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ABSTRACT 
The paper deals with the application of multiple linear regression and neurofuzzy modelling 
approaches to 7xxx series based aluminium alloys.  36 compositional and ageing time variants and 
subsequent proof strength and electrical conductivity measurements have been studied.  The input 
datasets have been transformed in two ways: to reveal more explicit microstructural information 
and to reflect some empirical findings in the literature.  Neurofuzzy modelling exhibited improved 
performance in modelling proof strength and electrical conductivity c.f. the multiple linear 
regression approach.  Electrical conductivity is best modelled using the explicit microstructural 
input dataset, whilst proof strength is best modelled by a further modification of this dataset, 
decided upon after inspection of the subnetwork structures produced by neurofuzzy modelling.  
Neurofuzzy modelling offers a transparent empirically based data-driven approach that can be 
combined with pre-processing of the data and initialising of the model structure based upon 
physical understanding.  An iterative modelling approach is defined whereby data-driven empirical 
modelling approaches are first used to assess underlying data structures and are validated against 
physically based understanding, these then inform subsequent initialised neurofuzzy models and 
input data transformations to provide both optimal subset and feature representation.  
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1.   INTRODUCTION 

 
The use of Artificial Neural Networks (ANN) for intelligent data analysis (trend and clustering 
discovery) is attracting a significant amount of interest over a wide range of industrial sectors.1,2) 
These provide powerful empirical tools for modelling and classifying non-linear, interdependent, 
and noisy data sets that are not fully understood or are not amenable to exact analytical solutions.  
Probably the main reason for their widespread use is that the underlying relationships do not have 
to be explicitly specified, rather these are implicitly learnt from the data, and hence ANNs may 
significantly outperform conventional data regression analysis when prior problem knowledge is 
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poor2) .  One significant drawback however, is the lack of transparency in the modelling process, 
and this has hindered more widespread use of the techniques. Generally, neural networks are 
difficult to validate and have little relationship to conventional physical models, although 
significant research effort has been directed recently towards incorporating existing physical 
knowledge into these systems and extracting rules.  The neurofuzzy (NF) data modelling 
algorithms used in this work combine mathematically rigorous non-linear regression-type networks 
(based on an additive spline representation) with an explanation facility that is based on fuzzy 
logic, providing a means for combining empirical data with established expert knowledge in both 
building and validating the model.1)  A recent successful NF application concerned Ni-based 
superalloy fatigue behaviour, which demonstrated that a combination of basic materials’ properties 
and test conditions readily provided physically reasonable models of near-threshold crack growth.3)  
Pure neural network models of equivalent data frequently exhibited unrealistic physical 
characteristics, engendering extensive model interrogation and verification processes.4) Successful 
classical neural network modelling of complex materials characteristics has been reported in the 
literature5,6,7) e.g. phase transformation and mechanical property prediction for steels6,7). This paper 
describes a critical progression in the effective use of such methods via the ability to include, ab 
initio, known physical principles within sophisticated neural network data modelling frameworks, 
and enables direct assessment of the physical relationships within the transparent models produced. 
 
The dataset considered in the present work contains data on the properties of various 
Al-Zn-Mg-Cu-Zr based alloys.  High strength 7xxx (Al-Zn-Mg-Cu) alloys make up the largest 
volume of aluminium alloy sold to the aerospace industry and due to the ever increasing demands 
for property improvement most research and development work of aluminium producers is directed 
towards this alloy system.  7xxx alloys have 3 critical target properties: yield strength, toughness 
and stress corrosion cracking (SCC) resistance. SCC is hard to measure on production-line time-
scales so generally the more easily obtainable electrical conductivity is used as a measure of SCC 
resistance.  Of the three main properties, yield strength and electrical conductivity are determined 
mainly by the precipitation processes that occur during commercial thermal treatments of the 
alloys.  The third property, toughness, is a complex function of matrix flow characteristics, 
intermetallic particle populations (coarse primary constituents and dispersoids), grain structure and 
coarse heterogeneous precipitation (particularly on boundaries and dispersoids).  The balance 
between the three main properties of 7xxx alloys is a precarious one, with compositional and 
processing parameters having conflicting effects on the various properties.  Modelling of the 
properties is hampered by the complexity of the relationship between primary process variables 
(composition, quenching rate, ageing time, ageing temperature, etc.) and target properties, 
especially toughness and strength.  Thus, data for this alloy system is especially suited for 
investigation using adaptive numerical modelling. Optimal feature representation (data pre-
processing) using knowledge of precipitation processes in these alloys may be an effective means 
of enhancing the predictive capability of models. 
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2.   DATASET  
 
The present, proprietary dataset comprises the results from heat treatment trials carried out by 
DERA, Farnborough, U.K., under contract from British Aluminium Plate, on a range of alloy 
compositions that broadly cover the high strength variants of the 7xxx series aluminium alloys. 
Although of limited size, the dataset reflects its experimentally designed origin as the input 
distributions were wide ranging if somewhat sparse. For each alloy, composition levels of Zn 
(xZn,w), Mg (xMg,w), Cu (xCu,w), Zr (xZr,w), Fe (xFe,w) and Si (xSi,w) in wt% have been determined.  
The alloys were solution treated and subsequently aged for various times at a single temperature 
which is similar to the ones used for commercial T7 tempers. The subsequent 0.2% proof stress 
(σ0.2) and electrical conductivity (σel) have been measured for each alloy variant.  36 
composition/ageing time variants have been studied, and as a result this dataset can be considered 
relatively small for the successful application of ANN type approaches.  For each differing 
condition a number of experimental tests had been carried out, mean property measurements have 
been used throughout.  
 
