
Characterisation of Analogue Macromodels under Fault Conditions using
a Probabilistic Neural Network

Mark Zwolinski and Cheng Tan
Department of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK

mz@ecs.soton.ac.uk, cht197@hotmail.com

Abstract
A technique for parameterising the macromodels of
analogue circuit blocks under fault conditions is
described. The technique uses a Robust Heteroscedastic
Probabilistic Neural Network to classify simulation data.
A large reduction in the number of fault classes can be
obtained. The classification process is fast and the
macromodels generated are accurate.

1. Introduction
Macromodels of analogue circuits have been used to
increase the speed of circuit simulation for a number of
years [1]. With appropriate characterisation, such
macromodels can be extremely accurate, while increasing
simulation speed significantly. Recently, research into
analogue and mixed-signal testing techniques has required
the use of large numbers of simulations of circuits under
fault conditions. The computational cost of circuit
simulation is such that exhaustive fault simulation is
impractical for all but the smallest circuits.

Given that comprehensive fault simulation of analogue
circuit blocks is possible, it is still necessary to evaluate
the testability (the controllability and observability) of
larger circuits containing those blocks. Two possibilities
exist (other than simply allowing processor speeds to
increase): increasing the speed of the basic circuit and
fault simulation algorithms [2]; and using more abstract
fault models.

It has been shown [3, 4] that macromodels can accurately
represent circuits under fault conditions by varying the
macromodel parameters. There are potential problems to
do with loading effects if the macromodels are not
sufficiently detailed. The major difficulty, however, has
been to characterise the macromodels under fault
conditions. Two benefits accrue from this: the
macromodels simulate faster than the full circuit models
and different faults produce similar macroscopic effects,
allowing the number of faults modelled to be reduced.
Therefore the problem of characterisation is that of
matching circuit performance to model parameters aand of
grouping responses. Essentially therefore it is a problem
of pattern recognition. Previously this work has been done
manually, which has proved extremely laborious.

The object of the work reported in this paper has therefore
been to automate the characterisation of macromodel
parameters. The technique used is that of the Robust
Heteroscedastic Probabilistic Neural Network [5]. This is
described briefly in the next section. In section 3, the
overall methodology is described and in section 4, the
technique is applied to a number of circuit examples,
allowing the characterisation of SpectreHDL
macromodels. The method is shown to be fast and
accurate. Some proposals for further enhancements are
discussed in the final section.

2. Robust Heteroscedastic Probabilistic
Neural Network
The principle of the Robust Heteroscedastic Neural
Network (RHPNN) has been described elsewhere. Here a
brief summary of its principles will be given.

A probabilistic neural network (PNN) classifies data by
estimating the probability density functions (pdfs) of the
different classes. A PNN requires a training phase,
followed by a validation phase before it can be used to
classify real data. A PNN consists of a set of Gaussian
distribution functions. The training patterns are used as
the centres of the Gaussian distribution functions and a
common variance or covariance is assumed (this is known
as a homoscedastic PNN). Conversely, the Gaussian
distribution functions of a heteroscedastic PNN are
uncorrelated and separate variance parameters are
assumed. Of course, this heteroscedasticity is a property
of such real data as model parameters. This type of PNN
is more difficult to train, because of numerical difficulties.
A robust method has been proposed to solve these
numerical problems, hence the term “Robust
Heteroscedastic Probabilistic Neural Network” (RHPNN).

The PNN is a four layer feedforward neural network that
realises the Bayes classifier given by (1).

() (){ }




=

≤≤
xx jj

Kj
Bayes fg α

1
maxarg (1)

where x ∈ℜd is a d-dimensional pattern, g(x) is the class
index of x, the a priori probability of class j (1 ≤ j ≤ K) is
αj and the conditional probability density function of class

j is fj. The object of the PNN is to estimate the values of fj.
This is done using a mixture of Gaussian kernel functions.

The training algorithm for homoscedastic PNNs of an
expectation process (E) followed by a maximization
process (M) (EM algorithm). This algorithm converges to
the Maximum Likelihood (ML) estimate. For the
heteroscedastic PNN, the EM algorithm frequently fails
because of numerical difficulties. These problems have
been overcome by using the “Jack-Knife” which is a
robust statistical method. Unlike other PNNs, the RHPNN
does not need a validation phase.

