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ABSTRACT

We present a de-noising method for spatio-tem-
poral EEG/ MEG data that incorporates pre-
stimulus and spatial information to estimate the
noise and signal energies and select a robust de-
noising threshold. Improved performance over
standard de-noising is demonstrated.

1. INTRODUCTION

The electro- and magnetoencephalogram (EEG/
MEG) are recordings of the scalp potential and
magnetic �eld outside the head re
ecting neural
activity in the brain. The transient neural cur-
rent sources associated with event related EEG/
MEG are generally assumed focal in nature and
can be approximated using equivalent current
dipoles. Using measurements from a sensor ar-
ray, the location, orientation, and time series of
a number of dipoles can be determined by solv-
ing an inverse problem [7]. However, even after
stimulus-locked averaging from multiple trials,
the data often still possesses a very low SNR due
to background brain activity and instrumental
and environmental noise. This low SNR results
in reduced accuracy of the estimated dipole pa-
rameters [8].

Our goal is to improve the SNR of recorded
EEG/ MEG data by wavelet de-noising which
is a method for recovering an unknown tran-
sient signal from broadband noise [5]. By apply-
ing a suitable unitary transform to the signal,
the noise will remain spread across the trans-
form space while the signal can be parameter-
ized by a few transform coe�cients that will
stand out from the noise. The suitability of
the discrete wavelet transform (DWT) for pa-
rameterizing transient evoked responses within
the EEG has been demonstrated in, for example,

[1, 11]. By applying an inverse transform after
appropriately thresholding the transform coe�-
cients, noise reduction can be achieved. In the
following, we introduce a form of de-noising that
has been adapted to our problem, and present
some simulation results to demonstrate the ben-
e�t of this approach to noise reduction.

In our notation, we will use normal letters for
scalar values, and bold face lower and upper case
letters for vector and matrix quantities, respec-
tively.

2. SIGNAL MODEL

We assume that r dipolar neural sources are ac-
tivated in the brain in response to a particular
stimulus. The signal at anM dimensional sensor
array is formed by the superposition of the �elds
at each of the i dipoles with position ri, orienta-
tion qi and time series si, with instrumental and
environmental noise to yield anM -by-N spatio-
temporal data matrix

F =
r�1X
i=0

G(ri)qis
T
i +N = X+N; (1)

with G(ri)2RM�3 gain matrix,
qi2R

3 dipole orientation,
si2RN dipole time series, and
N2RM�N additive noise.

The matrixG(ri) contains the gain factors from
the ith dipole at location ri to the M sensors.

If we assume the noise in N to be zero-mean
Gaussian and uncorrelated with the source tran-
sients, then we can make the following approxi-
mation:

kFk2F � kXk2F + kNk2F : (2)

The noise power can be estimated from pre-
stimulus data, corresponding to a period of ~N



time slices before any event-related signals are
produced, yielding

kNk2F �
N

~N
k ~Nk2F : (3)

A signal-to-noise ratio (SNR) of EEG/ MEG
data can then be calculated as

SNR =
kXk2F
kNk2F

(4)

using the Frobenius norm k � kF .

3. ENSEMBLE DE-NOISING

De-noising as originally proposed by Donoho and
Johnstone [5] is applicable to 1-dimensional sig-
nals corrupted by white noise. The signal is
transformed, the transform coe�cients thresh-
olded according to some (heuristic) criterion, and
an inverse transform used to obtain a noise re-
duction. Usually a discrete wavelet transform
(DWT) is employed as its ability to yield lo-
cal representation in both time and frequency
domain is advantageous for the analysis of tran-
sient signals. Here, we represent a DWT by a
unitary matrix T, such that y = Tx is the DWT
of x [9]. Applying the transform to the temporal
dimension of the data matrix F, we can express
the de-noising procedure as

~F = �
�
FTT

�
T; (5)

where �(�) is the threshold operator and (�)T

denotes transpose.

For spatio-temporal EEG/ MEG data, the sig-
nal of interest in each channel is a linear combi-
nation of the same source transients. We can im-
prove the performance of the de-noising proce-
dure by making use of this property, i.e. since we
expect to see similar characteristics in the trans-
form coe�cients across the sensor array [10] we
can use a mask common to the whole array rather
than de-noising each measurement time series
separately, ie.

~F = F TTMT| {z }
TF-�lter

(6)

with M = diagf�ng 2 RN�N. For hard thresh-
olding, the elements of M form a binary mask

�n =

(
1 : �t2

f
(n) � �

0 : �t2
f
(n) < �

(7)

n

N-1

s(n)

1

η

0
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Fig. 1: Threshold selection for ensemble de-noising.

depending on the squared transform coe�cients
averaged over the spatial dimension

�t2
f
(n) =

1

kFTTk2
F

M�1X
m=0

jtf (m;n)j
2 ; (8)

with a normalization kFTTk2F to ensure k �t2fk1 =
1. We want to select the threshold � by picking
the K largest coe�cients from �t2f such that the
de-noised signal only retains as much energy as
that estimated for the signal using (4). Next the
elements of �t2

f
are re-ordered by a permutation

matrix P such that the resulting vector

~t2f = P �t2f (9)

has its elements in descending order, i.e. ~t2
f
(0) �

~t2f (1) � � � � � ~t2f (N�1). Then the cumulative

sum on ~t2f (n)

s(n) =
nX
i=0

~t2
f
(i); (10)

represents the normalized energy in the n largest
coe�cients. We determine the number of re-
tained coe�cients, K, by comparing s(n) to the
estimated SNR, �, between the energies of X
and F as illustrated in Fig. 1. The equivalence
of the energy of the spatio-temporal data and
that of the transform coe�cients is a direct re-
sult of the norm preserving property of the uni-
tary transform T. The ratio � can be calculated
from the EEG/ MEG data using assumptions
(2) and (3):

� :=
kXk2F
kFk2F

�
kFk2F �

N
~N
k ~Nk2F

kFk2F
: (11)

We then search for the minimum K 2 N that
ful�lls s(K�1) � �, and obtain the threshold

� = ~t2
f
(K�1).



