
A Methodology for Statistical Behavioral Fault Modeling

Zheng Rong Yang and Mark Zwolinski
Department of Electronics and Computer Science

University of Southampton, SO17 1BJ, UK
Email mz@ecs.soton.ac.uk

Abstract

This paper presents a novel algorithm for
statistical behavioral modeling, based on two
statistical techniques: mutual information and
Bootstrap. In contrast to Euclidean distance
calculations, clustering faults by measuring
the mutual information (entropy) between
two fault populations is more efficient and
robust. Employing the bootstrap technique
results in a significant reduction of expensive
Monte Carlo simulation time.

Keywords: behavioral modeling, bootstrap,
mutual information, Monte Carlo.

1. Introduction

Simulating a complicated circuit with
macromodels or behavioral models is a
widely employed methodology for electronic
circuit design because it saves time and
simplifies the design process [1-5].

A macromodel usually denotes a
simplified form of a sub-circuit, which may
be repeated many times in a design. There are
two ways to realize a macromodel: as a
simplified circuit or as a statistical macro.

A behavioral model describes a sub-
circuit with explicit equations. Even when
circuit behavior, in particular, that of a faulty
circuit, is not easy to derive, behavioral
modeling still plays an important part in
device level or block design, such as FETs or
opamps. There are also two ways to realize
behavioral models, analytical and statistical.
An analytical description of a sub-circuit is
usually generated by a designer. It should be
noted that even using an analytical approach,

behavioral modeling still needs verification
which can be expensive.

A statistical behavioral model can be built
in the same way as a statistical macromodel.
The difference is that a statistical macromodel
does not include an explicit transfer function.
Furthermore, simulation using statistical
macromodels employs table look-up
techniques, while simulation using statistical
behavioral models is based on a few
mathematical calculations, and may therefore
have a cheaper computational cost.

One application of behavioral modeling is
in analogue fault simulation. Exhaustive fault
modeling is very expensive. The common
method is to cluster faults into several groups
by hand. Fault simulation only needs to be
done for each group rather than for each fault.
The criterion for fault clustering is to measure
the Euclidean distance between fault
responses [4]. This simple measurement is
not robust when the fault populations are not
distributed in a homoscedastic (normal
distributions with the same variances)
manner. In this paper, fault clustering is
performed by applying Shannon’s theorem, or
mutual information theory [10-12]. Because
the populations formed by the faulty behavior
of circuits are distributed in a heteroscedastic
(normal distributions having different
variances) manner [15], mutual information
exploits this characteristic during fault
clustering. However, mutual information is
based on a population probability density
calculation. To calculate this explicitly would
require a large computational cost in the form
of Monte Carlo simulations.

Hence, the Bootstrap method [7] is
applied to reduce the number of Monte Carlo

simulations. The Bootstrap method is a well-
established robust statistical methodology.
Although Bootstrap has been widely
employed in the social sciences [8] and signal
processing [9], there are few reports of
applying Bootstrap to electronics design [13].

2. Mutual information theory

A simple explanation of mutual
information theory is given here. Suppose
there are two persons, A and B. According to
mutual information theory, they will not be
best friends unless A is the best friend of B
and B is the best friend of A.

Mutual information theory aims to
minimize the entropy within a system. As
described in [14], mutual information is
measured by the difference between the initial
uncertainty

() ()∑
Ψ∈

−=Ψ
g

gpgpH log)(

and the average uncertainty
() () () ()∑ ∑

Ω∈ Ψ∈
−=Ω

x
xxx

g
gpgppH |log|

This leads to the system uncertainty

() () ()
() ()∑

Ω∈Ψ∈

=ΩΨ
x x

x
x

,

,
log,,

g pgp

gp
gpI

In the above equations, 1ℜ∈Ψ is a space
containing classes, dℜ∈Ω is a space
containing features (d is the number of
dimensions), p(g, x) is the joint probability
for the gth class and the feature x, ()gp is the
apriori probability for the gth class and p(x) is
the (known) probability of the feature x.

The work in [14] aimed to extract the
features { }x=Ω for a given number of

classes { }g=Ψ . An optimal set of features is
selected based on minimizing the system
uncertainty.

Here, however, the number of classes is
unknown. We therefore define the initial
uncertainty, average uncertainty and system
uncertainty as above, but now ()xp is the

unknown average pattern probability for the
pattern x.

