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As the deployment of expert systems has spread into more
complex and sophisticated environments, so inherent
technological limitations have been observed. As a technique
for overcoming this complexity barrier, researchers have
started to build systems composed of multiple co-operating
components. These systems fall into two distinct categories;
those that solve a particular problem, such as speech
recognition or vehicle monitoring, and those that are general
to some extent. GRATE is a general framework, which
enables an application builder to construct multi-agent
systems for the domain of industrial process control. Unlike
other frameworks, GRATE embodies a significant amount of
inbuilt knowledge related to co-operation and control which
can be utilised during system building. This approach offers a
paradigm shift for the construction of multi-agent systems, in
which the role of configuring pre-existing knowledge becomes
an integral component. Instead of starting afresh, the designer
can utilise the in-built knowledge and augment it, if
necessary, with domain-specific information. The GRATE
architecture has a clear separation of concerns, and has been
applied to real-world problems in the domains of electricity
transportation management and diagnosis of a particle
accelerator beam controller.

1 Introduction

After more than a decade of successful exploitation, there
are now thousands of expert systems being used in
hundreds of companies all over the world to solve
complex problems in numerous domains [1]. Such
systems have been particularly important and successful
in the domain of industrial process control, where
conventional software and teams of operators were
unable to cope with the demands presented by rapidly
changing, complex environments [2]. However, as expert
systems technology has proliferated and individual
systems have increased in size and complexity, new
problems and limitations have been noted [3, 4]:

® scaleability: the complexity of an expert system may
rise faster than the complexity of the domain.

e versatility: a complex application may require the
combination of multiple problem-solving paradigms.
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® reusability: several applications may have require-
ments for similar expertise, which has to be coded afresh
in each new situation.

® brittleness: expert systems typically have a narrow
range of expertise and are generally very poor at identify-
ing problems that fall outside their scope.

@ inconsistency: as knowledge bases increase in size, it
becomes correspondingly more difficult to ensure that
the knowledge they embody remains consistent and
valid.

Several approaches have been proposed to circumvent
these problems. Lenat et al. [5] have built CYC, a large
expert system containing a substantial amount of
‘common sense’ knowledge. This work is based on the
supposition that such a vast body of knowledge is needed
to solve any non-trivial problem. Other researchers have
followed a more traditional software engineering
approach and have compartmentalised the problem solv-
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ing into smaller, more manageable components that can
communicate. Work adopting the latter philosophy is
grouped under the collective term distributed artificial
intelligence (DAI) [6-8] and is the main focus of this
paper. From a system engineering perspective, multiple
communicating problem solvers have several potential
advantages, including reusability of problem-solving
components, greater robustness in the case of component
failure, speed-up due to parallel execution, enhanced
problem solving due to the combination of multiple
paradigms and sources of information, and increased
system modularity [6, 8].

In DAI, the individual problem-solving components
are called agents; these are grouped together to form
communities. Each agent is capable of a degree of problem
solving in its own right,* has its own goals and objec-
tives, and can communicate with others by passing
messages. Agents within a community typically have
problem-solving expertise that is related, but distinct,
and that frequently has to be combined to solve prob-
lems. There are two main cases in which multiple agents
need to work together in a co-ordinated and coherent
manner; first, when individual subproblems cannot be
solved in isolation. For example, in work on speech
recognition, it is possible to segment an utterance and
work on each individually. However, the progress which
can be made in such circumstances is very limited [10].
Secondly, even if individual subproblems are soluble in
isolation, it may be impossible to synthesise their results;
for example, when building a house, subproblems such
as determining the size and location of rooms, wiring,
plumbing, and so on interact strongly and cannot be
considered in isolation [11].

Two main types of software tool have been developed;
integrative  systems and  experimental testbeds [6].
Integrative systems, such as GRATE, provide a frame-
work to combine a variety of problem-specific tools and
methods into a useful whole, whereas experimental
testbeds have their main emphasis on controlled experi-
ments in which both measurement and monitoring of
problem solving activity are the prime consideration.
Within the former category, two broad classes of system
can be identified:

O systems that test a specific type of problem solver, a
specific co-ordination technique or a particular domain;
e.g. DVMT [12], ATC [13], HEARSAY II [14], YAMS
[15].