It has been shown [5] that the RHPNN can be used
successfully to differentiate between circuit responses and
hence to classify a circuit as faulty or fault-free. Here the
problem is a little different. The number of classes of
faulty behaviour is not known a priori. The data has to be
grouped dynamically. This involved some minor
modifications to the original RHPNN.

3. Generation of Macromodels
The objective of this work was to generate parameters for
existing macromodels, not to derive the macromodels
themselves. Therefore, no attempt has been made to
include models of “unusual” behaviour. The first step is
therefore to write a macromodel. Fig. 1 shows a
SpectreHDL model of an opamp in closed loop
configuration. SpectreHDL was chosen because of its
availability, but another analogue HDL would have been
equally suitable.

The parameters of the fault-free macromodel were derived
after HSpice simulations of full transistor circuit model.
The parameters were obtained manually in this case,
although it would be possible to use the RHPNN.

Fault simulations of the full transistor-level model of the
circuit were then performed. We used the ANAFINS tools
[6] to inject faults and to control the HSpice simulations.
In addition we performed full Monte Carlo simulations in
order to model the expected parametric variation.

Following the transistor-level simulations, the simulation
data is extracted and classified using the RHPNN
program. Hence, macromodel parameters are obtained.
These parameters are used in invoking the macromodel
within a Spectre file, for example:

xamp pin nin psu nsu out opamp \
(gain=2.64e-4 rin=4.001e5 vin_offset=0 \
rout=1.054e2 vout_offset=-4.992 \
bk_freq=2.500e7)

Notice that these are significantly different to the default
parameters shown in Fig. 1. Unspecified parameters take
default values.

4. Circuit Examples
A number of circuit examples were used to verify the
methodology. Three examples are given here: an OTA
configured as an inverting amplifier; a folded-cascode
opamp, also configured as an inverting amplifier and a
VCO in a PLL. All the simulations were run on a 167
MHz Sun UltraSPARC.

40 distinct faults were inserted into the OTA. To generate
the training data, 30 Monte Carlo simulations of the fault-
free circuit and 5 Monte Carlo simulations of each of the
40 faulty circuits were performed, giving 230 sets of data.
For the testing (i.e. classification) phase, 30 Monte Carlo
simulations were run for the fault-free circuit and for each
faulty circuit giving 1230 data points. Four measurements
were obtained from each simulation run and used for
classification: input resistance, output resistance, gain and
output offset voltage. The RHPNN, classified the 40 faults
and the fault-free circuit into 11 distinct groups. The
classification process took about 9 minutes. Fig. 2
compares the DC transfer characteristics, the frequency
response and the time domain response for four faults at
transistor and macromodel levels. As can be seen, there is
relatively close correspondence between the results.

The folded cascode opamp has 17 MOSFETs (compared
with 8 for the OTA). The same macromodel was used, as
for the OTA. In this case, 84 distinct faults were
simulated, together with the fault-free circuit. The same
numbers of Monte Carlo simulations were performed, thus
450 simulations were used for training and 2550 for
testing. Again four measurements were made. This time,
20 distinct fault groups were found. The RHPNN took
around 53 minutes to analyse the data.

The third circuit analysed was a VCO in a PLL. 155
distinct faults were introduced and the same numbers of
Monte Carlo simulations were performed, giving 805 sets
of training data and 4680 sets of testing data. It may be
noted that these fault simulations took around 6 days to
complete! Six measurements were used to classify the
data in the RHPNN. 30 distinct fault groupings were
obtained. The classification took around 10 hours 15
minutes.

This final example illustrates well the kind of speed up in
fault simulation that can be obtained, once a circuit block
has been characterised. A transient analysis of the full
netlist of the PLL takes around 50 minutes, as shown in
Table 1. A simulation of the PLL as a set of macromodels
takes just under 3 minutes. Simulations of the full
transistor model of the PLL with the VCO macromodel
and of the PLL macromodel with the VCO modelled at
transistor level were also performed to compare the
accuracy of simulations. Two things should be noted. First
the simulation of the macromodel of the VCO with the
full PLL netlist actually takes longer than the full
simulation of the entire circuit. Second there is a

difference in the simulation results when expressed in
terms of the capture range and lock range. Both these facts
are consequences of the macromodels used (rather than of
their characterisation). The increase in simulation time is
possibly caused by incorrect modelling of the loading
effect of the VCO on the rest of the circuit. The variations
in the capture and lock range are caused by the model of
the low pass filter of the PLL. It should be noted,
however, that the centre frequency of the PLL was found
to be the same for all four versions of the circuit model.

