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ABSTRACT

In this paper the problem of modelling a large commercial materials dataset using advanced adaptive numeric methods is described. The various approaches are briefly outlined, with an emphasis on their characteristics with respect to generalisation, performance and transparency. A highly novel Support Vector Machine (SVM) approach incorporating a high degree of transparency via a full ANalysis Of VAriance (ANOVA) expansion is also used. Using the example of predicting 0.2% proof stress from a set of materials features, we show how the different modelling techniques compare when benchmarked against independent test data.

INTRODUCTION

The development of empirical models is fundamental to the understanding of complex materials properties within the field of materials science [1, 2]. Models may then be used to understand the physical relationships that exist and to enable optimisation of materials production. Empirical modelling is the extraction of system relationships from observational data, to produce a model of the system, from which it is possible to predict responses of that system. Ultimately the quantity and the quality of the observations govern the performance of the empirical model. Often only partial knowledge is available about the physical processes involved, although significant amounts of ‘raw’ data may be available from production and product release records, which may then be used to construct a data driven model. 
The empirical study of materials phenomena through statistical models has a number of limiting characteristics. Consider a dataset DN  = {xi, yi}Ni=1, drawn from an unknown probability distribution, F, where xi represents a set of inputs (e.g. alloy composition and thermomechanical processing information), yi represents a set of outputs, (e.g. mechanical properties) and N represents the number of data-points. The empirical modelling problem is to find any underlying mapping x
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y that is consistent with the dataset D. Due to its observational nature the data obtained is finite. Typically, this sampling is non-uniform and, due to the high dimensional nature of the problems of interest (i.e. large numbers of inputs), the data will only form a sparse distribution in the input space. Consequently the problem is nearly always ill posed in the sense of Hadamard [3]. To address the ill-posed nature of the problem, it is necessary to convert the problem to one that is well posed. For the problem to be well posed a unique solution must exist that varies continuously with the data. We consider various modelling approaches that are intended to transform the problem to one that is well-posed. A further limitation of any empirical modelling technique is its ability to resolve the problem of highly correlated inputs; if two inputs are highly correlated it is difficult to identify individual effects on the output. 

The work presented in this paper compares and contrasts common empirical models, and state of the art approaches, on the basis of their generalisation ability and transparency. This paper advocates a transparent approach to the modelling problem, which enables understanding of the underlying relationships between inputs and outputs. This knowledge can then be used to enhance model validation through comparison with prior physical knowledge. Generalisation performance is the assessment of model predictions to new and unseen data. Traditional empirical modelling approaches may suffer in terms of generalisation, producing models that can overfit the data. Typically, this is a consequence of the model selection procedure which controls the complexity of the model. For a given learning task, with a finite amount of training data, the best generalisation performance will be achieved if the "capacity" of the model is matched to the complexity of the underlying process.

THE MATERIALS DATASET

In this paper we consider an extensive commercial dataset for Aluminium alloy 2024 in a T351 temper, with the objective being to predict 0.2% proof stress. The "raw" dataset consists of 35 input variables and 2870 data pairs covering various compositional and thermomechanical processing parameters, as well as containing "shop floor" information such as plate numbers and date of alloy manufacture.

For a physically amenable model to be constructed, the original data set was decomposed into a smaller subset based on a single tensile direction (LT), thickness position (C), and a width position (0.5). All of the major alloying elements and the major impurities were retained as inputs to the model, however the minor compositional information was removed. The "shop floor" information was also removed since it was not expected to contribute directly to proof stress, but does provide a valuable check for changes in processing methods, equipment etc. Assessment of the slab dimensional information revealed the majority of the slab width and the slab gauges to be fixed; as a consequence the dataset which was used for modelling contained information for a single slab width/gauge combination. The initial scalped slab gauges on inspection were found to be equal, and as such the total reduction of each plate is entirely defined by the final gauge. The hot-rolled width and length were used to define reduction in the longitudinal and transverse directions; hence a "reduction-ratio" was computed as the ratio of engineering strain in the long and transverse directions between the slab and the final plate. This stage of data pre-processing left a reduced size dataset: the input variables comprised ten characteristics; the final gauge (FG), Cu, Fe, Mg, Mn, Si (in weight percent), slab length (SL), solution treatment time (STT), percentage stretch (%st.), and reduction ratio (RR). After removing the entries with missing and repeated values, 290 data points remained. Before any of the modelling techniques were used to predict the proof stress, the dataset was normalised to have a mean of zero and unit variance.

MODELLING TECHNIQUES

This section considers the adaptive numeric methods used to predict proof stress based on a dataset described in the previous section. Three techniques were considered: (i) Multivariate Linear model, (ii) Bayesian multi-layer perceptron, (iii) Support Vector Machine. Data structure was also examined using a graphical Gaussian model. Each of these models (except the graphical Gaussian model) are assessed against each other quantitatively using the MSE test statistic, and qualitatively in terms of transparency.