The inputs (and outputs) were transformed to have a zero mean and unit variance.  This simple 
form of pre-processing is beneficial as it removes non-essential sources of collinearity, improving 
the condition of the dataset and allowing comparison of magnitudes of the weights determined in 
the multiple linear regression (MLR). To preserve commercial confidentiality, all data involving 
input variables has been presented in this normalised form, final output (property) values and mean 
squared error (MSE) values are however presented in un-normalised form.  In the NF modelling 
framework, in order to facilitate model refinements, which require exact specification of locations 
(knot placements) along the fuzzified input variables, the input variables are transformed to lie 
within ±1.   
 

3. EMPIRICAL DATA MODELLING  
 
3.1  Neurofuzzy Data Modelling  
Fuzzy logic was developed as a way of modelling natural language explanations used by human 
experts.  Fuzzy algorithms have been applied to a wide range of complex engineering applications, 
where the possibility for fast system development is exploited.  In such applications, the systems 
store information as a set of easily interpreted, linguistically based fuzzy rules, for example one can 
define set definitions for natural language terms such as “short”, “medium” and “long” and then 
interpolate between these rules.  However, there are a number of different implementation 
methodologies, and there is a lack of rigorous theory to explain how the systems generalise and to 
describe the relative advantages of different systems.  Fuzzy sets form the basis of fuzzy logic and 
they provide absolute mathematical interpretation to vague concepts.8)  In contrast to classical 
Boolean logic an element may be a partial member of a fuzzy set, e.g. if the ageing time is 6 hrs, 
the membership of the set of “long” might be taken to be: μlong(ageing time) = 0.8. So there is a 
gradual transition between membership and non-membership whereas in classical logic an element 
must be wholly included or entirely excluded from a set (i.e. ageing time is either “long” or “not 
long”).  A fuzzy rule is of the form: 
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rij:  IF(x1 is A1
i AND x2 is A2

i AND … AND xn is An
i)  THEN  (y is Bj)       cij     (1) 

 
Where xk is the kth real-valued input, y is the output (model prediction), rij is the ijth fuzzy rule, Aik 
is the univariate linguistic term (or fuzzy set) and Bj is the corresponding output linguistic rule. 
 

E.g.: IF (Cu is high) AND (ageing time is medium) THEN (proof stress is high) 
 
Associated with each rule is a rule confidence, cij, which is a measure of the degree of the 
contribution of the rule to the output.  A rule confidence of zero means that the rule does not 
contribute to the output, and a rule confidence of one means that the rule is completely true.  The 
set of fuzzy sets used to represent an input, and the functions used to express these sets, may be 
pictorially represented to allow easy interpretation.  A simple example of this, with three triangular 
(second order) fuzzy sets and a variable (e.g. ageing time) with value range 0-10 is shown in Fig 1.  
At any given value of the variable, membership of all the possible sets adds to unity.  For example, 
at a value of 2.5 the membership of the set “short” is 0.5, of the set “medium” is 0.5 and of the set 
“long” is zero.  The point at which the membership of two fuzzy sets comes to zero (at a value of 
0.5 in this case) is called a “knot”, and is likely to represent a change in the trend between input 
and output.  The actual shape of the trend between input and output is determined by the rule 
confidence. 

 
Neurofuzzy modelling combines such qualitative, rule-based representation of the derived model 
with the structural and learning abilities commonly associated with ANNs. The modelling abilities 
can be assessed, the structure analysed and standard algorithms can be used to train weights and 
investigate various structural configurations within a model hypothesis testing framework.9)  The 
NF modelling employs an analysis of variance (ANOVA) representation to model the additive 
structural relationships that may exist in the data.  This allows the network’s output (predicted 
properties) to be expressed as a sum of a number of small NF systems (or subnetworks), each with 
a limited number of inputs (e.g. compositional variables, ageing time) from the main input vector.  
The output is given by: 
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where ( )xiA

