Measuring the basic machine properties; both of sin-
gle nodes and of communications interconnections.

o Kernels: Computationally intensive kernels testing some widely used
scientific algorithm.

e Compact Applications: Compact application codes including I/O, but
designed to be run easily.

The compact application benchmarks attempt to capture the behavior of
other features of production codes other than the computational kernel. For
example: 1/O and its interaction with computation. As such, these bench-
marks are closer to real applications and can help identify bottlenecks that
may be observed in full production codes. These codes can also provide useful
support in the procurement process along with factors such as reliability and
support, but in no way take over the role of the main procurement bench-
marks which must be large production codes chosen appropriately for each
site. RAPS is an example of how cooperation at this level can be beneficial
to both procurement sites and vendors.

Low-level and kernel benchmarks are more finely honed instruments in-
tended to test specific performance characteristics. These benchmarks do
not play significant roles in procurement but are necessary for researchers



to understand the basic limitations of a given architecture. Although there
are many similar benchmarks in the low-level class and there is rarely much
leeway in how to write the essential core of any particular low-level test, it
is important for researchers to know exactly what the test is doing and pre-
cisely how the measurements are taken. A common standard set of tests is
therefore very desirable. It is vital that these low-level tests be immediately
portable, that the precise significance of the timing measurements be clear
and that the results be widely and publicly available.

3.2 Memory Hierarchy

With the retreat from vector architectures and the increasing use of com-
modity components in the High Performance market, the memory hierarchy
has become ever more important. Single node performance is critically de-
pendent on the compiler having a good understanding of the cache behavior.
Although it has always been clear that benchmarks test the compiler as much
as the architecture, the increasing complexity of the memory hierarchy and
the subtlety of the code rearrangements needed have placed greater emphasis
on the compiler than ever before.

These difficulties are quite apparent at the serial level and there are many
techniques to write explicit codes that despite having higher overall instruc-
tion counts, have better performance due to improved cache usage. The
blocking of matrix-matrix multiplication is a well known example.

At the parallel level the memory hierarchy continues to have a significant
effect. Cache effects can easily be seen when communicating non-contiguous
data. In fact, halo exchange of multidimensional data frequently occurs
in many scientific applications and if the cache is not used appropriately
significant under-performance can result. In more recent implementations of
MPI, this problem can be addressed automatically using the derived data

types.

4 Parkbench

The Parkbench initiative of 1992 was an attempt by a group of users and
vendors to bring some order and honesty to parallel benchmarking. The
objectives were to gain some wide acceptance for an agreed set of paral-



lel benchmarks and to make the codes and results publicly available. The
methodology[21] is based on some of the principles deduced from past bench-
marking practice as outlined above. The Parkbench suite consists of a hi-
erarchy of tests as explained earlier, and results have been available on the
Parkbench web site[22]. One interesting innovation was the reporting of mea-
surements of performance for both unoptimized and optimized codes. The
magnitude of the difference provides useful information about the “ease of
use” of the machine.

Users have now broadly converged to a standard selection of tests in
the suite. At the node level this consists of the LINPACK test, possibly
augmented by Euroben tests. Common agreement on suitable codes to test
the memory hierarchy are still missing. Kernel codes are provided by the
NAS serial and parallel benchmarks and low-level communications codes are
based on the Genesis benchmarks.

Recently, discussion in the Parkbench Group has focussed on improving
the low-level Genesis codes and some problems that have been reported,
mainly related to the complexity and ease of use of the suite. To address
these issues a new version of low-level Genesis communications benchmarks
has been written and this will now constitute the low-level codes in the new
release of the Parkbench suite.

4.1 New Low-Level Genesis Communications Bench-
marks

The design philosophy of these low-level codes has strongly aimed at sim-
plicity to address the concerns mentioned above. Simplicity aids portability
and allows the timing measurements to have a clear significance. The re-
quirement of portability is vital for low-level benchmarks where much of the
interest lies in comparison of results on many different machines. There is lit-
tle freedom in how to implement the core of a low-level benchmark, but small
differences can occur, so it is important to be able to inspect this core part of
the code and thereby have a precise understanding of how the measurements
are made. This again is aided by simplicity.

