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Abstract
A new neural network method has been used to distinguish faulty from fault-free circuit responses.
This technique is significantly more accurate than other classification methods. A set of responses
can be classified in the order of 1 second.

1. Introduction

There has been much interest in recent years in the testing of analogue integrated circuits and in the
development of appropriate testing techniques. Such work has concentrated on the detection of
catastrophic faults, such as opens and shorts. Detection of faults has depended on the responses of
faulty circuits being sufficiently different from the fault-free response. The definition of sufficiency
might be arbitrary thresholds of, say, 10% or a difference of at least 6σ, although the assumption of a
Gaussian distribution is questionable [Spinks, 1997].

It has been suggested therefore that simple thresholds are insufficient for fault detection. The use of
neural networks has been proposed elsewhere. Yu et al applied a back propagation neural network
to fault diagnosis in a CMOS opamp circuit with gate oxide short faults [Yu, 1994]. A back
propagation neural network generally requires a large number of training patterns to let the network
learn the underlying mapping function (mapping a data space which contains faulty and fault-free
responses to a desired diagnosis space). The diagnosis accuracy of the training patterns reported by
Yu et al are 67% and 83.3% for ramp and sinusoid test stimulus respectively. Yu’s work was further
extended for multiple fault diagnosis by [Maidon, 1997]. [Somayajuk, 1996] applied a Kohonen
neural network to cluster circuit faults. However, the learning rate and the neighbour size of a
Kohonen neural network have to be optimally selected by experience and a Kohonen neural network
needs a long time to converge [Bishop, 1996]. Furthermore, it is difficult to determine the boundary
on the Kohonen mapping space for diagnosis in practice and a Kohonen neural network is unable to
give a quantitative analysis [Yang, 1998].

In this paper, we show that the use of a novel type of neural network can give very accurate fault
detection and classification.

In the next section, we describe the structure of the neural network used here. We follow this with
an analogue circuit example that compares the use of this neural network technique with probabilistic
thresholds and with simpler neural network methods.

2. Robust Heteroscedastic Probabilistic Neural Networks

A probabilistic neural network (PNN) classifies data by estimating the probability density functions
(pdfs) of its different classes [Specht 1988, 1990]. Because the variance of the pdfs cannot be
determined analytically, a validation phase is required before the testing phase. A PNN consists of a



2

set of Gaussian distribution functions. A PNN uses all the training patterns as the centres of the
Gaussian distribution functions and assumes a common variance or covariance (this is known as a
homoscedastic PNN). To avoid using a validation data set and to determine analytically the optimal
common variance, a maximum likelihood (ML) procedure was used in PNN training [Streit, 1994].
However, Streit’s PNN is still homoscedastic. On the other hand, the Gaussian distribution functions
of a heteroscedastic PNN are uncorrelated and separate variance parameters are assumed. This type
of PNN is more difficult to train, using the ML procedure, because of numerical difficulties [Yang,
1998]. A robust method has been proposed to solve this numerical problem, hence the term "Robust
Heteroscedastic Probabilistic Neural Network" (RHPNN).

2.1 The Heteroscedastic PNN

The PNN is a four layer feedforward neural network based on Parzen window estimator [Parzen,
1962] that realises the Bayes classifier given by (1).
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where x ∈ℜd is a d-dimensional pattern, g(x) is the class index of x, the a priori probability of class j
(1 ≤ j ≤ K) is αj and the conditional probability density function of class j is fj. The object of the PNN
is to estimate the values of fj. This is done using a mixture of Gaussian kernel functions.

The first layer of the PNN is the input layer. The second layer is divided into K groups of nodes, one
group for each class. The ith kernel node in the jth group is described by a Gaussian function (2).
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where c i j
d

, ∈ℜ is the mean vector and σ i j,
2  is the variance. The third layer has K nodes; each node

estimates fj, using a mixture of Gaussian kernels, from (3).
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where Mj is the number of nodes in the jth group in the second layer; and βi,j satisfies (4).
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The fourth layer of the PNN makes the decision from (1). The PNN is heteroscedastic when each
Gaussian kernel has its own variance. The centres, ci,j, the variances, σ i j,

2  and the mixing coefficients,

βi,j have to be estimated from the training data. One assumption is made here:
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2.2 The Robust ML Training Algorithm

The EM algorithm [Dempster, 1977] has been used to train homoscedastic PNNs [Streit, 1994].
Each iteration of the algorithm consists of an expectation process (E) followed by a maximization
process (M). This algorithm converges to the ML estimate. For the heteroscedastic PNN, the EM
algorithm frequently fails because of numerical difficulties. These problems have been overcome by
using a “Jack-Knife”  which is a robust statistical method [Miller, 1971].

The training data is partitioned into K subsets.
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is the total number of samples and Nj is the number of training samples for class j.

The training algorithm is now expressed as follows, where 
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Step 1. Compute weights for 1 ≤ m ≤ Mi, 1 ≤ n ≤ Ni and 1 ≤ i ≤ K.
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Step 2. Update the parameters for 1 ≤ m ≤ Mi and 1 ≤ i ≤ K.
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3. Experimental results

A folded cascode operational amplifier circuit was used to evaluate the RHPNN. 92 short and open
faults were modelled using 1TΩ open circuit (drain open, source open) and 1Ω short circuit (gate-
source, gate-drain) transistor fault models. The stimulus was a 0.5V amplitude sinusoid at 300kHz
with a DC offset of –3V. The fault-free and each faulty circuit were simulated using nominal
parameter values and 30 Monte Carlo simulations were performed on each version of the circuit to
model parametric variations due to process changes. MITEL process parameters were used, varying
Vt, Tox, mobility, and lateral diffusion. From each simulation, four parameters were derived: the DC
voltage at the output; the DC supply current; the RMS value of the AC component of the output
voltage and the RMS value of the AC component of the supply current.