μ  is the ith multivariate fuzzy membership function generated by fuzzy intersection of 
the linguistic variables Aik, yj

c  is the centre of the jth fuzzy output set and wi is the weight 
associated with the corresponding membership function. This representation is identical to a B-
spline network, where the multivariate basis functions, ai(x), are the multivariate fuzzy 
membership functions. Output si(xi) is the output from the ith subnetwork whose input vector xi is a 
smaller subset of the total input vector X.  The structure of this type of network is shown in Fig 2.  
Each subnetwork is implemented as a conventional NF model, where the output is formed from a 
linear combination of fuzzy input basis functions which are implemented as B-spline piecewise 
polynomial basis functions.  This simplified additive network reduces the resources (quantity of 
data) required to implement a robust fuzzy system (compared to one large network taking all the 
input variables), and gives improved generalisation ability, while also increasing the transparency 
of the network by simplifying the linguistic fuzzy rules produced.10)  In addition, when the 
subnetworks each have a small number of inputs (1 or 2), the additive structure can reveal simple 
trends in the network’s output by enabling visualisation of the output of each subnetwork. This is 
especially important for verification and validation as this can be compared to simple linear models 
and can highlight regions of differing trends that can be verified against expert knowledge.  The 
NF framework allows the designer to use their own expertise to formulate rules to initialise the 
network and also to verify relationships extracted from the data by the network against their current 
physical understanding of the system.  This is in contrast to the physically ambiguous character of 
pure neural networks, which can be seen as “black-box” learning systems. 
 

 
 

3.2  Model construction and training neurofuzzy networks  
Given a particular NF network structure, the weights (in effect the rules) can be estimated using 
robust linear optimisation algorithms, hence the construction procedure is a search for an 
appropriate model structure. For a given NF model, possible refinements to construct the model 
are: 
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• Univariate addition: inclusion of an input by including another additive subnetwork;  
• Tensor product: inclusion of an input to an existing subnetwork, allowing input variable 
interactions; 
• Knot insertion: the flexibility of a subnetwork is increased by refining the rulebase through 

introduction of a new basis function; 
• Subnetwork deletion: an existing subnetwork is removed; 
• Tensor splitting: a subnetwork with n ≥ 2 inputs is replaced by one that depends on less 
combinations of the n inputs; 
• Knot deletion: the flexibility of a subnetwork is reduced by reducing the number of basis 
functions; 
• Reduce order: the order of basis functions in a subnetwork is reduced. 
 
These refinements are combined, to provide a coherent model search, into a forward selection-
backward elimination (FS/BE) pass structure, in which initially the overall model structure is 
identified by a set of model building passes and subsequent model pruning passes are employed to 
remove any redundant sources of variance, to give the most parsimonious model.  Parsimonious 
models are desirable as each redundant input variable in a network increases its complexity without 
adding any useful information to the model.  Typically an ANN will use mean squared error (MSE) 

as a measure of prediction performance, where MSE =
1
N

(ti − yi)
2

i

N

∑ .  N is the number of data 

pairs in the set, ti is the target value (i.e. the measured output) and yi is the predicted output.  In NF 
data modelling statistical significance measures are used to balance the network’s MSE against its 
size and the amount of available data. This ensures that an acceptable level of performance is 
achieved with respect to the network’s size and the quantity of the available training data.9)  The 
network construction algorithms are stopped when the statistical significance measure starts to rise. 
To overcome problems associated with finding local minima in MSE and statistical significance, 
model search termination criteria were appropriately set.11)  In light of empirical results11) the 
structural risk minimisation (SRM)12) principle was adopted as the statistical significance measure. 
Due to the small sample size, the order of the B-splines considered was limited to be ≤ 2, to 
prevent the inclusion of severely ill-conditioned basis functions.  
 
For a given set of inputs and corresponding output(s) the network can be trained in either of the 
following ways:  
• the training data are presented to an initially empty model and the automatic model 
construction algorithms search for the network structure; 
• the data can be presented to an initial network structure which reflects prior knowledge and 
system understanding and network construction algorithms used to refine the model structure; 
• connections and rule bases (model structure) can be defined and the network left to 
determine only the weights/rule confidences. 
 
Initially the first method of training was used in order to investigate what structures the network 
could identify from the raw data (dataset A).  Pre-processing of the input data was then carried out 
in the light of both physical metallurgy understanding (dataset B) and rule-of-thumb 
approximations reported in the literature (dataset C) which are detailed in later sections of the 
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paper. The network was then presented with these two revised datasets to examine to what degree 
the incorporation of “expert knowledge” at the data pre-processing stage would improve the 
modelling performance. All data available was used in the model construction to retain the 
maximum possible information. Models constructed were assessed in terms of their statistical 
significance measure (SS), an adjusted training set MSE taking into account the number of 
parameters (nw) fitted in the model. Once the model was identified, a leave-one-out cross-
validation (LOOCV) strategy was employed to assess the generalisation performance of the model, 
by estimating the model’s prediction error.  Since model identification was determined using all the 
data available, the LOOCV estimate of prediction error will still exhibit some bias. Target output 
(measured properties) versus model output (predictions) were also examined. Relationships 
identified were validated against known physical metallurgy principles. 
 