These low-level codes include pingpong and other tests and have been
written in Fortran 77 using MPI message passing. None of the benchmarks
consists of more than a couple of hundred lines of code.



e Comms-PingPongl: Standard message pingpong with only one message
propagating at a given time (simplex) using MPI_SEND — MPI_RECV
pairs.

e Comms-PingPong2: Interleaved message pingpong in which two mes-
sages can be travelling in opposite directions at the same time (duplex)
using MPI_SENDRECV.

e Comms-PingPong3: Comms-PingPongl with data touching on every
receive.

e Comms-Stridedl: Sending strided data in a pingpong pattern from a
matrix using a DO-LOOP.

e Comms-Strided2: Sending strided data in a pingpong pattern using
the MPI_VECTOR datatype.

e Comms-Allgather: Determining the network saturation bandwidth us-
ing the collective MPI_ALLGATHER call.

e Comms-Synch: Synchronization by MPI barriers.

The tests are described in detail at the Genesis web site[23] where the code
may also be downloaded. The pingpong tests are quite standard while the
tests based on sending strided data allow the effect of the memory hierarchy
on communication to be probed. Comms-PingPong3 also investigates memory
hierarchy by forcing data up through the caches and checking the receive
buffer at each step. The results of the tests that involve the memory hierarchy
depend much more strongly on the compiler optimisations that the results
from the other tests. Comms-Allgather considers more than two processors
and further tests investigating the collective operations are still to be added to
the suite. The Genesis web site also features a searchable database of results
obtained from these benchmarks on a variety of machines. We encourage
new results to be submitted to the database.

The general pattern of use is to supply test parameters via an input file.
The parameter values are not chosen automatically so they are under com-
plete control of the user. Examples of the fixed format input files containing
suitable parameter choices are provided with the distribution, but it is often
helpful to make some quick initial runs covering a smaller parameter space

8



to get a feel for the results to be expected in a longer run. There are separate
input files for each test.

Output files, containing the benchmark timings are in a format that can
be directly submitted to the central repository, but they are ASCII and are
easy to interpret.

We suggest that the tests be run several times to ensure that the results
are stable. Non-repeatability can be due to a the system not being dedicated,
but even for dedicated machines it is endemic for modern operating systems
due to their complexity. By varying the parameters in the input file, the
test can be made to take longer and this tends to average out fluctuations on
short time scales leading to more stable results. The tests themselves contain
a warmup section intended to reduce this problem.

We decided to separate the measurement and analysis stages because it is
important to check that a particular model for the data is reasonable before
attempting to fit it. The benchmark results are therefore in the form of raw
timing measurements. Plots are generated automatically when results are
submitted to the database, but we feel that this is no substitute for individual
analysis. We have provided some simple script tools using gnuplot however
we encourage any form of analysis such as the PICT[24] fitting tool that is
also available at the web site.

4.2 Results

All results that have been submitted are publicly available on the database.
Presently results are available for the Cray T3D, Cray T3E, Fujitsu VX4,
Sun Enterprise 10000 and Origin 2000. Results on the IBM SP2 and CS2 in
different configurations can also be viewed. An interesting baseline measure-
ment is provided by results on a cluster of DEC alpha workstations running
Linux and fast Ethernet.

As an example of the strided tests, we show in figure 1 a plot of the
results from Comms-Stridedl and Comms-Strided2 on an Origin 2000. The
much better performance when strided data is sent using the MPI_VECTOR
derived datatype rather than using a simple DO-LOOP indicates that the
MPI implementation is making more effective use of the memory hierarchy.
The fall in the DO-LOOQOP curve at large message size can be ascribed directly
to the finite cache size. The peak bandwidth seen with Comms-Strided? is
similar to that observed with contiguous data in Comms-PingPong1.

9



140

120

100

@

3
T
X

3
3

Bandwidth MB/s

40 |-

20 |

0 1 1
32 1024 32768 1.04858e+06
Message Size (Bytes)

Figure 1: Bandwidth from Comms-Stridedl (bottom line) and
Comms-Strided?2 (top line) tests on an Origin 2000.

4.3 A Future for Parkbench?

It is suggested that a standard set of benchmark codes has now emerged and
forms the basic Parkbench Suite. These are:

e Low-Level: LINPACK and New Genesis Communications benchmarks.
e Kernels: NAS Parallel Kernels.
e Compact Applications: NAS compact Applications.

Further work will be done in improving the quality and coverage of the
Parkbench web sites at both Knoxville and Southampton. Now that there is
a substantial set of results from the low-level tests, detailed analysis can be
performed and both the techniques of analysis and the conclusions will be
made available on the web.