5. Conclusions
One of the hardest problems in generating macromodels
of circuits under fault conditions is the parameterisation of
the macromodels. It has been shown in this paper that the
Robust Heteroscedastic Probabilistic Neural Network
(RHPNN) can classify the results of a large number of
fault simulations within an acceptable time. The accuracy
of the parameterised macromodels is generally good.

The major remaining problem is to generate the
appropriate macromodel structure. Under fault conditions,
a circuit block may load other parts of the circuit in
unusual ways. Such loading needs to be modelled.
Therefore either more detailed macromodels are required
or the macromodels themselves must be generated
dynamically. This problem will form the basis of further
research.

Acknowledgements
The authors would like to acknowledge the work of Zheng
Rong Yang in developing the RHPNN program, with the
support of EPSRC.

References
[1] G.R.Boyle, B.M.Cohn, D.D.Pederson, J.E. Solomon,
“Macromodeling of Integrated Circuit Operational
Amplifiers” IEEE Journal of Solid-State Circuits, vol. 9,
No. 6, pp 353-363, 1974.
[2] Z.R. Yang and M.Zwolinski, “Fast, Robust DC And
Transient Fault Simulation For Nonlinear Analogue
Circuits” , Proceedings of DATE, Munich, Germany,
March 1999.
[3] M. Zwolinski, C. Chalk and B.R. Wilkins “Analogue
Fault Modelling and Simulation for Supply Current
Monitoring” , ED&TC'96, 1996, 547-552.
[4] A.J. Perkins, M. Zwolinski, C.D. Chalk and B.R.
Wilkins, “Fault Modeling And Simulation Using VHDL-
AMS” , Analog Integrated Circuits and Signal Processing,
16(2), 1998, 141-155.
[5] Z.R. Yang, M. Zwolinski, C.D. Chalk, “Fault
Detection and Classification in Analogue Integrated
Circuits using Robust Heteroscedastic Probabilistic
Neural Networks” , 4th IEEE International Mixed Signal
Testing Workshop, 1998.
[6] I.M. Bell, S.J. Spinks, “Analogue Fault Simulation for
the Structural Approach to Analogue and Mixed-Signal
Testing",International Mixed Signal Testing Workshop,
June 20-22 1995.

Circuit Simulated Simulation time Capture Range Lock Range
PLL netlist 50m 13 s 1.47 MHz 2.76MHz

PLL macromodel 2m 43s 990 KHz 2.58MHz
PLL netlist with VCO

macromodel
1hr 8m 49s 900KHz 3.0MHz

PLL macromodel with VCO
netlist

26m 53s 1.08MHz 2.26MHz

Table 1 Results of the PLL performance of the 4 simulated combinations

module opamp (vin_p, vin_n, vspply_p, vspply_n, vout)
 (gain, rin, vin_offset,rout, vplimit,
 vnlimit, vout_offset, bk_freq)

node [V,I] vin_p, vin_n, vspply_p, vspply_n, vout;
parameter real gain = -3;
parameter real rin = 100e3;
parameter real vin_offset = -3.60e-4;
parameter real rout = 173;
parameter real vplimit = 4.94;
parameter real vnlimit = -4.99;
parameter real vout_offset = 0;
parameter real bk_freq = 4.251e5;
{
 node [V,I] vac_out, vac_in;
 real vin_val,vo,C = 1/(2*PI*rin*bk_freq);
 analog {
 //Input stage
 vin_val = V(vin_p,vin_n) - vin_offset;
 I(vin_p, vin_n) <- (vin_val / rin);

 //Pole1
 V(vac_in) <- vin_val;
 V(vac_out, vac_in) <- rin * I(vac_out, vac_in);
 I(vac_out) <- dot(C*V(vac_out));

 //voltage gain
 vo = V(vac_out) * gain + vout_offset;

 // Output Limiting
 if (vo > V(vspply_p)){
 vo = vplimit;
 }
 else if (vo < V(vspply_n)){
 vo = vnlimit;
 }

 V(vout) <- vo - (-I(vout)*rout);
 }
}

Figure 1 SpectreHDL Model of Opamp configured as Inverting Amplifier

Figure 2 Comparison of Transistor-level and Macromodel Fault Simulations of OTA