O systems that are general to some extent; e.g. MACE
[16, 17], ABE [18], AGORA [19].

The systems listed under the general category are con-
sidered general because the architecture or language they
espouse is not targeted towards any particular application
domain. They either provide a language with which a
system can be constructed (e.g. AGORA or the family of

* Each agent has an identifiable expertise (e.g. it may control a piece of
machinery, diagnose faults, perform scheduling activities, and so on).
This contrasts this with other forms of distributed problem solving,
such as neural networks [9], in which individual nodes have very simple
states (either on or off), and only by combining many thousands of
these simple entities can problem-solving expertise be recognised.

INTELLIGENT SYSTEMS ENGINEERING WINTER 1992

ACTOR languages [20, 21]) or a ‘shell’ which the
application developer is able to instantiate with the
appropriate co-operation and control knowledge (e.g.
MACE and ABE). In the former case, the application
designer has complete flexibility over the system to be
built, but expends a substantial amount of effort impos-
ing the desired structure, because each application must
be constructed afresh. With the latter approach, the
structure and the mechanisms available are determined
by the shell, and the designer has to use the languages
and tools provided to build the working system.

If DAI is to progress, more powerful development
environments are required to cope with the complexities
of real-size problems [6]. The research described here
sought to address this fundamental issue, by investigat-
ing the feasibility of constructing an environment in
which some of the knowledge required to build a
working system 1s already embedded. This novel
approach means developers can use the generic knowledge
that is embodied (often implicitly) in all multi-agent
systems and is built into the shell, rather than construct-
ing the system afresh and coding this knowledge them-
selves. In this paper, we discuss how such a system was
built and reflect on our experiences of developing the
GRATE (Generic Rules and Agent model Testbed
Environment) system.

The general description of co-operative agent behav-
iour represented by the built-in knowledge is possible
because all the domain-dependent information, which is
obviously necessary to define individual behaviour, is
stored in specific data structures (called agent models).
This approach is an adaptation of the conventional Al
notion that generic structures can be used in building
specialised systems [22, 23]. Agent models provide an
explicit representation of other agents in the world [16]
and the information that may be maintained in them (i.e.
their structure) is consistent across all applications.
However, some parts may be left unfilled in particular
cases (e.g. the goals of a database system may not be
represented, whereas for an expert system they may be
an integral component). Obviously, the particular instan-
tiation of an agent model is highly domain-dependent
and must be carried out by the application builder. The
generic knowledge built into the system then operates on
the structure of the models, rather than their specific
contents.

A further innovation of GRATE is in the type of
problem being tackled. Early DAI systems concentrated
on communities purpose-built for co-operation and with
typically one overall problem to solve. In such systems
(often called distributed problem-solving systems [6]),
the main emphasis was on techniques for problem
decomposition and assigning agents to tasks [11]. Within
the domain of industrial process control, such an
approach is infeasible because of the large number of
systems already in existence and the complexity of the
problem being tackled [24]. To address this problem, the
ARCHON project [25] (in which some of the work
described here took place) focused on making possibly
pre-existing and independent intelligent systems (e.g.
knowledge/databases, numerical systems etc.) co-operate
on a variety of goals. The fact that there is no longer just
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one aim for the whole system requires the agent architec-
ture to reflect the dual role of being an individual and a
community member, requires explicit reasoning about
the process of co-ordination, and means that multiple,
unrelated social activities may be taking place concur-
rently.

2 The GRATE architecture
2.1 GRATE agenist

GRATE agents have two clearly identifiable components;
a co-operation and control layer and a domain level system.
The domain level system may be pre-existing or may be
purpose-built, and solves problems such as detecting
disturbances in electricity networks, locating faults and
proposing remedial actions. The co-operation and
control layer is a meta-controller, which operates on the
domain level system in order to ensure that its activities
are co-ordinated with those of others within the
community.