The suite will continue to evolve. Certainly the low-level Genesis com-
munications benchmarks will be enlarged to include more tests of collective
operations. We have exposed the need for a standard serial test probing the
memory hierarchy on a single node, for example a test with “tiling” com-
piler codes. A final possibility is to include HPF versions of the kernel class
benchmarks.

10



5 Performance

In the preceding sections we have described how benchmarking has developed
to the sophisticated level represented by the present Parkbench suite. Un-
fortunately the use of this benchmarking data in estimating the performance
of large (or even moderately sized) codes is less advanced. In the absence of
reliable modeling techniques low level simulation techniques have provided
quite accurate performance figures, but these methods are time-consuming,
require full disclosure of the source code and are machine specific. For the
purposes of the IPG and other environments where it is essential to be able to
make scheduling decisions rapidly, simulation is not appropriate. Below we
describe several approaches investigated at Southampton that are intended
to speed up the process and to avoid the need for source code which is often
commercially sensitive. The PERFORM estimation tool and WHITEBOX
benchmarking are research projects indicating some possible directions for
progress. Our third example, INTREPID, is the basis of a commercial sys-
tem for scheduling meta-applications based on performance models for the
components.

5.1 PERFORM Estimation Tool

Low-level simulation provides a full description of the effect of the memory hi-
erarchy that is missing in naive approaches to performance modeling based on
total operation count, but is notoriously slow. PERFORM]3] is an attempt
to preserve the good representation of the memory hierarchy by speeding up
the low-level simulation technique using a method based on execution driven
simulation and program slicing to analyse code. These techniques avoid full
simulation of the complete code and select only the most significant parts,
for example: load and store operations that take a variable amount of time
to complete are fully simulated, whereas the time for arithmetic operations
is based on simple operation counts. The most significant time saving choice
is to only simulate the first few iterations of a loop until the complete loop
timing can be accurately predicted. A further saving in both time and mem-
ory usage is to use program slicing to remove from the code all variables that
do not directly affect the control flow.

Another difference from traditional low-level simulation is that the sim-
ulation engine is not tied directly to one particular machine. Operations

11



are represented in terms of a set of abstract machine instructions and a set
of machine specific parameters is used to describe a particular machines in
terms of this abstract model.

Execution driven simulation with program slicing certainly presents a
much faster performance estimation method than low level simulation, and
the results on a variety of simple codes such as the Livermore Loops are
encouraging in terms of accuracy. The method still requires access to the
source code.

5.2 WHITEBOX Benchmarking

WHITEBOX[4] benchmarking is an attempt to derive a useful level of profile
information without excessive instrumentation of source code. Rather than
profile the code in terms of the individual function calls, the code is divided
into sections representing communication, data movement, and computation.
These sections are timed by a method known as incremental conditional
compilation.

This technique allows the communication pattern to be determined and
one would expect to be able to model this using results from low-level com-
munications benchmarks. It is an important lesson that this is not a trivial
procedure: a study of NAS LU, BT and SP parallel codes indicates that
their communication cannot be simply modeled in terms of two processor
pingpong benchmark figures. It is precisely for such reasons that the other
Genesis communication benchmark tests address the memory hierarchy and
communication involving multiple processors and collective MPI calls.

While this approach certainly reduces the extent to which the source
code must be disclosed, it can still provide detailed information. The most
important conclusion is that substantial work will have to be put into relating
performance to the results from low-level benchmarks.

5.3 INTREPID

To demonstrate the state of present day performance prediction in practical
applications we describe INTREPID[2], a scheduler for meta-applications.
INTREPID has a fuller knowlege of the applications than ordinary platform
management systems, and is designed to interface with commercial systems

12



such as LoadLeveler and LSF. The performance modeling contained in IN-
TREPID is very simple and phenomenological and consists of two parts: a
general timing model and a specific load model for each application. The
timing model is based on a simple fixed functional form with a small number
of parameters describing the machine and other parameters describing the
load imposed by the application. The bulk of the work involves the load
model which must be created separately for each application to determine
how the application load parameters depend on inputs such as problem size.
This approach can be viewed as the opposite extreme to the low-level sim-
ulation technique and potentially does not need detailed knowledge of the
source code. This example will show that despite the simplicity of the per-
formance model, a complicated structure is still required in order to put it
to use.