Graphical Gaussian Models

As the dimensionality of the problem domain increases graphical models and graphical representations are playing an increasingly important role in statistics, and empirical modelling in particular. Relationships between variables in a model can be represented graphically by edges in a graph where the nodes represent the data variables. Such graphs provide qualitative representations of the conditional independence structure of the model, as well as simplifying inference in highly structured stochastic systems.

Let X be a k-dimensional vector of random variables. A conditional independence graph [4], G = (V,E) describes the association structure of X by means of a graph, specified by the vertex set V, and the edge 

set E. Conditional independence is an attractive method to generalise the relation between two variables. A graphical model is then a family of probability distributions PG that is a Markov distribution over G. A graphical Gaussian model is obtained when only continuous random variables are considered. If we can assume that the data has been drawn from a Gaussian distribution, then there is no loss of information by condensing the data into the sample mean vector, and the sample variance-covariance matrix. A symmetric correlation coefficient matrix can then be obtained from this matrix. To construct the graphical model it is necessary to test for the presence or otherwise of dependencies between the variables. Using a scaled inverse correlation matrix, a second deviance matrix can be computed using equation 1, where Xa and Xb represent the variables against for which conditional independence is being tested for given the other variables in the dataset XC. This test statistic has an asymptotic chi-squared distribution with one degree of freedom. 
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This second matrix, the deviance matrix, measures the overall goodness of fit of a graphical model by carrying out a hypothesis at a 95% confidence interval of the chi-squared distribution. Figure 1 illustrates the graphical model obtained for the materials dataset. 
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Fig. 1. Graphical Gaussian model for the materials dataset.

This figure provides a powerful tool for visualising the complex interactions between the different data variables. For a 10 input dataset, a total of 45 possible relations are possible, however approximately 50% of the relations are deemed to be significant at the 95% confidence level. The graphical model suggests that proof stress (PS) could only be directly predicted from final gauge (FG), solution treatment time (STT) and percentage stretch (%st.) since these are the only variables with which proof stress has direct links. However, the representation shows that there is a large complex hierarchy between the different data variables. The links which are established could represent true physical dependencies between the different variables, as well as representing manufacturing artefacts (for example the use of master alloys in altering composition). 

The Multivariate Linear Model
A multivariate linear model is given by equation 2:
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where x1, . . . , xn is the models input vector, w1, . . .,wn are unknown parameters to be estimated, and w0 is a bias term. The unknown vector of parameters, w, can be estimated together with the associated parametric uncertainty in the standard least squares sense [5].

Low parametric uncertainty standard deviation values, relative to the parameter values, are desirable since they imply more confidence in these parameter values, and hence more significance in the inputs. The parameter values and their associated uncertainty are given in table 1.

Table 1: Weight gains and parametric uncertainty values for the materials dataset.


Bias
 FG
Cu
Fe
Mg
Mn
Si
SL
STT
%st.
RR

w
360.0
-18.1
5.30
4.50
-0.58
4.86
-8.01
-0.41
24.4
21.5
-2.1

(
4.85
3.45
5.05
3.39
6.12
3.80
3.64
3.37
8.20
3.98
5.68

Since the data is normalised the size of the weight gains can be directly interpreted to show the first order importance of these variables in affecting the output. The bias term, the final gauge, solution treatment time and percentage stretch show the biggest values with lowest uncertainty. Selection of these variables is consistent with the graphical model dependencies and the expected physical behaviour. However, it must be borne in mind that the graphical model suggests that a complex system of interdependencies exist in this dataset. The MSE obtained for the linear model was 145.0(MPa2), which represents a tolerance of 12MPa on the proof stress (one standard deviation in the errors between target and predictions).

Bayesian Multi-layer Perceptron 

A Bayesian multi-layer perceptron (MLP) encompasses all of the key features of the classical MLP, but differs in that network training takes place using Bayesian learning [6,7]. The result of Bayesian learning is a probability distribution over model parameters that expresses our degrees of belief regarding how likely the different parameter values are. Initially a wide prior distribution, is defined which might express some rather general properties such as smoothness of the network function, but will otherwise leave the weight values fairly unconstrained. Upon observation of the data, this wide prior distribution is converted to a narrower posterior distribution by using Bayes’ theorem. This illustrates the fact that we have learned something about the extent to which different weight values are consistent with the observed data.

Following the work of MacKay [8] a Gaussian prior was chosen for the initial values of the weights (including the bias), corresponding to the use of weight decay regularisation which controls the network's capacity. Bayesian learning in an MLP simplifies to finding the weight vector, w, which minimises the cost function,
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6.