GRATE communities have a ‘flat’ organisation; there
1s no centralised or hierarchical structure within the
community and also that there are no predefined auth-
ority relationships. A global controller was not con-
sidered because interagent communication has a limited
bandwidth, meaning that each agent could only maintain
a restricted view of the overall problem solving process
(i.e. each agent has bounded rationality [26]). Secondly, a
global controller may be a severe communication and
computational bottle-neck. Finally, reliability criteria

1+ GRATE is implemented in Allegro Common LISP and CLOS on a
SUN SPARC I workstation.
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require that community performance is degraded grace-
fully if one or more agents fail, which would certainly not
be the case if the controller failed.

By having control distributed within the community,
an individual agent plays two distinct roles. First, it has
to play the role of a team member acting in a community of
co-operating agents, and secondly the role of an indivi-
dual. Tt is also means that there may be more than one
goal being pursued by the community, for example,
there may be agents trying to detect faults, agents trying
to locate faults and agents proposing remedial actions.
Much of the early work on DAI concentrated almost
exclusively on the former and paid scant regard to the
latter. However, contemporary DAI [27, 28], with its
greater emphasis on autonomous agents, also highlights
the role of the individual. Therefore, when designing a
co-operation framework, both aspects should be
accounted for. Such a system must

® direct local problem solving; decide which tasks to
launch, when they should be launched, their relative
priorities and how best to interleave their execution

® co-ordinate local activity with that of others within the
community; when and how to initiate co-operative ac-
tivity, how to respond to co-operative initiations and
which activities require synchronisation.

When defining a modular architecture, it is intuitively
appealing to reflect this binary distinction directly.
However, because of the multiple co-operation contexts
within the community, there is a significant class of
activities that falls into a grey area between the two.
These activities are concerned with situation assessment;
for example, which tasks should be carried out locally
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and which should be solved with the aid of others, what
co-operation requests should be honoured and which
should not, the relative priority of activities to be
performed, and so on. Therefore, to promote a cleaner
separation of concerns, GRATE has three main modules
in which the situation assessment module acts as an
interface between the local and co-operative control
mechanisms (Fig. 1). The control module is informed by
the situation assessment module of the tasks to be
performed and their relative priorities; it is then the
control module’s responsibility to ensure that this is
carried out. Similarly, the need to initiate social activity
is detected by the situation assessment module and then
the responsibility for realising this activity is left to the
co-operation module.

The information store provides a repository for all
domain information which the underlying system has
generated or which has been received as a result of
Interaction with other agents in the community. The
acquaintance and self models are representations of other
agents in the community and of the local domain level
system, respectively; they are described in greater detail
in Section 2.2.

Each of the three main modules is implemented as a
separate forward-chaining production system, with its
own inference engine and local working memory. The
rules are written in a standard if-then format, and
examples are given in Section 3. Communication
between the knowledge bases is by message passing;
there is no shared memory. At present, all three infer-
ence engines are identical, consisting of a continuous
loop. However, to meet the requirements of future
applications, one or maybe all of the inference engines
might need to be customised. For example, the control
module may need to respond rapidly to certain key
events, and hence need to be more sophisticated than
that of the co-operation module in which events can
be handled on a first-come-first-served basis in most
circumstances.

2.1.1 Control module: this i1s the sole interface to the
underlying domain level system and is responsible for
managing all interactions with it. The domain level
systems activities are implemented as independent LISP
processes, which means the control module has
to deal with concurrent tasks. The general rules in
this module can be divided into the following main
categories:

O controlling the execution of tasks in the underlying
system based on directives from the situation assessment
module (e.g. stop tasks, suspend tasks and reactivate
tasks).
O ensuring the essential information required by a task is
available. There are three ways in which this information
can be obtained:
e the situation assessment module provides it.
e the information may be available locally; in which
case, it must be retrieved from the information store.
e the information may not be available locally; in
which case, inform the situation assessment module

INTELLIGENT SYSTEMS ENGINEERING WINTER 1992

that additional information is needed if the task is to

proceed.
O if a task is waiting for a particular piece of information
and that information becomes available to the control
module, update the information available for that task.
O determining whether task execution can begin (e.g.
checking that all the essential information is available).
O detecting when the task has finished; at which point,
gather any results produced and pass them to the
situation assessment module for evaluation.
0 if optional information becomes available (i.e. infor-
mation that could be used in task, but which is not
mandatory) determine what to do with it:

¢ if the task has not yet started, add it to the list of

information to be passesd.

o if the task has started, incorporate it into the

process.

