
ON IMPLEMENTATION AND DESIGN

OF FILTER BANKS FOR SUBBAND

ADAPTIVE SYSTEMS

S. Wei�, M. Harteneck, and R.W. Stewart

Signal Processing Division, Dept. of Electronic and Electrical Eng.
University of Strathclyde, Glasgow, Scotland
fweiss,moritz,bobg@spd.eee.strath.ac.uk

Abstract - In this paper, we introduce a polyphase implementation

and design of an oversampled K-channel generalized DFT (GDFT) �l-

ter bank, which can be employed for subband adaptive �ltering, and

therefore is required to have a low aliasing level in the subband sig-

nals. A polyphase structure is derived which can be factorized into a

real valued polyphase network and a GDFT modulation. For the latter,

an FFT realization may be used, yielding a very inexpensive polyphase

implementation for arbitrary integer decimation ratios N � K. We also

present an analysis underlining the e�ciency of complex valued subband

processing. The design of the �lter bank is completely based on the

prototype �lter and solved using a fast converging iterative least squares

method, for which we give examples. The design speci�cations closely

correspond with performance limits of subband adaptive �ltering, which

are under-pinned by simulation results.

INTRODUCTION

Subband adaptive �lter (SAF) systems, as shown in Fig. 1 for a system
identi�cation setup, are widely used for problems like acoustic echo cancella-
tion (AEC), where an adaptive system is required to identify very long impulse
responses, which becomes viable due to decreased complexity by processing in
decimated subbands. However, the case of critical decimation, where the dec-
imation ratio N equals the number of uniform subbands K, requires either
cross-terms at least between adjacent frequency bands [3], which compen-
sates for the information loss in the region of spectral overlap, or gap �lter
banks [17, 12], which introduces spectral loss that may not be acceptable.

Oversampled SAF systems can be either real or complex valued. Real
valued bandpass signals have to be modulated into the baseband prior to
decimation by, for example, single sideband modulation (SSB,[1, 14]), or their
bandwidth and decimation ratio has to be chosen in accordance with the
sampling theorem, leading to non-uniform �lter banks [11, 5]. In contrast,
the decimation of complex valued bandpass signals with any integer factor
N < K is straightforward.
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Fig. 1: Subband adaptive �lter structure in a system identi�cation setup.

In this paper, we will focus on generalized DFT �lter banks [1], which
perform a particular type of complex valued subband decomposition. GDFT
�lter banks arise from complex modulation of a prototype �lter, and, as will
be derived, can be very e�ciently realized using for generally non-integer over-
sampling ratios K=N . This will prove an often stated misconception wrong
that polyphase implementations are only viable for integer oversampling ra-
tios (OSR) N

K 2 Z [1, 8], while otherwise frequency domain realizations of the
�lter banks are preferred [10]. This is particularly important, since subband
processing shows its highest reduction in computational complexity for OSRs
close to 1.

Further, we will adopt an iterative least squares method method [9, 6]
to design prototype lowpass �lters for GDFT modulated oversampled �lter
banks appropriate for SAF systems. The error performance of the produced
SAFs can be linked to the design criteria of this prototype �lter [15]. Finally,
we will present some prototype designs, which will be used in adaptive system
identi�cation examples performed in subbands.

COMPLEX SUBBAND DECOMPOSITION BY GDFT

FILTER BANKS

GDFT Modulation. A general structure of a K channel �lter bank with
decimation by a factor N � K is shown in Fig. 2. The analysis �lters hk[n]
are derived from a real valued lowpass prototype FIR �lter p[n] of even length
Lp by a generalized discrete Fourier transform (GDFT),

hk[n] = ej
2�
K
(k+k0)(n+n0) � p[n]; k; n 2 N; (1)

which can be closely linked to a DCT-IV modulation used for cosine modu-
lated pseudo-QMFK=2 channel �lter banks [13] by a real operation performed
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Fig. 2: Analysis and synthesis branch of a K-channel �lter bank with sub-
bands decimated by N .

on the complex bandpass �lters hk[n].
The term generalized DFT [1] stems from o�sets k0 and n0 introduced into

the frequency and time indices in the modulation term of (1). Linear phase
property of the modulated �lters can be ensured by choosing a linear phase
prototype �lter p[n] and a transform symmetric to (Lp�1)=2 by appropriately
setting n0. A frequency o�set k0 = 1

2 shifts the bandpass characteristics of
the �lters hk[n] and yields the frequency range [0;�] to be covered by exactly
K=2 subbands for an even K, while the remaining subbands are complex
conjugate versions and therefore redundant to process, if the input signal to
the �lter bank is real.