From examination of the models identified by the automatic model construction algorithms and 
using a priori knowledge of the likely physical processes and trends characterising alloy 
behaviour, model initialisation was investigated, by specifying a prior functional form for the 
model (i.e. specifying a set of fuzzy rules).  The three datasets  (A, B and C) were then presented to 
this predetermined model structure so that the efficacy of the data pre-processing could be assessed 
further. 
 
3.3   Multiple linear regression analysis 
To provide a benchmark against which the NF modelling approaches can be assessed, a multiple 
linear regression was also carried out on each dataset.  A linear model is given by equation (3): 
 

( )
p
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p
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22110

 (3) 

 
where x = [x1,..., xp]T is the model’s input vector, w1,...,wp are unknown fitting parameters to be 
estimated, w0 is an unknown bias term and y is the predicted output. The unknown vector of 
parameters, wp, can be estimated in the least squares sense. 
 
The next section of the paper details and justifies the two data pre-processing approaches adopted 
to further improve the modelling process.  
 

4.   TRANSFORMATION OF INPUT VARIABLES 
 
4.1   Precipitation in Al-Zn-Mg-Cu Alloys  
A large body of work on the thermodynamics, microstructure and microstructure-property relations 
of 7xxx (Al-Zn-Cu-Mg) type alloys exists.13,14,15,16,17,18,19,20) Using this knowledge, modelling of the 
strength of ternary Al-Zn-Mg alloys on an analytical microstructure related basis21) has been 
carried out, and modelling of the quaternary 7xxx alloys on the basis of similar microstructure-
property relations appears to be possible.20)  Instead of modelling properties using either purely 
adaptive numerical modelling approaches or purely analytical microstructure-property models, it 
may be advantageous to use the physical modelling to aid data-driven modelling approaches.  In 
the present work, the original raw input data for the present Al-Zn-Cu-Mg-Zr type alloys have been 
transformed into data that reflect key microstructural features, most notably the amounts of the 
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main phases.  In the interest of clarity, we have limited ourselves to considering just two 
microstructural elements: the volume fraction of the main strengthening phase η' that forms in the 
alloys and the volume fraction of the main coarse intermetallic phase: the S (Al2MgCu) phase.  
 
 
4.2  Main microstructure related strengthening and conductivity effects  
During homogenising and solution treatments some of the Cu and Mg present in the 7xxx alloys 
will not dissolve in the Al-rich matrix because some S (Al2MgCu) phase will be stable at the 
solution treatment temperature.  The Cu and Mg “tied-up” in the S phase will thus not cause any 
increase in σel  of the Al-rich phase (the Al-rich phase is the only significant conductive pathway in   
the alloys) and, further, are not available for subsequent precipitation hardening during ageing 
(precipitation hardening is the dominating strengthening mechanism).  This means that, in first 
approximation, the Cu and Mg present in S phase have become largely irrelevant in affecting the 
σel and σ0.2 of the alloy. (However, the S phase will have a detrimental effect on a third important 
mechanical property: the toughness.) Thus, modelling of σel and σ0.2 of the alloy variants may be 
improved by transforming the atomic fraction of Cu and Mg, xCu and xMg into xCu,α and xMg,α, the 
atomic fraction of Cu and Mg dissolvable in the Al-rich (α) phase.  The latter quantities can be 
obtained as follows. 
 
If the stochiometry of a phase is fixed, the solubility of an intermetallic phase can often be 
described by the regular solution model.13,22,23)  In this model the solvus related to an intermetallic 
phase MmAaBbCc (M is the main constituent of the alloy, and A, B, C are the alloying elements) is 
given by: 
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where ΔHsol is the enthalpy of formation of one ‘molecule’ of MmAaBb, kB is Boltzmann’s 
constant and co is a constant.  If appropriate values for ΔHsol, co, a, b and c for each phase can be 
derived from available solubility data, a phase diagram can be constructed.  However, only for 
T=460ºC significant data on the solvi of all phases are available.16) For the S phase the Hsol(S) in 
ternary alloys has been determined previously23), and by combining solvus data at 460ºC16) with 
Hsol the S solvus as a function of the temperature can be estimated.  For S phase, at the solution 
treatment temperature applied to the present alloys, it is thus estimated: 
 

( )( ) 41096.2 −=CuMg cc  (5) 

 
xCu,α and xMg,α can then be calculated as follows: 
 

if  ( )( ) 41096.2 −≤CuMg xx   then xCu,α= xCu  and xCu,α= xCu (6) 

 
 

if  ( )( ) 41096.2 −>CuMg xx    
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then  42

2
1

2
1

, 1096.24)()( ×−−+−−= CuMgCuMgCu xxxxx α   

 
and   ( )αα ,, CuCuMgMg xxxx −−=  (7) 

 
and the atomic fraction of S phase is given by: 
 

xS = 4(xCu − xCu ,α )  (8) 
 