2.1.2  Siwuation assessment module: serves as a link and
balancer between the agent’s two primary roles; that of
being an individual and that of being part of a commun-
ity. It decides which activities should be performed
locally and which should be delegated, which requests
for co-operation should be honoured, how they should be
honoured, which plans should be activated, what action
should be taken as a result of freshly arriving infor-
mation, and so on. The module issues instructions to
both the control and the co-operation modules. Typical
requests to the co-operation module include ‘get infor-
mation X’ and ‘get task Y executed by an acquaintance’.
Requests to the control module are of the form ‘STOP
task T1’ and ‘execute task T2 with data D1’. These two
perspectives are reflected in the types of rules this
module maintains.

Controlling local activity

0O If the trigger conditions for a plan are satisfied and it is
appropriate for that plan to be started, adopt the inten-
tion of completing that plan.
O If the agent has a task to perform and it can do so,
instruct the control module to execute that task.
O If a task has finished and that task was part of a plan,
perform the plan’s next action.
0 If an information request has been made and it can be
generated by executing a local task, determine which task
to execute:
® if there is already an active task which will produce
it, use it to produce the required information.
® if no task is currently active, select the most
appropriate one for generating the required infor-
mation.
O If a goal request is made and that task is already active,
use the existing task rather than duplicate activity.
O If the control module indicates that information is
needed before a task can be executed, and it is worth
expending effort on generating the information and the
information can be generated locally, then adopt the
intention of producing that information locally.
0O If information becomes available which is useful to a
task being executed, pass the information onto the
control module.
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O If unrequested information arrives (information which
has not been explicitly asked for), assess what it can be
used for:
e if it is mandatory for a task which is to become
active, pass it onto the control module so that it can be
used by the appropriate task.
e if it is optional for a task which is (or is about to
become) active, pass it onto the control module to
determined whether it is worth making use of.
® see whether it is a trigger for a local plan.
¢ if it may be of use to the agent at a later stage, store
it; otherwise discard it.
O If it is necessary to alter the execution of a task (e.g.
suspend, abort etc.), inform the control module of this
point.

Controlling social activity

O If the agent has a task to perform and it cannot do so,
instruct the co-operation module to get help.

O If a plan has finished, inform the co-operation module
of this fact. Depending on the motivation for executing
it, the co-operation module takes various actions.

O If the control module indicates that information is
needed before a task can be executed, and it is worth
expending effort on generating the information and the
information cannot be generated locally, then ask the co-
operation module to find an agent capable of supplying
1t.

2.1.3 Co-operation module: has three primary objectives
related to the agent’s social role. It has to

® establish co-operation: once the need for social inter-
action has been established by the situation assessment
module, the co-operation module must reason about how
the request can be best satisfied. Two forms of co-
operation are presently supported; an agent may ask for a
task to be executed or a piece of information to be
produced by another agent (task sharing [11]); or an agent
may decide spontaneously to share information it has
generated with other community members (result sharing
[11]). In both cases, the agent originating the activity
must decide with which other agents the interaction
should take place, and in the task-sharing mode, a co-
operation protocol must also be selected. Two such proto-
cols-could be used; client-server and contract net [11]. This
means that when an agent decides it requires a task-
sharing form of interaction to achieve a social objective, it
may do so either by making a request directly to one
agent (client-server) or by issuing the request to all
community members, and waiting for and evaluating
their bids before selecting the agent with which to
establish the interaction (contract net). In order to
distinguish between these two protocols, rules have been
devised to select the protocol most appropriate for the
particular case. Simple selection of the protocol could be
based on priority if more than one agent is capable of
completing a particular task. High-priority tasks make
use of a contract net protocol to ensure they will be
serviced in good time, and low-priority tasks use client-
server. However, in the future, such a selection could be
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Table 1
fit of chance of
time task to  finding agent
communication to problem to perform
overhead establish  soiver action
Contract
net high high good high
Client
server low low average low

more sophisticated and make use of other properties of
the two protocols, as shown in Table 1. Therefore, if low
communication costs are the primary consideration, the
client-server protocol is selected, whereas if the task
requires that the best available agent is selected, the
contract net is initiated. The client-server’s fit of task to
problem solver is put as ‘average’. In some cases, it may
make as good a decision as the contract net, but in others,
it may make poor decisions. Its behaviour is heavily
dependent on the number of agents capable of perform-
ing tasks (the greater the number, the less the chance of
making the best decision) and on the system load
distribution (heavier load means wrong choices are more
expensive in terms of time before task completion).

