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ABSTRACT

In this paper, we evaluate the performance limitations
of subband adaptive filters in terms of achievable final
error terms. The limiting factors are the aliasing level in
the subbands, which poses a distortion and thus presents
a lower bound for the minimum mean squared error in
each subband, and the distortion function of the over-
all filter bank, which in a system identification setup
restricts the accuracy of the equivalent fullband model.
Using a generalized DFT modulated filter bank for the
subband decomposition, both errors can be stated in
terms of the underlying prototype filter. If a source
model for coloured input signals is available, it is also
possible to calculate the power spectral densities in both
subbands and reconstructed fullband. The predicted
limits of error quantities compare favourably with sim-
ulations presented.

1 INTRODUCTION

Adaptive filtering in subbands is widely used for prob-
lems where an adaptive system is required to identify
very long impulse responses, since it enables to pro-
cess in decimated subbands with decreased complexity
[4, 2], which is e.g. exploited in acoustic echo cancella-
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Fig. 1: Subband adaptive filter structure in a system
identification setup.
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tion. Performance characteristics of subband adaptive
filters (SAF) as shown in Fig. 1 due to the subband
splitting have mainly been addressed in terms of con-
vergence speed. Investigations into the achievable final
convergence errors are mainly made in terms of trunca-
tion errors and non-causality [4, 9], while there are little
hints for the influence of distortions introduced by the

filter banks [5, 8].

In the following, we discuss convergence error limits
of subband adaptive filtering in dependency on a gen-
eralized DFT (GDFT) modulated filter bank used for
subband decomposition, which will be briefly reviewed
in Sec. 2. In Sec. 3, we then introduce a method to
obtain the power spectral density (PSD) of the alias-
ing terms, which sets the lower limit for the adaptation
error. This limit can be approximated by a stopband at-
tenuation measure of the prototype filter. A second part
then discusses the error inherent in the fullband model
of the adapted subband filters. Simulations supporting
our results are presented in Sec. 4.

2 GDFT MODULATED FILTER BANKS

2.1 Modulation

A general structure of a K band filter bank with deci-
mation by a factor N < K is shown in Fig. 2. The anal-
ysis filters hg[n] are derived from a real valued lowpass
prototype FIR filter p[n] of length L, by a generalized
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Fig. 2: Analysis and synthesis branch of a K-channel
filter bank with subbands decimated by N.
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Fig. 3: Required frequency response of the real valued
prototype filter p[n] for a K channel oversampled GDFT
filter bank with decimation by N.

discrete Fourier transform (GDFT),
hpn] = el Flktho)ntno) pi) -k nelN. (1)

The term generalized DFT [1] stems from offsets ky and
ng introduced into the frequency and time indices. With
ko = 1/2, it is sufficient for real valued input z[n] to
process the first /2 subbands covering the frequency
interval [0; 7], while the remaining subbands are redun-
dant. Together with conditions on p[n], the time offset
ng can be set appropriately to ensure useful properties
such as linear phase. The synthesis filters gg[n] can be
obtained by time reversion and complex conjugation of
the analysis filters, i.e. gx[n] = hy[n] = hi[Ly—n+1]. The
modulation approach allows for both low memory con-
sumption for storing filter coefficients and an efficient
polyphase implementation [7].

2.2 Prototype Design

Through the above modulation, the filter bank design
reduces to an appropriate choice of the prototype fil-
ter, which has to fulfill two criteria. Firstly, the filters’
attenuation in the stopband ranging from [7/N;n], as
indicated in Fig. 3, has to be sufficiently large. Every
frequency of the input signal in the interval [x/N; 7] will
be aliased into the baseband after filtering and decima-
tion, and cause a distortion of the subband signal.

A second constraint on the design is the perfect re-
construction condition. If stopband attenuation of the
prototype filter is high enough to sufficiently suppress
aliasing, this condition reduces to the consideration of
inaccuracies in power complementarity [6]:

K- !
Z Hi(¢H]? = 1. (2)

A prototype filter approximating these constraints can
be constructed by an iterative least-squares method [7].