INTREPID has been developed though a series of EU funded projects as
a manager of resources for meta-applications. Meta-applications are single
applications consisting of a variety of tasks running on a distributed, non-
dedicated system. The system is composed of a set of machines that might
possibly contain individually parallel machines. INTREPID makes a critical
path analysis of the meta-application under consideration and schedules it
on the system in the most efficient way. To enable it to do this scheduling,
a model for the performance of each task on any of the machines comprising
the system is necessary.

The general timing model that fulfills this requirement is based on a fixed
functional form for the time taken 7'(P), on a machine with P processors
with application parameters that depend on the particular task. It is hard to
imagine that any more simple form than the following would capture essential
features:

chufcpu + chu(l - fcpu) + Liof'io + Lz’o(1 - fz’o) + Lcomm (P)

chu P chu Rio P Rio Rcomnzl)
The rate parameters Rp,, Ri, and Reomm are determined by standard bench-
marks and depend only on the hardware of the processors as does P the
number of processors in the machine. The other parameters, known as ap-
plication parameters, Ly, Lio, Leomm as well as fe,, and f;, are parameters
characterising the application. The L’s are loads, whereas the f’s describe,
in Amdahl form, the fraction of the code that is intrinsically serial. The final

T(P) = tsta,rt +

13



parameter ¢4+ depends on both machine and application and represents the
time needed for license authentication etc.

Having identified the application parameters required, the performance
modeling enters the second phase of the application load model which for
each task determines the dependence of the L and f application parameters
in terms of input. First, some knowledge of the application is needed to
choose a small number of parameters that characterise the input, describing
the particular problem being solved. In most cases there is some parameter
describing the “problem size”, for example the number of mesh points in a
finite element code, and there may be further parameters such as the num-
ber of time steps needed. The essence of the performance modeling is then
reduced to identifying these parameters and determining how the quantities
Lepu, Lioy Leomms fepu @and fi, depend on them. A separate model must be
constructed for each application.

In the context of the EU projects, this modeling procedure has been
carried out for a variety of commercial application codes:

e CALIFE, a CFD application from Bertin.

e The finite element statics NASTRAN solution sequence from MSC.

PARNASQO, a non-linear structural analysis code from ENEL.

AS-THETIS, an electromagnetics analysis code from AeroSpatiale.

SIMAID, a multi-body dynamics code for robotics from CEIT.

It is important to stress that the full source code is not necessary to derive
models for these applications because this can be done by fitting curves
based on timing data. On the other hand, this is time-consuming and not
very accurate, and the more that is known about the application the better
will be the estimates. Despite the simplicity of the model, it is remarkable
that performance estimates for the applications listed above lie within 20%
of the measured values. Successful full scale tests of INTREPID have been
made on up to 100 machines located in a variety of sites throughout Europe.

Although the performance models are extremely simple, INTREPID rep-
resents a full present day scheduler. This should be well understood both in
terms of the accuracy with which it can predict performance and of the time
constraints under which it operates, in order to see how more sophisticated

14



approaches, such as those considered in PERFORM and WHITEBOX can
contribute.

6 Conclusion

We have given an overview of the development of benchmarking and have
illustrated how the lessons learned have been incorporated into the present
day Parkbench suite. This consists of:

e Low-Level: LINPACK and New Genesis Communications benchmarks.
e Kernels: NAS Serial and Parallel Kernels.

e Compact Applications: NAS Compact Applications.

As a result of this effort, good data now exists for low-level benchmarks
on many parallel systems. The immediate challenge for performance analysis
is to understand the behaviour of kernel benchmarks and small applications
in terms of the measurements taken from low-level benchmarks and machine
parameters. In the longer term this knowledge must be used for prediction
of full application performance on modern platforms such as the IPG. Al-
ready, the Legion and Globus projects[1] have discussed the implementation
of resource management in their respective environments. Progress in incor-
porating performance modeling will come from projects such as INTREPID
and POEMSJ[25]. We have emphasised some of the important requirements,
including speed of performance prediction and the need for modeling that
does not require source code disclosure.

Acknowledgments

The authors would like to acknowledge assistance from Alistair Dunlop, Mark
Papiani, Dennis Nicole, Kenji Takeda and Ivan Wolton.