The synthesis �lters gk[n] can be obtained by time reversion of the analysis

�lter, i.e. gk[n] = ~hk[n] = h�k[Lp�n+1]. Thus, all �lters can be derived from
one single prototype p[n], which has to be designed appropriately.

E�cient Filter Bank Implementation

For e�cient implementation of the oversampled GDFT �lter bank, we em-
ploy polyphase representation of the analysis and synthesis �lters. Generally,
savings due to a polyphase implementation are gained in two steps: �rstly, the
calculation of decimated samples will be suppressed; secondly, computations
common to di�erent branches of the analysis or synthesis bank are combined.
Polyphase Representation. With the kth analysis �lter written in

terms of its N polyphase components Hkjj(z), j = 0(1)N � 1,

Hk(z) =

N�1X
j=0

z�jHkjj(z
N); (2)

a matrix Hr(z) with polynomial entries can be created for the analysis �lter
bank:

H(z) =

2
6664

H0j0(z) H0j1(z) � � � H0jN�1(z)
H1j0(z) H1j1(z) H1jN�1(z)

...
. . .

...
HK�1j0(z) HK�1j1(z) � � � HK�1jN�1(z)

3
7775: (3)



With a polyphase decomposition of the input signal x[n],

X(z) =

N�1X
j=0

z�jXj(z
N) ; (4)

analogue to (2), and

X(z) = [X0(z); X1(z); : : : XN�1(z)]
T

(5)

the analysis bank operation denotes as

Y (z) =H(z) �X(z) ; (6)

where Y (z) 2 C
K�1
(z) contains the K subband signals.

If the polyphase matrix H(z) is paraunitary, the synthesis of the subband

signals may be performed by X̂(z) = ~H(z) �Y (z), where ~H(z) is the hermitian
of H(z) with reversed polynomial entries. The reconstructed fullband signal

x̂[n] is given in polyphase representation by X̂(z). If we combine analysis and

synthesis, i.e. X̂(z) = ~H(z)�H(z)�X(z), perfect reconstructed is characterized
by ~H(z) �H(z) = z�Lp+1cI, c 2 C =f0g, i.e. H(z) has to be paraunitary [2].

For real input signals x[n], an e�cient implementation omits K=2 sub-
bands,

X̂(z) = Re
n
~Hr(z) � Y r(z)

o
= Re

n
~Hr(z) �Hr(z) �X(z)

o
; (7)

where the subscript r refers to a reduced matrix representations including
only the upper K=2 rows of H(z).
Polyphase Factorization. Let M be the least common multiple (lcm)

of the periodicity of the transform in (1), 2K, and the decimation ratio N ,
M = lcm(2K;N), with M = J �2K = L �N; J; L 2 Z. To exploit common
calculations between �lters, the polyphase components of the analysis �lters
H(z) can be written in terms of theM polyphase components of the prototype

�lter P (z) =
PM�1

m=0 z
�mPm(z

M ),

Hkjn(z) =

L�1X
l=0

z�l � tk;lN+n � PlN+n(z
L): (8)

If the periodicity 2K of the transform coe�cients tk;n is considered, it is
possible to formulate a dense matrix notation

Hr(z) = TGDFT;r �P(z) (9)

analogue to [2], with the upper half of a GDFT matrix TGDFT;r 2 CK=2�2K

and a generally sparse matrix P(z) 2 R
2K�N
(z) with M non-zero polynomial



entries

P(z) = [I2K : : : I2K ] � diag
�
P0(z

L); P1(z
L); : : : PM�1(z

L)
	
�

2
6664

IN
z�1IN

...
z�L+1IN

3
7775 :

(10)