® maintain co-operative activity once it has been estab-
lished: once started, the agent must track its progress
until completion. Therefore, for example, if an agent has
agreed to do a task because another agent asked it to, this
interaction needs to be monitored. Tracking in this case
involves sending any relevant intermediate results to the
requesting agent and also ensuring that, once the task has
finished, a final report describing the status and results of
the requested activity is sent to the originator. Tracking
would also ensure that if the activity fails, for whatever
reason, the originator is informed at the earliest oppor-
tunity so that replanning can commence.

® respond initially to co-operation requests from other
agents: typically, the co-operation module is unable to
determine if a co-operative initiation request should be
honoured without referring to the situation assessment
module. However, if requests are made for services that
cannot be performed locally, they can be rejected at this
level without reference to the situation assessment.

2.2 Agent models

In order to participate in co-operative activity, agents
need to be able to reflect about their role and also that of
others within the community. This leads to two distinct
types of knowledge being maintained; knowledge about
local capabilities (self model) and knowledge about other
community members with which the agent may have to
interact (acquaintance models).

Although the actual information to be maintained in
both cases is similar, there is a clear distinction in the way
in which these two types of knowledge are obtained. An
agent’s self knowledge is assumed to be specified by the
designer of the domain level system; therefore, it can be
regarded as an abstraction of this system. The reason
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why the designer needs to specify this knowledge is that
it would require substantial learning and reasoning
power to infer this from the underlying system. It would
also require the underlying system to be able to reflect
about itself (a capability which would not be present in
pre-existing systems). However, it is more reasonable to
expect agents to build up models of acquaintances in a
dynamic and flexible manner. There are several
approaches to this latter problem, which are arranged in
order of increasing system complexity (or decreasing
application builder effort):

O 1 application builder completely specifies static
acquaintance models.

O 2 each agent transfers its entire self description to all
interested parties before any co-operative activity is
started.

O 3 agents go through an initiation phase, in which each
agent asks others questions to obtain the information it
needs (e.g. which agents can complete task z?, which
agents can supply information i?, and so on)

O 4 agents assume others have the same structure and
capabilities as themselves§.

O 5 models of other agents are built up dynamically
during the course of problem solving, and no explicit
learning phase is entered into*.

In any domain which exhibits complex behaviour, the
first and last options in their pure form are impractical
because of the excessive effort required by the designer
and the necessity of sophisticated non-monotonic reason-
ing capabilities, respectively. The assumption of similar-
ity (point 4) is also not applicable because agents are
typically heterogeneous in nature [33]. The merits of
options 2 and 3 depend on the relative costs of communi-
cation and computation, and also the percentage of
overlap between the agents. In GRATE, a compromise
solution was adopted; in the main, the application
designer specified much of the acquaintance models, and
then some general rules for dynamically updating the
agent models were also included, to ease this task and
provide some degree of flexibility.

2.2.1 Classification of the agent model knowledge: the
exact nature of the information to be maintained about
agents (and the self) is one of the major open issues in
contemporary DAI [6], and at this stage, there has been
little or no attempt to define it in a rigorous manner.
Therefore, like others before us [16, 34—36], we have
defined this knowledge through experimentation. In
GRATE, the type of information maintained about the
self and acquaintances are the same (although they
represent different levels of abstraction), and so separate
classifications are not given. Examples are provided from

§ ‘Stereotyping’ is often used as a way of installing user models in
interface design [29-31].

* Some dynamism is achieved in GRATE by using relatively simple
inference mechanisms (e.g. if agent a asks for information ¢, assume a is
interested in 7). The type of adaption from which agents infer the
models of their acquaintances based on their behaviour [32] would not
be suitable for any real-size problem because of the complex nature of
the agents involved and the sophistication of their inter-relationships.
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the self model of the AAA agent in the electricity
transport management scenario. The exact meaning of
the domain names is not relevant here but is expanded in
Section 4.

e State knowledge (e.g. solution progress): indicates the
activities which are currently being carried out, how far
they have progressed and when they are likely to be
completed.