Whilst several precipitation sequences in 7xxx alloys have been reported, it is well established that 
the main sequence responsible for most of the age-hardening in 7xxx alloys is: 
 

sssα → GP zones → η' → η (9) 
 
η' is thought to have a stochiometry close to Mg4Zn11Al24) whilst η is based on MgZn2.14,24) For 
peak aged and overaged alloys, η' will be the main hardening phase and, hence, the maximum 
atomic fraction of η' that can form is given by: 
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αMgZn xxx  (10) 

 
It is thought that for the modelling of σ0.2, xη' is the main composition related variable.  
Additionally, xCu,α and xMg,α are expected to have an influence, mainly through solution 
strengthening of the alloy. Of the latter two xMg,α is thought to have the stronger influence on the 
strength, as solution strengthening due to Mg is generally considered to be more important than 
that due to Cu.25,26)  
 
It is further known that the amount of Mg that is left in solution after completed formation of the 
main precipitate(s) is an important parameter determining the properties of overaged alloys27). We 
have calculated this so-called “excess Mg”, xMg,xs, using a novel expression, which is, at present, 
proprietary. Also xη' , xCu,α and xMg,α are expected to have an influence with the Zn content related 
xη' parameter  having a stronger effect than xCu,α and xMg,α.13) 
 
From the above, it follows that the main variables determining σ0.2 are xη' and t with secondary 
effects determined by xMg,α and xCu,α. The main variables determining σel are xMg,xs and t with 
further minor contributions from xCu,α and a very small influence due to xZn (or xη').  Thus in the 
modelling approaches described below we have applied these insights to construct a new set of 
input variables relevant to the properties to be modelled (dataset B) consisting of: xη' , t , xMg,α , 
xCu,α , xMg,xs and xs. 
  
4.3  Rule of thumb variables: ratios and sums  
In technical publications alloys are often classified by sums and ratios of the weight percentages of 
the main alloying elements, and for Al-Zn-Mg-Cu alloys some of the variables employed are 
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xZn,w:xMg,w, (xZn,w+xCu,w):xMg,w and xZn,w+xMg,w. These ratios can have physical meanings, e.g. the 
xZn,w:xMg,w ratio will exert an important influence on the balance of the main precipitation 
sequences operating in the alloy, but, in terms of solid state reactions, the relevance of adding 
weight percentages of atoms is, in general, unclear.  However, it can be seen that with the atomic 
weight of Zn being about 2.7 times that of Mg, adding xZn,w+xMg,w (in weight percentage) may be 
some measure of the amount of strengthening η' phase, provided this phase has a broad range of 
stability around its central composition of Mg4Zn11Al.  In order to fully investigate possible 
permutations of input variables we have considered the three sums and ratios xZn,w:xMg,w, 
(xZn,w+xCu,w):xMg,w and xZn,w+xMg,w, in addition to ageing time, t.  These four input variables (and 
the corresponding output values of σ0.2 and σel) make up dataset C, the “rule-of-thumb” dataset. 
 
 

5.   MODELLING OF THE DATASETS 
 
Both the MLR and the NF modelling approaches have been applied to all 3 datasets (A – raw data, 
B – microstructure related and C – “rule-of-thumb”). 
 
5.1  Data analysis  
Inspection of data distributions, statistical and conditioning diagnostics allowed any collinearity 
between variables to be identified.  Some degree of correlation was found between xFe,w and xZr,w in 
dataset A and between xZn,w:xMg,w and (xZn,w+xCu,w):xMg,w in dataset C.  Two near linear 
dependencies were detected in dataset B, the first between xCu,α and xS and the second involving 
xMg,α, xη' and xMg,xs.  The collinearities in datasets B and C can be understood directly in terms of 
the transformations performed in section 4.  The correlations in dataset A may be a reflection of the 
small sample size.  Such collinearities are of concern for subsequent regression analyses and 
inferences, as these data weaknesses will be responsible for high parametric uncertainty and lower 
confidence in the predictions. 
 
5.2  MLR analysis   
Linear regression analysis may be viewed as transparent approach to modelling, as the inspection 
of both magnitude and sign of the weights may reveal information about the relative contributions 
of the inputs. Although insufficiently flexible to perform well in many applications, MLR analyses 
can help interpreting and understanding the data.  Table 1 lists the weights determined for each 
input variable and the resultant MSE for each dataset for the MLR approach.  The MLR approach 
predicts σ0.2 with a high MSE with no tangible change observed from pre-processing the data (in 
all cases comparable to an effective standard deviation of error on the prediction of ±25 MPa).  
MLR accounted for a similar proportion of the variance in σel values, again MSE was unaffected 
by choice of dataset (giving an effective standard deviation of error on the prediction of ±1.85 
%IACS). Generally speaking the weights obtained for dataset B appear consistent with the analysis 
presented in Section 4.2. xη' and xMg,α have the largest weights in determining σ0.2 with the 
influence of xS being near to negligible.  Increasing ageing time will reduce the strength because 
the data is obtained mostly for the overaging regime.  However the uncertainty in the weights 
(particularly for collinear variables) is high, and inferences based on individual weights should be 
made with caution. 
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Dataset A  
(raw data) 