The GDFT transform matrix TGDFT;r in (9) can be further factorized to
yield

TGDFT;r = D1 �TDFT;r � [IK IK ] �D2; (11)

where D1 = ej
�
K
kn0 � IK=2 applies a phase correction and D2 2 C 2K�2K is

a diagonal matrix with elements ej
�
K
k0(n�n0); n = 0(1)2K � 1, introduces

the required frequency o�set. The representation in (11) allows savings, as
TDFT;r 2 CK=2�K consists of the upper K=2 rows of a K-point DFT matrix

with entries ej
2�
K
kn, which can be implemented using standard FFT algo-

rithms.
Computational Complexity. Using this polyphase decomposition and

factorization to e�ciently implement an analysis bank operation, the signal
is processed by a real valued polyphase network, P(z), followed by a complex
transformation. On the synthesis side, the subband signals are rotated by
a transform, and only their real part again fed into a polyphase network
~P(z). Recording computations, both operations result in a computational
complexity of

Cbank =
1

N
(4K log2K + 6K + Lp) (12)

real multiplications per fullband sample.
Extensions. A further reduction compared to (12) can be obtained by a

modi�cation of the prototype �lter [16]. This reduces the periodicity of the
GDFT transform to K, thus potentially decreasing the number of polyphase
components in P(z) by a factor 2, and saves 2K=N multiplications over (12)
in the transform evaluation.

Complex Vs Real Valued Subband Processing

The ratio of computational complexity between adaptive �ltering with
real and complex valued subband signals for order O(Lia) algorithms can be
derived as

Creal / Lia ; Ccomplex / 4 �
�1
2
�
�La
2

�i�

�!
Ccomplex

Creal
=

1

2i�1
: (13)
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Fig. 3: Required frequency re-
sponse of a real valued prototype
�lter p[n] for aK=2 channel over-
sampled modulated GDFT �lter
bank with decimation by N .

where La is the length of an adaptive �lter. Note that the complex case
e�ectively appears with a doubled decimation ratio, resulting in shorter �lters
and slower update, but requires 4 real multiplications for a complex one. Thus
in terms of processing load, orderO(La) algorithms like LMS and NLMS have
same computational complexity for complex and real valued implementations,
while for quadratic dependencies (i = 2) like the RLS the computational
burden can be halved by going complex.

Complex subband processing also doubles the range of possible decimation
ratios to choose from N 3 N � K over real valued methods like SSB [1] or
non-uniform �lter banks [6].

PROTOTYPE DESIGN

This section discusses two requirements of the �lter bank design, stopband
attenuation and perfect reconstruction, which will both be expressed in terms
of the prototype �lter. Based on this, an iterative least-squares design is
presented.
Stopband Energy. The frequency response of a prototype �lter p[n] for

a K-channel GDFT bank with decimation by N is shown in Fig. 3. Every
frequency of the input signal in the interval [�=N ;�] will be aliased into the
baseband after �ltering and decimation, and cause a distortion of the subband
signal, which can be modelled as additive noise, motivating an SNR measure
for white Gaussian input signals [15]:

SNR =

R �=N
0

jP (ej
)j2d
R �
�=N

jP (ej
)j2d

: (14)

The denominator of (14) forms a measure of the stopband energy. It can be
numerically approximated using the Eigen�lter method [13], which evaluates
the real part of the frequency response in the stopband

RefP (ej
)g = TDCT � p (15)

at discrete frequencies 
m;m = 1(1)M by multiplying the coe�cient vector
of the prototype, p 2 RLp�1, to a DCT matrix TDCT 2 RM�Lp with entries
tm;n = cos(n � 
m), n = 0(1)Lp � 1.



Symmetry of p is enforced by introducing a permutation matrix S1 =�
ILp=2;JLp=2

�
, where I and J are identity and the reverse identity matrices

and b = ST1 � p, yielding

RefP (ej
)g = TDCT � S1S
T
1 � p = TDCT � S1 � b: (16)

Power Complementary Condition. If aliasing is su�ciently suppressed,
time-invariance of the input-output behaviour of the �lter bank system in
Fig. 2 is ensured and the near PR condition reduces to the requirement of
power complementarity [5, 13],

XK�1

k=0
H�
k (z

�1) �Hk(z)
!
= z�Lp+1: (17)

Exploiting the modulation of the passband �lters Hk(z), this requirement is
equivalent to demanding

XK�1

k=0
P �
k (z

�1) � Pk(z)
!
=

1

K
� z�Lp+1; (18)

where Pk(z) are the K polyphase components of the prototype �lter P (z)
[13]. If the summands on the left hand side are implemented in the time
domain by multiplication of a convolutional matrix Pk 2 R(2Lp=K�1)�(Lp=K)

with a vector pk 2 R(Lp=K�1) containing the elements of the kth polyphase
�lter of p[n], (18) becomes

[P0P1 : : :PK�1]| {z }
V

�

2
6664

p0
p1
...

pK�1

3
7775

| {z }
v

= VS2 � p = VS2S1 � b
!
=

2
4 0

1=K
0

3
5

| {z }
d

(19)

with a suitable permutation matrix S2 2 NLp�Lp that maps the coe�cient
vector p onto the polyphase vector v = S2p.