It is not necessary that all the populations
in a data space (here, one population refers to
one group of faults) are distributed
homoscedastically. If the Euclidean distance
is used for fault clustering, it is difficult to
define a suitable threshold for all the fault
populations because some fault populations
have a large deviation and some fault
populations have a small deviation [15]. A
low threshold leads to some faults, which
should be grouped together, not being
grouped while a large threshold will result in
some faults being grouped, that should not be.

Hence, fault clustering using mutual
information between different fault
populations should perform better than using
a Euclidean distance calculation.

3. Probability density estimate

The average class probability is calculated
from

() NNgp g=
where, N is the number of total patterns and
Ng is the number of patterns, that belong to
the gth class. The average pattern probability
is

() ()dNp πσ= xx
where σ is defined to be

{ } & | max ii Ω∈Ω∈−=σ jj xxxx

and Nx is the number of patterns that fall in
the area centered at x with the radius σ . The
strategy for selecting σ is to ensure that all
the probabilities are not be zero and hence we
will not meet numerical problems when
calculating the entropy. The joint probability
is calculated from

() ()dgNgp πσ= xx,

where gN x is the number of patterns that fall
in the area centered on x with the radius σ
belonging to the gth class.

By the definition of the average
probability density p(x) and the joint
probability density p(g,x), above, it is not
difficult to derive the conditional probability

() ()
() x

xx
x

N

N

gp

gp
gp

g
== ,

| .

4. Bootstrap method

In section 2, it was argued that using
mutual information to cluster the fault
populations will make the behavioral
modeling procedure more efficient and
robust. The most important thing is that
applying mutual information theory can make
behavioral modeling automatic. Mutual
information is calculated based on the
average probability and joint probability of
populations. For probability calculation, we
prefer to have an information-rich data space.
However, the generation of such information
in this case is impractical because the Monte
Carlo simulation of a large number of faults
subject to process variations is very
expensive. The principle of reducing the
number of Monte Carlo simulations by
applying the Bootstrap technique has been
addressed in [13].

The basic principle of Bootstrap is the
random replication of the original sample. We
wish to obtain a statistical estimate, S, from a
sample x, where,

},,,,,{ 21 ni xxxx ⋅⋅⋅⋅⋅⋅=x .
The first step of the Bootstrap method is

to generate a bootstrap sample,

},,,,,{ 21 mbB xxxxx ⋅⋅⋅⋅⋅⋅=
where,

},,,{ 21
b
n

bbb xxx ⋅⋅⋅=x .
xb has the same dimensionality as x and the
elements of xb are randomly drawn from the
original sample. For example, if we have a set
{ 1.0, 3.1, 9.2, 6.7} , one of the bootstrap
samples might be { 1.0, 3.1, 3.1, 6.7} . From

xB, a series of new statistical estimates can be
calculated as

},,,{ 21 mB SSS ⋅⋅⋅=S .
A robust estimate of S is then

()bSES =∗ .
This is particularly effective when the

original sample is expensive or difficult to
obtaining. Bootstrap has two good asymptotic
properties for a statistical estimate [7]. The
first is the asymptotic property of the
estimate. When the bootstrap draw number
becomes large, the confidence interval will
tend to converge. The second is the
asymptotic property of the distribution. Even
using small runs of a Monte Carlo simulation,
Bootstrap draws asymptote to a normal
distribution [13].

5. Parameter estimation

Numerical approximation is commonly
used to estimate the parameters of a
regression function. Steepest descent is one
such method

∇η−=∆w

where η is a small coefficient, ∇ is the first-
order derivative and w is the parameter to be
estimated. However, this method can oscillate
and a damping factor, α, is added to control
the oscillation

ttt ww ∆α+∇η−=∆ ++ 11 .

6. The behavioral modeling algorithm

The algorithm proposed here is as
follows.

Step 1. Prepare a circuit for simulation and
insert all the possible or required faults into
the circuit, one at a time. Label these faulty
circuits together with the fault-free circuit

0Ω .

Step 2. Define a regression function for all
the faults and fault-free circuit ()wx,ℑ , where

0Ω∈x and hℜ∈w (h is the dimension of
the parameter space).