3 PERFORMANCE LIMITATIONS

In this section, we derive limitations in adaptation as-
suming that the only disturbance originates from the
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Fig. 4: The identity of the structures (a) and (b) is
exploited to calculate the PSD of a decimated signal
v[m]

filter banks employed for the subband decomposition.
First, we look at the achievable error PSD and the mean
squared error (MSE) term, S{ez[n]}, which is important
to minimize in e.g. acoustic echo cancellation. Secondly,
for system identification applications, we state a limit
for the error of the identified model.

3.1 PSD of Adapted Error Signal

Let us interpret the desired signal for the kth adaptive
filter in Fig. 1 as the sum of two components,

dg[m] = sg[m] * z[m] + zx[m] . (3)

The first summand reflects the un-aliased projection of
the output of the unknown system, the desired signal
d[n] = s[n]*a[n], into the kth subband. The second sum-
mand, zi[m], represents the aliased signal components
created in the decimation stage, which can be viewed
as a distortion of the LTI system and modelled as ad-
ditive noise. Therefore, the Wiener solution of the kth
subband filter is given by sg[m], while the unidentifiable
part zx[m] defines the minimum MSE (MMSE) by [3]

MMSE = &{zZ[m]} . (4)

To find an analytical expression for the subband MMSE;,
we first determine the PSD of the aliased signal parts in
the subband signals, making use of two facts:

e aliasing can be conveniently pictured as a superposi-
tion of spectral intervals;

e after decimation, a previously white noise signal re-
mains still white with identical variance.

The further proceeding is depicted in Fig. 4. Assuming
the knowledge of a source model L(e/?), which is excited
by a white noise signal u[n], the decimation by N can
be swapped with L(e/t). In each branch of Fig. 4(b)
the source model is multipied with a window g;(e’*})
and then decimated by N. The windows have adjacent
rectangular spectra with bandwidth 27/N each. This



decimated model is then excited by a decimated but
otherwise unmodified white noise process, u[n].

When we identify v[m] in Fig. 4 with the desired sig-
nal dy[m], the source model for the kth subband Ly (/)
consists of a noise shaping filter F(e*!), which repre-
sents the source model of the input signal z[n] for ex-
citation by white noise of unit variance, the unknown
system S(e*Y), and the analysis filter Hy(e/}),

Lk(ejﬂ):F(ejﬂ)~5(ejﬂ)~Hk(ejﬂ) . (5)

The PSD of di[m] now consists of the squared sum over
all N terms of the kth decimated source model in Fig. 4.

The squared sum of N —1 alias-only terms, defined
by N —1 rectangular windows ¢ ...¢gn—1 covering the
stopband of the kth analysis filter Hy(e/?), finally gives
the PSD of the minimum error corresponding to the

MMSE,
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This assumes that all un-aliased signal parts in the sub-
band error signal eg[m] have been cancelled by the sub-
band adaptive filter. Thus, due to the Wiener-Khintchi-
ne transform, the MMSE can be calculated as

MMSE ;2
MMSE = —/ Seen (e d2 . (7)
By inclusion of the synthesis filters Gy (e/*}), it is also
possible to derive the PSD of the reconstructed mini-
mum error signal, and state the fullband MMSE analo-
gous to (7).

Approximations. The advantage of the outlined ap-
proach is that for spectrally correlated signals, all cross-
terms in the PSDs are considered. However, for weak
spectral correlation, we may disregard the cross-terms
between different aliased spectral intervals, and thus
approximate the PSDs by swapping summations and
square operations in (6). To obtain a more practical
limit for the performance of SAFs, we calculate the ratio
between the power levels of un-aliased and aliased sub-
band components, creating an SNR-like measure, which
we refer to as signal-to-alias ratio (SAR),

TN P(ei®)|2d0

fﬂ'/N |P(e7)[2dQ2

This approximation has been based on the further as-
sumption F(e/?) = S(e/?) = 1, such that (8) only de-
pends on the magnitude response P(e/) of the pro-
totype filter p[n]. However, the SAR measure can be
shown to yield valid results also for non-white input sig-
nals and unknown systems. Note that the denominator
of (8) is a measure of the stopband attenuation discussed
in 2.2.