3.1 Training the RHPNN

The training procedure was as follows. The results of 15 of the Monte Carlo simulations of the fault-
free circuit and 2 of each of the Monte Carlo simulations of each faulty circuit were pooled at
random for training. At first, all the patterns in the pool were used to build up a model, able to group
all the fault-free and faulty circuits into n groups. The strategy for selecting n is to ensure each kernel
has at least one pattern (of a fault-free or faulty circuit) in it. The optimal n was found to be 11.

Figure 1 Probability distribution for AC and
DC voltages

Figure 2 Probability distribution for 4
dimensional case

It should be noted that the RHPNN works in a different way to other neural networks, such as the
back propagation neural network [Rumelhart, 1988] or the Kohonen self-organising neural network
[Kohonen, 1989]. With the RHPNN, it is not necessary to define a class label for each faulty pattern,
which is a vector containing voltages, currents or both corresponding to a faulty circuit. All the
faulty patterns are labelled with the same number when training a RHPNN model. During training,
the RHPNN is able to cluster the patterns automatically. We know that some faulty patterns are very
close to fault-free patterns and some faulty patterns have a large deviation from other faulty patterns.
This phenomenon affects the training of a neural network. After the 1st training is completed, it is,
therefore worthwhile considering a further training phase to refine the model. The strategy is to re-
train the RHPNN for those groups containing more than one faulty pattern. The method is very
simple in that the pool for re-training is composed of 15 randomly selected fault-free patterns plus
the faulty patterns appearing in the group on which we are focusing.

Figure 1 shows the probability distributions for the various groups, when the AC and DC voltages
are considered. Note that the variance of the fault-free group is much smaller than that of the other



5

groups. Similarly Figure 2 shows the four dimensional probability distribution. Here, it can be seen
that the probability distributions of the various groups are very distinct.

3.2 Fault Detection

Table 1 shows the percentage of correct classifications between the faulty and fault-free circuits
using the 3σ threshold test, a standard Bayes statistical discrimination method [Chou, 1990], a
standard PNN and a RHPNN for each of the parameters measured, individually. Note that the Bayes
method misclassifies all the fault responses in the DC voltage test. It can be seen that the RHPNN
improves the fault detection significantly compared with other methods. For example, the RHPNN
improves the fault detection compared with the 3σ thresholding method to a significance level of
0.1% except for the DC current case.

Table 1 Correct classification of faulty circuits using Threshold, Bayes, PNN and RHPNN methods.
Method AC(voltage) AC(current) DC(voltage) DC(current)
Threshold 49% 61% 55% 58%
BAYES 69% 34% - 2%
PNN 82% 70% 57% 2%
RHPNN 79% 77% 71% 60%

Table 2 shows how the accuracy of classification may be improved by pairing parameters for the
threshold test, a (standard) PNN [Specht, 1988] and a RHPNN. The Bayes method is not applicable
here. Similarly, Table 3 shows the fault detection rate when all four parameters are used.

Table 2 Correct classification of faulty circuits in two dimensions using Threshold, PNN and
RHPNN

Method AC DC Voltage Current
Threshold 63% 66% 62% 72%
PNN 71% 42% 69% 5%
RHPNN 96% 80% 96% 78%

AC: the data space formed by AC voltages and AC currents
DC: the data space formed by DC voltages and DC currents
Voltage: the data space formed by AC voltages and DC voltages
Current: the data space formed by AC currents and DC currents

Table 3 Correct classification in four dimensions using Threshold, PNN and RHPNN
Method
Threshold 73%
PNN 72%
RHPNN 98%

3.3 Run Time Behaviour of RHPNN

Table 4 shows the time taken to train the RHPNN and the time taken to apply a test using the
RHPNN to the test data. The HSPICE simulation time is not included in these figures. These results
were obtained on an UltraSPARC 30 running at 300 MHz. It can be seen that pass/fail decisions on
all the circuits can be made in the order of 1 s. Note also that the training time for a new circuit is
typically of the order of 1 minute.
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Table 4 Training and Testing Time of RHPNN
Converging steps Training time (s) Testing time (s.10-4/pattern)

AC voltage 5 7.55 1.69
DC voltage 14 20.59 1.54
AC current 44 62.57 1.96
DC current 5 7.53 1.89
AC 17 35.23 2.08
DC 41 75.49 2.16
Current 23 46.15 2.23
Voltage 26 51.31 2.08
All 20 59.21 6.16

4. Conclusions

The Robust Heteroscedastic Probabilistic Neural Network is an extremely reliable technique for
distinguishing good analogue circuits from faulty. By examining the AC and DC voltage and current
responses of an opamp stimulated with a single frequency sinusoidal input, correct classification was
obtained with an accuracy of 98%. Using other techniques, the best result obtained was around 73%.
Further the training and testing times for this technique were extremely small, suggesting that this
approach may be suitable for production testing.
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