Step 3. Run M Monte Carlo simulations for
all the faulty circuits as well as the fault-free
circuit

MCarloMonte Ω →Ω 0

Step 4. Extract N bootstrap samples from
MΩ

BBootstrapM Ω →Ω
thus BΩ is the final data ready for modeling.

Step 5. Cluster the patterns in BΩ into k
groups so that

.B
k

B Ω∪=Ω

Step 6. Run a parameter estimation for a

regression function ()wx,ℑ̂ on BΩ . The
objective of the parameter estimation is to
minimize the error between ()wx,ℑ and

()wx,ℑ̂ .

7. Experimental results

Figure 1 shows a differential amplifier
composed of nine MOS transistors.

We inserted 24 possible short faults into
this circuit. Table 1 lists the faults, the
number in brackets indicates the transistor
number and other two digits denote the
terminals of the transistor1, where a short
fault is realized by a resistor with a resistance
of 10 ohms. Ten Monte Carlo DC sweep
simulations were conducted for each faulty
circuit as well as for the fault-free circuit.
Including the fault-free circuit, we have 25
patterns in 0Ω and 250 patterns in MΩ . After
clustering using mutual information theory,
we obtained eight groups, see Table 1. Thus
25 faults (including the fault-free) were

reduced to eight classes. This means that we
only need to build a family of eight groups of
parameters for the regression function

() (){ }888111 ,,,, wxwx Ω∈ℑ⋅⋅⋅Ω∈ℑ .

7

6

5
8

1

9

43

2

Figure 1 Example circuit

Table 1 Fault simulation results
No. Faults class No. Faults class
0 1 13 (5,g,d) 1
1 (1,s,g) 2 14 (6,s,g) 6
2 (1,s,d) 2 15 (6,s,d) 3
3 (1,g,d) 2 16 (6,g,d) 2
4 (2,s,g) 2 17 (7,s,g) 5
5 (2,s,d) 3 18 (7,s,d) 7
6 (2,g,d) 3 19 (7,g,d) 8
7 (3,g,s) 3 20 (8,s,g) 5
8 (4,d,g) 4 21 (9,d,g) 3
9 (4,d,s) 2 22 (9,d,s) 3
10 (4,g,s) 3 23 (9,g,s) 1
11 (5,s,g) 5 24 (c) 6
12 (5,s,d) 3

We then took 100 bootstrap samples from
MΩ , giving 250000 patterns in BΩ .

For this example, the regression function
was chosen as

() 






+
−=ℑ

−− 32
1

0
1

1
wVinwe

w
w .

Hence, there were 32 parameters to
estimate in total for the eight clusters. This
meant that we only needed one parameter
estimation routine. Of these eight regression
functions, only five actually needed
parameter estimation because the output for
three classes was stuck at 0 V, -5 V and +5 V.

The five regression functions, which have
non-stuck responses, were calculated to be







+
−=ℑ −−)496.0(*76.1031

1

87.1
1*067.5

Vine
,








+
−=ℑ

−−)507.0(*161.974
1

997.1
1*561.4

Vine
,








+
−−=ℑ

−−)944.0(*779.26
1

0559.0
1*609.3

Vine
,







+
−=ℑ −−)509.0(*465.777

1

013.0
1*007.5

Vine
,








+
−=ℑ

−−)502.0(*584.818
1

613.1
1*745.3

Vine
.

The accuracies of these behavioral models
are given in Table 2 and Figures 2 to 6.

Table 2 Behavioral model accuracy
Class Accuracy
1 0.099471
4 0.060641
6 0.046106
7 0.004699
8 0.068811

In Figures 2 to 6, the solid lines show the
responses of the behavioral models and the
dotted lines show the original circuit
responses.

Figure 2 shows the response for group 1
(fault-free, the 13th fault and the 23th fault). It
can be seen that the behavioral model and the
real circuit responses are very close.

Figure 3 shows the responses for group 4.
Again, the error between the real circuit

output and the behavioral model is very
small.

Figure 4 shows the responses for group 6.
In the middle of the plot, there is a relatively
large difference between the circuit responses
and behavior model. This is because the
transfer function for this group is different
from the regression function defined above.
However, the absolute difference is only
about 0.1 V and the general trend of the curve
is correct.