SAR = (8)
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Fig. 5: Separation of system identification structure for
reconstruction of equivalent fullband model.

3.2 Error of Equivalent Fullband Model

Disregarding any other limiting influences and assuming
adaptation e[n] — 0 in Fig. 1, an equivalent fullband
model can be reconstructed from the adapted subband
impulse responses wy[n] by sending an impulse through
analysis bank, adapted filters and synthesis bank. A
Jjustification is demonstrated in Fig. 5 by swapping sum-
mers for the subband errors with the (linear) synthesis
operation. Ideally, the fullband equivalent model w[n]
will match the cross-correlation function between input
and desired signal, which for white noise excitation gives
the unknown system s[n], convolved with the distortion
function t[n] of the filter banks [8]. This distortion func-
tion characterizes the serial connection of the decimated
filter banks in Fig. 2, #[n] = x[n]* t[n]. Thus, any devi-
ation from perfect reconstruction will result in an error
in the equivalent fullband model, where the accuracy
can be shown to be limited by the reconstruction error
(RE),

RE = [|t[n] = 6[n—L,+1]115 . (9)

4 SIMULATIONS AND RESULTS

We perform adaptive system identification in a set-up
as shown in Fig. 1 of a recursive system s[n] with two
dominant poles at Q = 0.17 and 0.457 using an SAF
with K /2 = 8 complex subbands decimated by N = 14.
For simulation with an NLMS algorithm and strongly
coloured input signal, Fig. 6 shows the PSDs of desired
signal d[n] and final error e[n] after almost complete
adaptation. In contrast, the analytically calculated PSD
for the error signal at the Wiener-Hopf solution is given
in Fig. 7, overlaid with the final error PSD of Fig. 6.
Apart from deviations due to insufficient convergence
at the band edges and residual peaks and a raised error
power spectrum around the positions of the dominant
poles, clearly the predicted PSD is enveloped by the sim-
ulated result, and therefore can be regarded as a lower
limit of the error PSD.

Tab. 1 compares the error limits derived in Sec. 3
with simulated results for three differently designed pro-
totypes, P4, Pp, and Pco. The design method is a least
squares minimization of stopband energy and the error
in power complementarity, which can be traded off by
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introducing a weighting between the two measures [7].
Tab. 1 states design results in terms of the measures RE
as defined in (9) and the SAR of (8) reflecting the stop-
band attenuation.

For simulations, the set-up in Fig. 1 was employed to
identify a delay using an RLS algorithm with white
Gaussian input. The error norm of the equivalent full-
band model ||w — s||3, where w is the reconstructed full-
band model according to Sec. 3.2, is given in Tab. 1,
which together with the reduction in error variance,
o2,/02, fits very closely the predicted values. For the
example in Fig. 6 using coloured input and a rather
complex unknown system, the MSE reduction o2,/c2,
of 56.73dB closely agrees with an SAR value of -57.01dB
for the employed prototype filter in this case.

Simulation Results
=3[ [ 0%/
-54.0153 54.0
-34.6143 66.2
-18.0010 78.5

Analytical Prediction
RE SAR
P4 || -54.0821 54.9
Pp || -34.6191 65.2
Pe || -18.0016 77.8

Tab. 1: Predicted fullband model error and final MSE
compared to simulation results (all quantities in [dB]).

5 CONCLUSIONS

We have introduced measures to predict the adaptation
limits for subband adaptive filters in terms of the final
MSE and the error of the identified model. In case of
GDFT filter banks, they can be expressed in terms of
the prototype filter, and closely agree with simulation
results. For subband adaptive filter applications these
measures provide convenient tools to design filter banks
fulfilling pre-specified performance requirements. For
applications like acoustic echo control, where the adap-
tation error is the most important issue, the banks can
be designed to be just good (and short) enough to satisfy
relaxed constraints on the model error.
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