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ABSTRACT

In this paper, we derive a polyphase analysis to determine the op-
timum filters in a subband adaptive filter (SAF) system. The struc-
ture of this optimum solution deviates from the standard SAF ap-
proach and presents its best possible solution only as an approxi-
mation. Besides this new insight into SAF error sources, the dis-
cussed analysis allows to calculate the optimum subband responses
and the standard SAF approximation. Examples demonstrating the
validity of our analysis and its use for determining SAF errors are
presented.

1. INTRODUCTION

Adaptive filtering in subbands is a useful approach to a number of
problems such as acoustic echo cancellation [1, 2], identification of
room acoustics [3], equalization of acoustics [4], or beamforming
[5], where high computational cost can be reduced by processing
in decimated subband signals. In Fig. 1, a subband adaptive fil-
ter (SAF) is shown in a system identification setup of an unknown
systems[n], whereby the inputx[n] and the desired signald[n]
are split intoK frequency bands by analysis filter banks built of
bandpass filtershk[n]. Assuming a cross-band free SAF design
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Figure 1: Subband adaptive filter (SAF) in system identification
setup.

[2], an adaptive filterwk[n] is applied to each subband decimated
by N � K. Finally, the fullband error signale[n] can be re-
constructed via a synthesis bank. The structures of both analysis
and synthesis is shown in Fig. 2. Ideally, the overall system con-
sisting of analysis and synthesis should only implement a delay,
i.e. x̂[n] = x[n��].

However, subband adaptive filters (SAF) are subject to a num-
ber of limitations, which have been investigated, for example, with
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Figure 2: Analysis and synthesis filter bank performing a signal
decomposition intoK frequency bands decimated byN � K.

respect to the required filter length [2, 6] or to lower bounds for the
MMSE and the modelling accuracy [8]. These analyses have been
performed using modulation description [2], time domain [6], or
frequency domain approaches [1, 7, 8].

Here, we discuss an SAF system as shown in Fig. 1 using a
polyphase description [9] of its signals and filters. Sec. 2 reviews
the idea of the polyphase expansion and presents the analysis of all
involved signals. In Sec. 3, we introduce the formulation for the
optimum subband adaptive filters, which will require a modifica-
tion to the structure given in Fig. 1. We discuss in detail, how this
optimum solution relates to the level of optimality, that is achiev-
able with the standard adaptive structure in Fig. 1, which will al-
low an assessment of the errors occurring in such standard SAF
systems. Sec. 4 will discuss an example to highlight the use and
insight reached by the analysis presented here.

2. POLYPHASE ANALYSIS

First, we derive expressions for the z-transforms for the decimated
desired signal in thekth subband,Dd

k(z) �—� dk[n], and for the
decimated input signal in thekth subband,Xd

k(z) �—� xk[n], as
labelled in Fig. 1. This will allow us to assemble the z-transform
of thekth decimated subband error signal,Ed

k(z) �—� ek(z). In
our notation, superscriptf�gd for z-transforms of signals refers to
decimated quantities, while normal variables such asXk(z) indi-
cate undecimated signals, i.e. in this case the input signal in the
kth subband before going into the decimator as shown in Fig. 2.

2.1. Polyphase Expansion

The decimator and upsamplers in Fig. 2 are linear periodically
time-varying (LPTV) operations, which makes it difficult to ap-
ply standard analysis tools for linear time-invariant (LTI) systems.
However, polyphase analysis [10, 9] allows to express LPTV sys-
tems mostly as multiple-input multiple-output (MIMO) LTI sys-
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Figure 3: Analysis and synthesis filter bank performing a signal
decomposition intoK frequency bands decimated byN � K.

tems, with decimators and upsamplers being described by multi-
plexing and demultiplexing operations.

Considering the z-transform of thekth analysis filter,Hk(z),
Hk(z) �—� hk[n], it can be written in expansion form

Hk(z) =

N�1X
n=0

z�n �Hk;n(z
N) (1)

whereHk;n(z), n = 0(1)N�1, are theN polyphase components
of Hk(z). Fig. 3 shows the effect of this expansion as applied
in the desired path of the SAF structure (compare to Figs. 1 and
2). While Fig. 3(a) contains thekth branch of the analysis oper-
ation applied to the desired signal, Fig. 3(b) represents the flow
graph using the expansion (1). It is now possible to exploit the
first Nobel identity [11] to swap the decimators with the polyphase
filtersHk;n(z

N ) in Fig. 3(b), resulting in the structure shown in
Fig. 3(c). Effectively, filtering now is performed at the lowest pos-
sible rate.