Instead of checking condition (7) for every �t2f (n),
it is possible to directly calculate the diagonal
elements of M, arranged in a vector �, by re-
covering the indices of the K largest transform
coe�cients by

� = PT ~�; (12)

after initializing ~�n to

~�n =

�
1 : n � K

0 : n > K
(13)

The inverse transform is then applied to the
K largest coe�cients, computed as described
above, to reconstruct the de-noised signal. We
refer to this method as ensemble de-noising, since
the spatial dimension of the data presents us
with ensemble probes of the noise process.

Implicit in this procedure is the assumption that
the signals of interest, ie. the dipole time series,
can be represented by a small subset of the K
basis functions of the transform. The quality of
the parameterization determines the ability to
recover a minimally distorted de-noised signal.
If we further assume iid Gaussian noise, a pa-
rameterization by K coe�cients yields a noise
reduction of approx. K=N . However, even if
the analysis function closely matches the source
time series, problems arise due to phase sensitiv-
ity through the cyclo-stationarity of the DWT
associated with the subsampling process. In [3],
this is addressed by a translation-invariant ap-
proach (TI de-noising), where circularly shifted
versions of the data matrix are ensemble de-
noised, back-shifted, and averaged, thus e�ec-
tively avoiding subsampling and its problems
at the expense of increased computational com-
plexity.

4. RESULTS AND DISCUSSION

We compare the previously described de-noising
methods to a low rank approximation of the
data matrix via a truncation of the SVD ex-
pansion [6], which is implicitly performed in the
source localization algorithm in [7]. For spatially
and temporally white noise, the SVD method
yields a reduction of noise variance from F to ~F
by a factor of r=R, where R = min(M;N) and r
is the rank of the noise-free matrixX and equals
the number of temporally independent dipolar
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Fig. 2: Comparison of di�erent de-noising methods
applied to data from a 73-sensor array. SNR
is 5dB, with temporally coloured noise of dif-
ferent bandwidths produced using a 5th or-
der Butterworth �lter. The signal of interest
arises from three dipolar sources activated
by Hermite-type functions. All de-noising
methods use a Symmlet-8 wavelet for the
transform.

sources. In comparison, de-noising gives a noise
variance reduction of K=N as described above.

Fig. 2 shows the averaged results over 25 tri-
als with di�erent noise power spectra and re-
alistic source data for di�erent de-noising tech-
niques and the low rank SVD approximation.
The colouring is achieved by lowpass �ltering,
with the cut-o� frequency indicated on the ab-
scissa. For standard de-noising of each sensor
time series, we heuristically achieved best re-
sults using a visu-shrink soft threshold [2]. The
SNR yielded by ensemble de-noising is consis-
tently higher due to exploitation of pre-stimulus
and spatial information. Apparently, a low rank
approximation | ideal in the sense of knowing
the exact number of independent dipoles | per-
forms more robustly for strongly coloured noise.
However, note that further improvements are
achieved by applying translation-invariant (TI)
ensemble de-noising.

Simulation results for di�erent SNRs of F are
presented in Fig. 3. Here X stems from a single
dipolar source activated by the analysis wavelet,
thus giving the best possible result of the pre-
sented method. The steep drop in performance
of ensemble de-noising for low SNR is due to a
high probability for any coe�cient to pass the
threshold �. A second important observation is
that ensemble de-noising followed by a low-rank
approximation increases noise reduction over ei-
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Fig. 3: Comparison of combination of ensemble de-
noising with a low-rank approximation for
di�erent SNRs.

ther method separately. Since subspace-based
dipole source localization algorithms inherently
perform a low-rank approximation [7], ensemble
de-noising is expected to give additional bene�t.

For the situation in Fig. 3, Tab. 1 contains re-
sults of source parameter estimation [7] for dif-
ferent SNRs with and without ensemble de-noi-
sing (EDN), with small improvements in esti-
mated location (in cm) and more signi�cant im-
provements in time series (with ksk2 = 1) when
using denoising. We found that, compared to
low-rank approximation, denoising is very good
at removing noise from intervals where no source
is active but does not perform well when if the
analysis wavelet and source activation function
are not well matched.

Since good parameterization is crucial, in our
current research we are looking into methods for
further improvement of ensemble de-noising by
adapting the transform to the analyzed data.
Coifman et al. [4] have introduced a best basis
selection method for the transform, such that
the signal energy is contained in as few coe�-
cients as possible. With a similar criterion, a
library of di�erent wavelets can be searched to
�nd a basis function that most closely matches
the signal`s features and subsequently leads to
a low entropy in the transform domain. There
also is the possibility of using soft thresholding
in (6), with an appropriate threshold function
designed to preserve the estimated energy of the
signal of interest.

SNR EDN k�rnk2 k�snk2
no 0.0423 0.0154

5dB
yes 0.0410 0.0109

no 0.1012 0.0511
0dB

yes 0.0982 0.0361

no 0.2944 0.1366
-5dB

yes 0.2442 0.0879

Tab. 1: Averaged deviation of location (in cm) and
time series error for source parameter esti-
mation according to [7] for a single dipole.
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