SOLUTION PROGRESS:

Task Name: (HYPOTHESIS-GENERATION)

Information Passed:
((BLOCK-ALARM-
MESSAGES (BR HERNANI 3 (CO)
LOCAL BR HERNANI 4 (CO) LOCAL
BR HERNANI 6 (CO) LOCAL))
(DISTURBANCE-DETECTION-
MESSAGE (DISTURBANCE)))

Status: EXECUTING

Rationale: (PLAN-ACTION
(DIAGNOSE-FAULT) G1919 G1907))

Priority: 10

e Capability knowledge (e.g. task descriptions, recipes):
knowledge about actions which can be performed, how
they are combined to achieve particular results, the
information they require and the results which can be
expected.

Task Description:

Identifier: (HYPOTHESIS-GENERATION)

Necessary Requirements: (DISTURBANCE-
DETECTION-MESSAGEBLOCK-
ALARM-MESSAGES)

Results Produced: (FAULT-HYPOTHESES)

Time to execute: 15

Recipe Name: (DIAGNOSE-FAULT)

Trigger: (INFO/AVAILABLE
DISTURBANCE-DETECTION-
MESSAGE) (FAULT-DETECTED))

Actions: (((START (HYPOTHESIS-
GENERATION ?*FAULT-HYP))
(GET-INFO INITIAL-ELTS-OUT-OF-
SERVICE))

((WHILE-WHENt (BLACK-OUT-AREA-
NOT-AVAILABLE) DO

(((START (HYPOTHESIS-VALIDATION
?FAULT-HYP ?VALIDATED/HYP))))
(WHEN ((SUSPEND (HYPOTHESIS-
VALIDATION)))

((START (HYPOTHESIS-REFINEMENT
?FAULT-HYP ?REFINED-HYP)))
((REACTIVATE (HYPOTHESIS-
VALIDATION ?REFINED-HYP)))))))

Time to Execute: 64 Priority: 10

Outcome: (FAULT-HYPOTHESES)

Instantiations: Identifier: G1907

Component of:

(SATISFY-LOCAL-GOAL (DIAGNOSE-
FAULT))

T WHILE-WHEN p DO q WHEN r means while p is true do q; when
(if) p becomes false do r.
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Current Action:
(((GA1919 ((START (HYPOTHESIS-
GENERATION ?DISTURBANCE-
DETECTION-MESSAGE ?BLOCK-
ALARM-MESSAGES ?FAULT-
HYPOTHESES)))) (TOP-LEVEL (G1919
((START (HYPOTHESIS-GENERATION
?DISTURBANCE-DETECTION-
MESSAGE ?BLOCK-ALARM-MESSAGES
?FAULT-HYPOTHESES)))) NIL)))

Local Bindings: (FAULT-HYPOTHESES ?))

® Intentional knowledge (e.g. intentions): provides a
high-level description of the targets an agent is working
towards. Intentions are fairly stable in nature as they
represent long-term objectives§. Complex agents are
likely to have several intentions active at any one time,
and the situation assessment module must ensure they
are honoured in the most efficient manner possible.

Intention

Name: (ACHIEVE (DIAGNOSE-FAULT))

Motivation: ((SATISFY-LOCAL-GOAL
(DIAGNOSE-FAULT)))

Chosen Recipe: (DIAGNOSE-FAULT)

Start Time: 8 Maximum End Time: 72

Duration: 64 Priority: 10

Status: ACTIVATED

Outcome: (FAULT-HYPOTHESES)

o Evaluative knowledge (e.g. time to complete task,
intention end time): when faced with several alternatives
for achieving the same objective, evaluative knowledge
provides a means of distinguishing between them.

® Domain knowledge (e.g. recipe priority, recipe trig-
gers): facts and relationships that hold true of the
environment in which the agent is operating and that are
relevant for defining an agent’s behaviour.