Dataset B  
(microstructure related 
data) 

Dataset C  
(“rule-of-thumb” data) 

Weights Weights Weights Inputs 
σ0.2 σel 

Inputs 
σ0.2 σel 

Inputs  
σ0.2 σel 

xZn,w  +0.43 +0.04 xη' +0.36 −1.24 xZn,w:xMg,w  −1.21 +0.93 
   xs +1E-4 +0.16 xZn,w+xMg,w +0.68 −0.35 
xMg,w +0.60 −0.72 xMg,α +0.72 +4.62 (xZn,w+xCu,w):xMg,w +0.80 −0.10 
   xMg,xs −0.06 −5.99    
xCu,w +0.26 −0.05 xCu,α +0.26 −0.15    
xZr,w +0.17 −0.20       
xFe,w −0.13 +0.12       
xSi,w +0.10 −0.19       
t −0.73 +0.75 t −0.73 +0.75 t −0.73 +0.73 
MSE 642 3.48 MSE 629 3.27 MSE 602 3.52 
 
Table 1 Linear regression analysis of the data on σ0.2 and σel employing three different sets of 

input data: the raw input data (dataset A), the set transformed using microstructure related 
assessments (dataset B) and the set transformed using “rule-of-thumb” sums and ratios 
(dataset C) 

 
 

 σ0.2     σel     
Dataset Model MSE LOOCV SS nw Model MSE LOOCV SS nw 

A Fig.3 451 507 2394 8 Fig.4 0.344 0.385 1.29 5 
B Fig.5 544 590 2444 6 Fig.6 0.259 0.271 0.98 5 
C Fig.7 358 436 1898 8 Fig.8 0.256 0.272 1.41 7 

 
Table 2 Model performance measures for NF modelling of σ0.2 and σel employing three different 

sets of input data: the raw input data (dataset A), the set transformed using microstructure 
related assessments (dataset B) and the set transformed using “rule-of-thumb” sums and 
ratios (dataset C). 

 
 
5.3  Neurofuzzy data modelling   
The results of the NF model construction algorithms starting from an empty model structure for 
input datasets A, B and C are presented in Figs. 3-8, whilst model performance measures are listed 
in Table 2.  Comparison of Tables 1 and 2 indicates that NF models yield lower MSE values for 
predictions of both σ0.2 and σel.  In modelling σ0.2 from datasets A and B a sub-set of the inputs has 
been chosen, dataset C contained the fewest inputs and they have all been retained despite the 
correlations between the inputs.  In all cases an input variable related to Mg and t have been 
combined to form a separate subnetwork, leading to the improved MSE over MLR.  The other 
inputs give simple linear trends in behaviour. For all 3 datasets a subset of the inputs has been 
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chosen to model σel: in all 3 cases the ageing time is modelled by a piecewise linear approximation 
and this extra flexibility has allowed a considerable improvement in the MSE c.f. MLR. 
 

 
 
The number of adjustable parameters in the NF model indicates its complexity.  Dataset B 
generally leads to models with the fewest number of adjustable parameters, which indicates that 
this transformation of input variables is allowing the identification of a more parsimonious model 
structure.  Dataset B represents the most explicitly descriptive metallurgical information, i.e. it 
should provide a more transparent feature representation, and the selection of input variables by the 
NF modelling process should have more relevance to microstructure-property relationships.  A 
better fit is not necessarily an indication of good generalisation performance.  The NF model for 
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dataset B identifies t and xMg,xs as the main variables influencing σel, which is in accordance with 
the discussion in section 4.2.  The selection of t, xη' and xMg,α as the main variables influencing σ0.2 
is again in accordance with section 4.2.  One surprising result of the NF model construction for set 
B is the selection of the tensor product xMg,α × t.  In terms of microstructure development this 
indicates that the amount of Mg dissolved in the Al-rich phase has an important influence on the 
rate of strength reduction.  The latter is due to coarsening of the main phase(s), thus the Mg × t 
dependency may be related to the interaction of Mg atoms with vacancies, as the latter influences 
diffusion rates significantly, e.g.28).  The Mg × t dependency is supported by the fact that for the 
other two datasets an input variable related to Mg and t have also been combined to form a tensor 
product subnetwork structure. 
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Fig 9 and Fig 10 show the network targets versus network outputs for the NF models 
corresponding to the three datasets.  Training data and test data - based on LOOCV - are shown 
with error bars representing the uncertainty in the model’s output predictions with respect to 
particular input variable conditions.  The ability to derive error bars9) is a valuable property of the 
model, giving an indication of how well the model performs in different regions of the input space. 
Test errors are seen to be slightly larger than the training error in all cases and show similar 
behaviour. 
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5.4  Neurofuzzy model initialisation.  
Unless an exhaustive search for an optimal model is undertaken, the instability of the heuristic 
model construction algorithms may mean that the model may still settle in a local minima.  In this 
modelling exercise the small sample size has placed a significant restriction on the number of 
possible adjustable parameters in the model.  Initialising the σ0.2 NF model by including xCu,α in 
addition to the other inputs (i.e. imposing a change in model structure) leads to a largely unchanged 
SS but with a much-improved MSE for dataset B.  This model structure was identified during the 
construction of the final model portrayed in Fig 4a, but the lack of improvement in SS on including 
xCu,α led to the deletion of this input.  In fact, the structure of the σ0.2 model thus obtained is 
equivalent to the ones depicted in Fig3a obtained using dataset A and in Fig 7a obtained using 
dataset C, and this model is presented in a general form in Fig 11. Constraining the model for each 
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dataset to the general form in Fig 11 provides a comparison of the effect of the data 
transformations on modelling σ0.2.  Similarly, we may define a general constrained model to 
compare the effect of data transformations on modelling σel.  Comparison of the models in Fig4a, 
Fig 6a, and Fig 8a shows that the models for σel are generally given by a summation of a piecewise 
linear approximation to t with (depending on the input dataset) composition related inputs.  Hence, 
a general model incorporating all these features is the one presented in Fig 12. 
 