15



References

[1] I. Foster and C. Kesselman (eds.), The GRID: Blueprint for a New
Computer Infrastructure, Morgan Kaufman, San Francisco (1998).

[2] Contact the Parallel Applications Centre, University of Southampton:
http://www.pac.soton.ac.uk

[3] A.N. Dunlop, and A.J.G. Hey, PERFORM - A Fast Simulator For Es-
timating Program Ezxecution Time, J. of Perf. Eval. and Modeling of
Comp. Sys. (PEMCS), (1997).

[4] E. Hernédndez and A.J.G. Hey, White-Boz Benchmarking, (1998), avail-
able at:

http://www.usb.ve/emilio/WhiteBox.ps
[5] G. Hoffmann, Private Communication.

[6] H.J. Curnow, B.A. Wichmann, A Synthetic Benchmark, Computer Jour-
nal 19, 1, (1976) 43-49.

[7] F.K.McMahon, The Livermore Fortran Kernels: a Computer Test of
Numerical Performance Range, Lawrence Livermore National Lab.,
Technical Report UCRL-53745, 1986.

[8] R. Weicker, J. Reilly, SPEC FAQ,
http://npwww.epfl.ch/bench/SPEC.FAQ.html

[9] R. Eigenmann and S. Hassanzadeh, Benchmarking with Real Industrial
Applications: The SPEC High-Performance Group, IEEE Comp. Sc. &
Eng., 3, (1996) 18-23.

[10] The Science of Computer Benchmarking, SIAM, Philadelphia (1996)

[11] M. Berry et. al., The Perfect Club Benchmarks: Effective Performance
FEvaluation of Supercomputers, Int. J. Supercomputer Applications, 3,
1,(1989) 5-40.

16



[12] R. Eigenmann, J. Hoeflinger and D. Padua, On the Automatic Paral-
lelization of the Perfect Benchmarks, EEE Trans. of Prl. and Dist. Sys.,
9,1, (1998) 5-23.

[13] C.A. Addison, V.S. Getov, A.J.G. Hey, R.W. Hockney and I.C. Wolton,
The GENESIS Distributed Memory Benchmarks, Computer Bench-
marks, J.J Dongarra and W. Gentzsch (Eds), Advances in Parallel Com-
puting, 8, Elsevier BV, Amsterdam, 1991.

[14] D.H. Bailey et. al. The NAS Parallel Benchmarks, Int. J. Supercomputer
Applications, 5, 3,(1991) 63-73.

[15] J.J. Dongarra, Performance of Various Computers Using Standard Lin-
ear Equation Software, Report CS-89-85, Univ. of Tennessee, Knoxville,
Nov. 1996.

[16] Top 500 results are available from the University of Mannheim and also
from netlib:

http://www.netlib.org/benchmark/top500/top500.1ist.html

[17] A.J. van der Steen, The Benchmark of the EuroBen Group, Parallel
Computing, 17, (1991) 1211-1221.

[18] Aad J. van der Steen, Ruud J. van der Pas, Benchmarking the Silicon
Graphics Origin 2000 System, Dept. of Computational Physics, Utrecht
Univ., Technical Report WFI-98-2, 1998.

[19] The RAPS consortium is organized by Pallas Gmbh.
http://www.pallas.de/raps.html

[20] D.H. Bailey, Twelve ways to fool the masses when giving performance
results on parallel computers, Supercomputer, 45, VIII-5, (1991) 4-7.

[21] R. Hockney, M. Berry (Eds.), Public International Benchmarks for Par-
allel Computers , Parkbench Committee Report No 1, Scientific Pro-
gramming, 3, (1994) 101-104.

[22] Parkbench web site:
http://www.netlib.org/parkbench/

17



[23] Southampton Low-level communications benchmarks using MPI and
Fortran 77. Available with documentation and results database at:

http://gather.ecs.soton.ac.uk.

[24] See the original site at:
http://www.minnow.demon.co.uk/pict.

[25] E. Deelman, A. Dube, A. Hoisie, Y. Luo, R.L. Oliver, D. Sundaram-
Stukel, H. Wasserman, V.S.Adve, R. Bagrodia, J.C. Browne, E. Houstis,
O. Lubeck, J. Rice, P.J. Teller and M.K. Vernon, POEMS: End-to-end

Performance Design of Large Parallel Adaptive Computational Systems.
Available at:

http://www.cs.utexas.edu/users/poems

18