If the subband adaptive �lter is free of any other disturbances, the perfect
reconstruction error (PRE)

PRE = kVS2 � p� dk22 (20)

gives a limit measure of the achievable accuracy of the equivalent fullband
model at the Wiener-Hopf solution [15].
Iterative Least Squares Design. To ful�ll power complementarity and

minimize stopband energy, a least-squares problem

b = argmin
b






�
V(b)�S2 �S1

 �TDCT �S1

�
b�

�
d

0

�




2

2

(21)

has to be solved, where 
 allows a weighting between both design criteria.
The minimization can be performed iteratively [9, 6], solving at each iteration
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Prototype Design Simulation Results

 PRE SNR kw�sk22 �2dd=�

2
ee

0 -54.0821 54.9 -54.0153 54.0
30 -34.6191 65.2 -34.6143 66.2
60 -18.0016 77.8 -18.0010 78.5

Tab. 1: �rst three columns: weighting of design criteria and achieved measures
according to (20) and (14); right columns: �nal equivalent fullband model
error and reduction in error power for RLS adaptive identi�cation of a delay
(all quantities in [dB]).

k

bk = argmin
bk






�
V(bk�1)�S2 �S1

 ��! �TDCT �S1

�
bk �

�
d

0

�




2

2

; (22)

where a previous solution bk�1 is substituted to achieve a quadratic approxi-
mation of (21). The resulting problem (22) can be easily solved using standard
linear algebraic tools [4]. The iteration is stopped when the change from bk�1
to bk is below a certain threshold.

Additionally, a diagonal weighting matrix �! in (22) can be included to
improve the stopband attenuation towards the band-edge. Furthermore, a
relaxation can be introduced to solve for an intermediate solution b0k at step
k, from which the �nal solution is obtained by bk = �b0k + (1 � �)bk�1, for
0 < � � 1.

RESULTS

Design Examples. Fig. 4 shows two prototype �lters obtained using the
above iterative LS design. The starting coe�cients b0 are calculated by a
remez �lter design, and for a relaxation � = 0:5 the discussed LS method
requires 11 iterations to converge in 8.44s CPU time on a Sparc20 workstation.
The �nal PRE and SNR values of the design are listed in Tab. 1.
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Subband Adaptive Filtering Simulations. Using the prototype �lters
designed in Tab. 1, adaptive system identi�cation of a white Gaussian noise
excited delay was performed in subbands. The error terms after convergence
of the adaptive �lters using the RLS algorithm [7] are also shown in Tab. 1
and closely agree with the properties calculated from the prototype design.
Using the prototype for 
 = 0dB, Fig. 5 shows simulation results employing
an NLMS algorithm for adaptive identi�cation of an unknown system with
several dominant poles. Besides insu�cient convergence at the band edges,
and residual peaks and a raised error power spectrum around the positions
of the poles, one can clearly see the aliased peaks of the desired signal, which
limit adaptation. The achieved reduction in error power is 52.92dB, while the
l2 distance of the reconstructed equivalent fullband response, w[n], from to
the unknown system, s[n], is -50.43dB, well matching the design measures in
Tab. 1.

CONCLUSIONS

We have shown that GDFT �lter banks can enable highly e�cient sub-
band adaptive �lter schemes, by extending the polyphase realization of the
�lter banks to the case of general integer decimation ratios, and by the very
nature of complex subband decompositions of real valued input signals. Fur-
thermore, based on the prototype �lter, a fast converging design method has
been discussed, which minimizes two criteria limiting the performance of a
subband adaptive system. The appeal is that these criteria provide conve-
nient tools to design �lter banks ful�lling pre-speci�ed, application dependent
performance requirements. For applications like acoustic echo control, where
the adaptation error is the most important issue, the banks can be designed
to be just good (and short) enough to satisfy relaxed constraints on the model
error.
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