3 Achieving generality

Having specified the types of knowledge to reside in the
agent models and that this knowledge is manipulated by
generic control mechanisms, it is important to see how
these two factors can be combined to produce useful
behaviour both within and between agents. The underly-
ing assumption of this approach is that meaningful
behaviour can be described in terms of the type of
information maintained in the agent models (i.e. the
agent model structure), rather than the information
itself*. To illustrate this, several examples are given; the

§ Intentions have been used to describe many different concepts [36—
38]; however, within this context, they refer to a desired state without
reference to how it can be reached. There is a fine distinction between
plans and intentions; plans correspond to recipes for performing
particular actions or for achieving particular goal states and are ‘known’
by an agent. Intentions are adopted and are used to guide an agent’s
problem-solving activity [39].

* Expressed in more conventional terms, the agent models and the
control rules can be seen as an abstract data type. The information is
actually stored in the agent models, and the control rules provide the
procedural semantics.
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module from which the rule is taken is indicated by its
name.

3.1 Social activity

Within the acquaintance model definition, there is a slot
to express an agent’s interest in particular information
(capability knowledge):

INTERESTS: {(I;, Cond,), (I, Cond,) . . .}

Intuitively, this can be interpreted as meaning that, if the
modelling agent has information Q and within one of its
acquaintance models it has a tuple involving Q (e.g.
(Q, w)), then if w is true, Q may be of use to that
acquaintance. Expressing this interpretation in a declara-
tive form leads to the following production rule:

(rule cooperation-module-5
(IF (INFO-GENERATED ?AGENT ?INFO ?GOAL))
(THEN (FIND-INTERESTED-ACQUAINTANCES
?AGENT ?INFO ?GOAL ?ACQS)
(SEND-TO-INTERESTED-
ACQUAINTANCES ?AGENT ?INFO
?GOAL ?ACQS)))

This rule is independent of any application and can be
considered relevant for all co-operative situations. It
illustrates the fact that the rule interprets the slot
structure and can be defined without actually knowing
what information Q is or the function w.

When tasks are activated by an agent, this fact is
recorded in a solution progress description, as illustrated
in the previous Section. Associated with each task is the
information which has been passed to it, its execution
status, priority and the reason for executing it. The rule
shown below makes use of this descriptor to obtain the
reason why a task and its associated plan was activated. If
it was to satisfy an information request made by another
agent, a generic rule is needed to ensure that the request
is honoured if the information is available:

(rule cooperation-module-19
(IF (PLAN-FINISHED ?PLAN ?RESULTS
(SATISFY-INFO-REQUEST ?INFO ?0RIG)
?I1D))

(THEN (EXTRACT-DESIRED-VALUE ?RESULTS
?INFO ?DESIRED-VALUE)
(ANSWER-INFO-REQUEST ?INFO
?DESIRED-VALUE ?0RIG)
(DELETE-MOTIVATION SELF ?PLAN
(SATISFY-INFO-REQUEST ?INFO
?0RIG))
(SEE-IF-FURTHER-MOTIVATONS ?PLAN
?RESULTS ?ID)))

If an agent has to perform a task as part of one of its local
plans, the first thing for the situation assessment module
is to determine whether the activity can be performed
locally. If it can, the situation assessment module must
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decide whether to perform it locally or whether to
delegate it. If, however, it cannot be performed locally,
the agent has no choice but to ask an acquaintance to
carry it out. Such generic knowledge about how to
behave in a social environment requires that the agent
has a representation of the activity which can be per-
formed locally: GRATE agents encode this in task
descriptors.

(rule situation-assessment-14

(IF (HAS-GOAL ?GOAL ?INPUTS ?MOTIVE
?PRIORITY)
(CANNOT-PERFORM-LOCALLY ?GOAL))

(THEN ’
(TELL-MODULE COOPERATION-MODULE
GOAL-AID-NEEDED
?GOAL ?MOTIVE ?PRIORITYY))

As all these rules illustrate, representing information in
the agent models is of no use unless it influences an
agent’s behaviour. If no action is ever taken on the basis
of believing a proposition, there is no point in storing or
even deducing it in the first place. This offers a consist-
ency constraint for the developer of the general rules. All
information slots of the agent model must appear in the
antecedent of at least one generic production rule.