The relative performance of the three different sets of input data when using the initialised model 
structures (Fig 11 and Fig 12) is presented in Table 3.  In addition to the three sets of input 
variables (A, B and C) employed thus far we have also included results for a fourth set (set D) 
which is the same as set B apart from the fact that for the model for σ0.2 instead of xMg,α, 1/xMg,α is 
taken.  This change is not obtained from any microstructural insight, but is based on inspection of 
some additional NF model constructions of various variable sets which included inputs of the type 
xZn,w:xMg,w, (xZn,w+xCu,w):xMg,w, 1/xMg,α, i.e. variables proportional to 1/xMg,α or 1/xMg,w, which 
revealed that this inverse compositional variable yielded improved modelling results.  Thus this 
single modification to set B is based on NF modelling results inspired by the ratio of variables in 
set C.  
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Dataset σ0.2   σel   
 Variables MSE LOOCV variables MSE LOOCV 
A: no 
transformation 
of inputs 

t × xMg,w, xZn,w, 
xCu,w 

451 507 t, xMg,w, xZn,w, 
xCu,w 

0.279 0.291 

B: 
microstructure 
related data 

t × xMg,α, xη', xCu,α 468 528 t, xMg,xs, xη', xCu,α 0.204 0.219 

C: ‘rule of 
thumb’ based 
ratios 

t × xZn,w:xMg,w, 
xZn,w+xMg,w, 

(xZn,w+xCu,w):xMg,w 

358 436 t, xZn,w:xMg,w, 
xZn,w+xMg,w, 

(xZn,w+xCu,w):xMg,w 

0.396 0.452 

D: approach B 
taking 1/xMg,α 

t×1/xMg,α, xη', 
xCu,α 

411 466    

 
Table 3 Training set MSE and LOOCV prediction MSE estimates obtained for the initialised 

models for σ0.2 and σel for three different sets of input data: the raw input data (dataset A), 
the set transformed using microstructure related assessments (dataset B) and the set 
transformed using “rule-of-thumb” sums and ratios (dataset C) and the 1/xMg,α (dataset D).  

 
6.   SUMMARY AND DISCUSSION   

 
6.1 Modelling approaches 
A dataset of 7xxx series-based aluminium alloys with 7 input variables (6 alloying element 
concentrations and ageing time) and 2 output variables (the properties σ0.2 and σel) has been 
analysed using multiple linear regression (MLR) and NF modelling approaches.  For both 
modelling approaches we evaluated the effectiveness of pre-processing of the input data using 2 
types of transformations of the composition variables.  In order to facilitate comparisons the root 
mean square errors (RMSE) on the test data obtained from Tables 1 to 3 are presented graphically 
in Fig 13.  This shows that both for σ0.2 and σel (irrespective of data pre-processing) the NF 
modelling always yields improved model predictive ability as compared to MLR, with the 
difference being especially pronounced for σel.  These improvements are due to increased 
flexibility in the models that are constructed in the NF modelling framework which yield a better 
functional representation than the simple inflexible MLR models. In modelling σ0.2 the NF 
approach selects a model which contains a sub-model combining t and a Mg-related parameter 
(xMg,w for set A, xMg,α for set B and xZn,w:xMg,w for set C), and for the modelling of σel  the NF 
approach selects a model which contains a piecewise linear approximation for the t-dependency.  
As evidenced by the reduced SS and MSE values, these refinements are well matched to the data 
and the identification of these refinements via a method which is supported by the data is the main 
advantage in the NF approach when applied to the present dataset. 
 