This cost function was minimised by using the scaled conjugate gradient algorithm [6] while ( and ( were continuously re-estimated using the evidence framework. Automatic Relevance Determination (ARD) [8] was also used as a form of input selection. A single hidden layer network with varying numbers of hidden nodes was used to model the relationship between the inputs and the outputs. For network assessment cross-validation was used. A plot of the MSE for both the training and the test data sets is shown in figure 2 for increasing numbers of hidden nodes.
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Fig. 2. Varying MSE (training data '-.'; test data '-')for increasing numbers of hidden nodes.

An increase in the number of hidden nodes corresponds to an increase in complexity. The initial MSE values for the test set show a consistent decrease as the number of hidden nodes increases up to a maximum of 7 hidden nodes, after which the MSE increases suggesting that overfitting of the data has started to occur. The MSE for the training set shows a decreasing error for increasing hidden nodes, a manifestation of the fact that increasing complexity corresponds to an increase in regularisation. The training data showed a MSE of 65.0 whilst the test error showed a MSE of 84.2 corresponding to an effective standard deviation of 8MPa on the training data and 9MPa on the test data.

Support Vector Machines (SVMs)

SVMs have recently received an intensified research effort, due to many attractive features and promising empirical performance. The formulation embodies the principle of structural risk minimisation (SRM) developed by Vapnik [9]. SRM differs from the commonly used empirical risk minimisation (ERM) by trying to minimise an upper bound on the expected risk, rather than minimising the error on the training set. If the VC dimension is low, the potential to overfit the data is low, enabling good generalisation. SVMs nonlinearly transform the original input space into a higher dimensional feature space by the use of reproducing kernels. The only way in which the data appears in the training problem is in the form of dot products. The use of a kernel function enables operations to be performed in the input space rather than the potentially high dimensional feature space. 

SVMs, like the Bayesian MLP, are essentially black box models, however transparency can be introduced by use of the SUPANOVA framework [10]. The SUPANOVA promotes a sparse representation within an ANOVA (Analysis Of VAriance) representation. The ANalysis Of VAriance (ANOVA) representation provides a transparent approach to modelling. It describes the decomposition of the function into additive components, with the objective being to represent this function by a subset of terms from an expansion,
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7.
The solution to this problem is represented by a sum of univariate, bivariate and trivariate ANOVA terms. For this dataset 1024 different terms were possible, however only 20 terms were chosen as being significant. Figure 3 shows a selection of the regression surfaces for the univariate and bivariate ANOVA terms. The MSE for the training set was 61.4 whilst the generalisation MSE was 80.8 a tolerance of 8.9 MPa on the proof stress values.
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Fig. 3. Univariate and Bivariate plots for the materials dataset.

These regression surfaces represent interaction terms: to be interpretable the terms which appear in the univariate plots, must be added across the relevant dimension should they occur in the bivariate (or higher order) regression surfaces. The regressions may be compared with physical trends, with those shown in figure 3 showing increasing strength with increasing silicon concentration and percentage stretch, but decreasing with final gauge.

DISCUSSION

This paper described the modelling of proof stress using advanced adaptive numeric methods. In the context of this example the key empirical modelling themes of model validation, model transparency and model generalisation were illustrated. Table 2 shows the MSE values for each of the quantitative modelling techniques used.

Table 2. MSE values for the empirical models.


Linear
Bayesian MLP
SVM

MSE Train
94.1
65.0
61.4

MSE Test
145.0
84.2
80.8

The graphical model, through its highly transparent nature, shows that a complex hierarchy of interactions are prevalent in this dataset, as such the separation of a particular variables influence on the output is made difficult. The linear model provided a benchmark against which all of the other techniques were compared. As a consequence of its simple inflexible nature, and inability to adapt to more complex scenarios, it exhibited the worst performance in terms of MSE. However it does provide an indication of variable influence through its transparent nature. The Bayesian MLP showed better performance over the simple linear model, a consequence of its advanced features such as incorporation of input selection via ARD and ability to prevent overfitting through regularisation. A limitation of the Bayesian MLP is that it lacks transparency, the parameters in the network are not directly interpretable in the same way as the linear model. Very local transparency can be introduced by testing the model using artificial datasets, where an input is varied between its maximum and minimum values whilst setting the other variables to be at their means. However, this process is very limited in high dimensional problems. The support vector approach showed the best generalisation ability. The SUPANOVA framework incorporates transparency, and the trends depicted in figure 2 are consistent with expected theories of physical behaviour. This illustrates that a fully transparent modelling approach does not affect generalisation performance, but provides a means for validating the model constructed. SVM's prevent overfitting of the data by zero order regularisation in the nonlinear feature space. A major problem with any empirical modelling approach is the extent to which each of the data variables are correlated with each other. Further work will try to assess the applicability of data preprocessing techniques to resolve this problem.
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