The multiplexed signals fed into the polyphase filtersHk;n(z)
are obtained by an analogous polyphase expansion of the desired
signalD(z),

D(z) =

N�1X
n=0

z�n �Dn(z
N ): (2)

Defining vector notation for the polyphase components ofHk(z)
andD(z),

D(z) = [D0(z) D1(z) � � � DN�1(z)]
T (3)

Hk(z) =
�
Hkj0(z) Hkj1 � � � HkjN�1(z)

�T
(4)

it is possible to express thekth desired signal decimated by a factor
N as

Dd
k(z) = HT

k (z) �D(z) : (5)

Note, that the mathematical expression (5) directly refers to the
structure in Fig. 3(c).

2.2. Description of Subband Desired Signal

Further to the analysis in Sec. 2.1, we want to trace the decimated
desired subband signalDd

k(z) back to the input signal,X(z) �—�
x[n]. Through the unknown system in Fig. 1, the relation between
input and desired signal is given byD(z) = S(z) � X(z), where
S(z) �—� s[n] is the z-transform of the unknown system. With
some effort, this expression for the desired signal can be appro-
priately expanded such that thenth polyphase component in (3) is
given by

Dn(z) = ST (z) ��n(z) �X(z) : (6)

The polyphase vectorsS(z) andX(z) refer to the unknown sys-
temS(z) and the input signalX(z) in analogy to the definitions
(3) and (2). The matrix�n(z) is a delay matrix defined as

�n(z) =

�
0 IN�n

z�1In 0

�
: (7)

Thus, the overall description for the decimatedkth desired sub-
band signal yields

Dd
k(z) = HT

k(z)

2
6664

ST(z)�0(z)
ST(z)�1(z)

...
ST(z)�N�1(z)

3
7775X(z) = HT

k(z)S(z)X(z)

(8)

where the symmetric matrixS(z) = S
T (z) has been substituted

for brevity. Now the unknown system has been swapped with the
multiplexing operation in Fig. 3(c).

2.3. Description of Subband Input and Error Signals

Similarly to the previous analysis, thekth decimated input signal
can be derived as

Xd
k (z) = HT

k (z) �X(z) : (9)

Finally, we use (8) and (9) to formulate thekth subband error
signal,Ed

k(z) �—� ek[n], including thekth adaptive filter with z-
transformWk(z) �—� wk[n]:

Ed
k(z) = Dd

k(z)�Wk(z) �X
d
k (z) (10)

=

�
HT

k (z) � S(z)�HT
k (z) �Wk(z)

�
X(z): (11)

Hence, polyphase descriptions for all involved decimated sub-
band signals have been derived. In particular, note that the desired
subband signal now is entirely expressed in terms of the polyphase
components of both the analysis filters, the unknown system, and
the input signal.

3. OPTIMUM SUBBAND FILTERS

In the following, we use the expressions found in Sec. 2 to obtain
an optimum solution for the adaptive subband filters,Wk(z).
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Figure 4: SAF optimal polyphase solution in thekth subband.

3.1. Error Minimization

Assuming that no disturbances are present and the SAF system in
Fig. 1 can perfectly model the unknown system,Ed

k(z) should be
zero in the steady state. As it is desirable to achieve optimality
of the subband filters regardless of the input, the requirement for
optimality (in every sense) is

HT
k (z) � S(z)

!
= HT

k �Wk;opt(z) (12)

following from (11). Hence, we obtainN cancellation conditions
indicated by superscriptsf�g(n), which have to be fulfilled:

W
(n)

k;opt(z) =
HT

k (z) ��
T
n (z) � S(z)

Hkjn(z)
8n 2 f0;N�1g :

(13)

Therefore, ideallyWk(z) in (11) and (12) should be replaced by an
N�N diagonal matrix with entriesW (n)

k (z). For thekth subband,
this solution withN polyphase filters is given by the structure in
Fig. 4.