Figure 5 shows the responses for the 7th

group. The circuit model response has a small
slope above 0.5 V, again the regression
function does not reflect this slope. However,
this error is still very small because the slope
is very small.

Finally, Figure 6 plots the responses of
the 8th group. It can be seen that the match
between the circuit response and the
behavioral model is once again good.

-6

-4

-2

0

2

4

6
0.

3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

Figure 2 Circuit and behavioral model
responses for group 1.

-6

-4

-2

0

2

4

6

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

Figure 3 Circuit and behavioral model
responses for group 4.

-3.75

-3.65

-3.55

-3.45
0.

3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

Figure 4 Circuit and behavioral model
responses for group 6.

4.93

4.95

4.97

4.99

5.01

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

Figure 5 Circuit and behavioral model
responses for group 7.

-3
-2
-1
0
1
2
3
4

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

Figure 6 Circuit and behavioral model
responses for group 8.

8. Conclusions

A novel algorithm for statistical
behavioral fault modeling for analogue
circuits has been presented in this paper. With
this algorithm, exhaustive fault modeling can
be avoided and manual fault clustering can be

automated. The clustering mechanism is
robust and efficient by using mutual
information theory. Employing the bootstrap
technique also reduces the Monte Carlo
simulation time. Finally, the experimental
results show good performance of the
behavioral models.

Acknowledgements

This work has been supported by EPSRC
grant GR/L35829.

References

1. Pan, C. Y. and Cheng, K. T. (1997). “Fault
macro-modeling for analogue/mixed-signal
circuits” , International Test Conference, 913-
922.
2. Spalding, G. R., and VanPeteghem, P. M
(1990). “Design for Testability Using
Behavior Models” , IEEE Trans .on
Instrumentation and Measurement, 39, no. 6,
881-885.
3. Voorakaranam, R.,Chakrabarti, S., Hou, J.,
Gomes, A., Cherubal, S. and Chatterjee, A.
(1997). “Hierarchical specification-driven
analog fault modeling for efficient fault
simulation and diagnosis” , International Test
Conference, 903-912.
4. Zwolinski, M., Chalk, C. and Wilkins, B.
R. (1996). “Analogue fault modeling and
simulation for supply current monitoring” ,
European Design Automation Conference,
Paris, France, 547-552.
5. Carooll, J., Whelam, K., Prichett, S. and
Bridges, D. R. (1996). “FET statistical
modeling using parameter orthogonalisation” ,
IEEE Trans. On Microwave Theory and
Techniques, 44, no. 1, 47-55.
6. Chao, C., Lin, H. and Milor, L. (1997).
“Optimal testing of VLSI analog circuits” ,
IEEE Trans. On Computer-aided Design of
Integrated Circuits and Systems, 16. No. 1,
58-77.

7. Efron, B. (1979). “Bootstrap methods:
another look at the jackknife” , The Annals of
Statistics, 7, 1-26.
8. Efron, B. and Tibshirani, R. J. (1993). An
Introduction to the bootstrap, London:
Chapman and Hall.
9. Zoubir, A. M. and Boashash, B. (1998).
“The bootstrap and its application in signal
processing” , IEEE Signal Processing
Magazine, January, 56-76.
10. Shannon, C. E., (1948). “The
mathematical theory of communication” , Bell
Systs. Tech. J., 27, 379-423.
11. Shannon, C. E., (1951). “Prediction and
entropy of printed English” , Bell. Syst. Tech.
J., 50-64.
12. Li, W. (1990). “Mutual information
functions vs correlation functions” , Journal of
Statistical Physics, 60, 823-836.
13. Z. R Yang and M. Zwolinski, “Bootstrap,
an alternative to Monte Carlo simulations” ,
Electronics Letters, vol. 34, no. 12, pp1174-
1175, 1998.
14. R. Battiti, “Using mutual information for
selecting features in supervised neural net
learning” , IEEE Trans. on Neural Networks,
vol. 5, no. 4, pp 537-550, 1994.
15. Z. R. Yang, M. Zwolinski & C. Chalk,
“Fault detection and classification in
analogue integrated circuits using robust
heteroscedastic probabilistic neural
networks” , 4th IEEE International Mixed
Signal Testing Workshop, The Hague, The
Netherlands, June 9-11, 1998, pp. 41-47.