In comparing the modelling performance obtained using the various input datasets (A, B and C) a 
mixed picture emerges, and we have to separately discuss the prediction of σ0.2 and σel. For 
modelling σel, Fig 13 shows that the use of transformed input dataset B is clearly beneficial.  
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Dataset B has represented the data in explicit microstructural features so that the specific effects of 
different microstructure contributions can be assessed. In contrast, for modelling σ0.2, Fig 13 shows 
that the use of transformed input dataset C is clearly the most beneficial.  In this case we still have 
greater confidence in the trends indicated by the dataset B model, which is more parsimonious 
(fewest number of adjustable parameters) but shows worse MSE.  A modelling cycle has been 
identified consisting of: 
 
 

 

 

 

 

 

 

 

 

 

 
Fig.13: Comparison between training and LOOCV estimates of RMSE for the modelling 

approaches pursued (MLR, NF, initialised NF models) and data pre-processing (A, B, C). 
 
 
 (1) data inspection/understanding ↔ (2) dataset selection ↔ (3) empirical modelling (model 
construction) ↔ (4) model validation (physical insight) ↔  (1) etc. 
 
Based on inspection of the FS/BE model constructions, general initialised models were defined for 
each property with a similar structure (Figures 11 and 12) for each dataset.  This formed a basis for 
comparison of the effects on modelling performance for each dataset transformation.  In modelling 
σ0.2 the initialised model for dataset C showed approximately a 10% reduction in the test RMSE 
c.f. test RMSEs for datasets A and B; dataset D - produced as a result of the modelling cycle 
defined earlier and is a combination of physically based transformations (dataset B) and a 
transformation suggested by inspection of NF model constructions - exhibited an improved test 
RMSE over dataset B.  In modelling σel, the initialised model for dataset B showed at least a 15% 
reduction in test RMSE c.f. test RMSEs over datasets A and C. 
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6.2 Microstructure-property relations of 7xxx alloys 
The present analysis can be used to draw out some of the microstructure property issues for the 
present, complex 7xxx (Al-Zn-Mg-Cu) alloys.  Firstly it is noted that compared to the original 
untransformed dataset (A) the dataset transformed using some relatively simple information on the 
microstructure (B) yielded a considerable improvement in NF modelling performance for σel but no 
improvement in the modelling of σ0.2.  In retrospect this difference is not surprising as strength is 
the more complex property, more dependent on additional microstructural features that are not 
directly included in the available inputs (e.g. grain size, precipitate size distributions). Both the 
MLR and the NF modelling confirm the main expected structure-property relationships, for 
example, the maximum amount of η', xη', is important in determining the strength.  In addition the 
NF approach revealed that for σ0.2, a sub-model of t and Mg concentration improves modelling 
performance statistics.  It is suggested that this sub-model in essence represents the complex 
interaction of dissolved Mg with vacancies, which will influence the rate of ageing: possibly 
vacancies bind to the Mg atoms enhancing ageing in the present overaged alloys. 
 
At present the modelling of the properties of 7xxx alloys on the basis of microstructural knowledge 
is further pursued by combining kinetic equations (e.g. Johnson-Mehl-Avrami-Kolmogorov29,30) or 
Starink-Zahra31,32,33) type equations), coarsening models and microstructural investigation.  Initial 
results are promising: further enhancement of the accuracy of model predictions is possible using 
this approach, where pre-specified regression functions (based on sound physical metallurgy) are 
being used.  This, however, does not detract from the data-driven results reported in the present 
paper.  NF modelling, combined with suitable transformation of input data and model initialisation, 
is a transparent approach which allows us to gain information about relationships in the data 
through the modelling process and provides a route by which purely empirical modelling 
approaches can be combined with physical modelling relatively easily.  Such an approach requires 
only limited knowledge of the system investigated, and is hence an important tool for analysis of 
complicated materials processing issues. 
 
 

7.   CONCLUSIONS   
 
In considering the overall implications of the modelling approaches attempted in the present paper 
it is clear that the combination of NF approaches to model selection/construction combined with 
transformation of the input data using microstructural data (precipitation sequence, precipitate 
compositions) has been successful in improving the modelling performance for the present 7xxx 
Al-alloy dataset.  In the first iteration, an optimal feature extraction was obtained using input 
datasets B (to model σel) and C (to model σ0.2) for models constructed by the NF approach.  In a 
second iteration, inspection of NF models resulted in a minor change in dataset B that yielded 
dataset D, which proved to be the most successful one in overall terms.  A modelling cycle is 
identified whereby (1) data inspection/understanding ↔ (2) dataset selection ↔ (3) empirical 
modelling (model construction) ↔ (4) model validation (physical insight) ↔  (1) etc.  The use of 
empirical modelling approaches as an assessment of underlying structures in the data is proposed 
as an essential part of modelling based on well-founded physically based relationships.  In 
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situations where more limited physical understanding exists, a NF modelling approach offers a 
combination of pure empirical modelling and physically based modelling possibilities. 
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