3.2. Discussion

An alternative notation to (13) is to write thenth optimum solution
as

W
(n)

k;opt(z) =

N�1X
�=0

A
(�)

kjn(z) � S�(z) : (14)

and interpret it as a superposition of polyphase components of
S(z), “weighted” by transfer functions

A
(�)

kjn(z) = z�b(n+�)=Nc �
Hkj(n+�) modN (z)

Hkjn(z)
: (15)

This forms the basis for some interesting observations.
Firstly, the length of the optimum subband responses is obvi-

ously given by1=N of the order ofS(z), but extended by the trans-
fer functions (15). These extending transients are causal for poles
of A(�)

kjn(z) within the unit circle, and non-causal for stabilized
poles outside the unit-circle [12]. Hence, besides the motivation
for a non-causal optimum response, it is particularly interesting
that the required SAF length obviously depends on the transients
caused by the analysis filtersHk(z).
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Figure 5: SAF standard solution in thekth subband.

Secondly in general, particularly when the stopband attenua-
tion of the analysis filters is insufficient, the componentsHkjn(z)

in (15) differ, hence leading to different polyphase solutionsW
(n)

k;opt(z)

in every of theN branches in Fig. 4. Only if all elements in (15)
are identical, the optimal subband responses can be swapped with
the adder and give the well-known standard SAF solution shown
in Fig. 5.

Thus, if non-ideal filter banks are used and in particular alias-
ing is present in the subband signals, this optimum standard SAF
solution gives the closestl2 match to allN optimal polyphase so-
lutions:

Wk;opt(z) =
1

N

N�1X
n=0

W
(n)

k;opt(z) : (16)

The error made in this approximation can explain MMSE and mod-
elling limitations of the SAF approach and represents an alterna-
tive coefficient / time-domain description as opposed to spectrally
motivated SAF error explanations in the literature [2, 8].

4. EXAMPLES

To verify the validity of our analysis, we first discuss an unrealistic,
but very simple example of a critically decimated 2-channel SAF
system using Haar filters [9]. We want to identify the unknown
systemS(z) = 1+z�1 using a unit variance Gaussian white noise
excitation, and here only consider the lowpass band produced by
the analysis Haar filterH0(z) = 1 + z�1. Evaluating (14) and
(15) yields as optimum polyphase solution

W
(0)

0;opt(z) = 2 ; W
(1)

0;opt(z) = 1 + z�1 : (17)

In a simulation using a recursive least squares (RLS) algorithm
[13], the converged adaptive filterW0(z) = 1:4873 + 0:5067z�1

very closely agrees with the analytical solution (16) calculated
from (17),

W0;opt(z) = 1:5 + 0:5z�1 :

Additionally, the PSD of the0th adapted subband error signal,
Se0(e

j
), can be analytically predicted by inserting the optimum
standard solution (16) into (11),

Se0 (e
j
) = jEd

k(e
j
)j2 = 1� cos 
 ; (18)

W99-3



Proc. 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, Oct. 17-20, 1999

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

normalized frequency Ω/π

P
S

D

error signal PSD:

simulated

analytical prediction

desired signal PSD

simulated

analytical pred.
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Figure 7: Optimal polyphase solutions, standard SAF approxima-
tion, and simulation result of a system using a 32 tap analysis filter.

which can be used to determine the minimum mean squared er-
ror of the SAF system alternative to spectral methods [8]. Fig. 6
demonstrates the excellent fit between the analytically calculated
PSD in (18), and the measured results from the RLS simulation.
Also shown is the analytically predicted and measured PSD of the
0th desired subband signalSd0 (e

j
) = 6 + 2 cos 
 (hence the
uncancelled error signal) calculated via (5).

As a second example, Fig. 7 shows analytical and simulated
results for the0th subband in critically sampled 2-channel SAF
system employing the 32 tap QMF filter 32C [14]. The responses
w
(0)

0;opt[n] andw(1)

0;opt[n] are the optimum polyphase solutions as
indicated in Fig. 4. In the two bottom diagrams, the analytical
solution (16) for the best approximationwk;opt[n] of the standard
SAF setup in Fig. 5 closely agrees to the result of an RLS solution,
w0;adapt[n].

5. CONCLUSION

We have introduced a polyphase analysis of an SAF system, which
leads to an optimum polyphase solution for the subband filters,
which can be computed using the formulations presented here. In-
terestingly, the standard SAF solution can only allow an approx-

imation of these optimal polyphase solutions, which gives alter-
native insight into the inaccuracies and limitations of the SAF ap-
proach. Thus, the ’classical’ error explanation by aliasing [1, 7, 8]
is replaced by the approximation of potentially differing polyphase
solutions. Therefore potential of the presented analysis lies in
the access to the optimum and approximate solutions, which may
complement analysis with regard to other error sources [8].
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