3.2 Controlling domain level system tasks

C ie important function of the control module is to
launch tasks 1 the underlying domain level system. The
responsibility for deciding which tasks should be exe-
cuted rests with the situation assessment module; how-
ever, the initiation and exact interleaving of the tasks is
the responsibility of the control module. Control rule 6
provides an illustration of a generic rule associated with
the execution of domain level tasks. The agent’s self
model task descriptors define the information required to
initiate the task, and hence forms the basis of the missing
information clause:

(rule control-module-6
(IF (EXECUTE-TASK ?AGT ?TASK)
(MISSING-INFORMATION ?AGT ?TASK
?INFO)) :
(THEN (TELL-MODULE SITUATION-
ASSESSMENT INFO-MISSING ?AGT
?TASK ?INFO)))

This rule places an interpretation on task descriptor’s
‘necessary requirements’. It states that if there is ‘missing
information’, a request should be made to the situation
assessment module to provide this piece of information.
In the situation assessment module, the request may
initiate a social activity (if the information cannot be
produced locally), may result in a new task being
launched locally, or may result in no action if the task is
not an important one. The role of generic knowledge at
this level is again to define situations which must always
be true before other actions can occur.
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Another illustration of controlling domain level ac-
tivity relates to how co-operation requests should be
honoured. If an agent accepts a request to provide
information for an acquaintance, it first checks whether it
is currently undertaking an activity that produces the
desired information (by looking at the outcome slot of the
intention descriptors). If this is the case, this existing
activity should be utilised, rather than starting a new
one:

(rule situation-assessment-30

(IF (INFO-REQUEST-MADE ?INFO ?0RIG
?PRIORITY)
(ACTIVE-INTENTION-PRODUCING-
INFO SELF ?INFO ?INTENTION))

(THEN (ADD-ADDITIONAL-MOTIVATIONS
SELF ?INTENTION (SATISFY-INFO-
REQUEST ?INFO ?0RIG))))

One of the important tasks of the situation assessment
module is to track the execution of tasks in the underly-
ing domain level system. The rule below illustrates one
facet of this tracking. It states that if the control module
has reported that a goal has finished, but that the results
produced were not what was expected, then the situation
assessment module should try and find an alternative
method for achieving the goal. This may involve trying
another local activity if one exists or requesting aid from
an acquaintance. This rule again makes use of the
motivation slot for carrying out a goal, the expected
outcome slot of the recipe to determine what should have
been produced and task descriptors to determine alterna-
tive sources.

(rule situation-assessment-20

(IF (GOAL-FINISHED ?GOAL ?RESULTS
?0RIG)

(IS-MOTIVATION ?0RIG ?GOAL (PLAN-
ACTION ?PLAN-NAME ?MARKER ?ID))
(UNEXPECTED ?RESULTS ?PRODUCED
?GOAL ?RESULTS))

(THEN (DETERMINE-WHETHER-
ALTERNATIVE-SOURCES ?GOAL
?RESULTS
?PLAN-NAME ?MARKER ?ID)))

3.3 Building multi-agent systems using GRATE

The motivation for building GRATE was to investigate
the feasibility of constructing a new type of multi-agent
development environment; one in which significant
amounts of knowledge related to co-operation and
control was embodied. This novel approach requires a
new paradigm for building multi-agent applications, in
which the application builder has to configure pre-
existing knowledge and augment it with any necessary
domain-specific information. In present environments,
the whole system has to be constructed afresh, meaning
that a builder is continually re-coding the same knowl-
edge. Domain-specific information may be required
either to provide a short cut in order to meet the desired
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performance characteristics or to reflect truly domain-
dependent reasoning.

This leads to a situation in which generic rules define
an agent’s default behavour (i.e. given no information to
the contrary, an agent’s activity is governed by generic
rules). However, in certain well defined instances, the
default could be overridden by behaviour tailored to the
specific situation at hand. The application builder
obviously needs to provide the appropriate domain-
specific rules, but applications could still be built very
rapidly because much of the general behaviour is already
defined. We are currently working on strategies for
incorporating domain-specific reasoning into the
GRATE architecture; the solution being pursued is to
specify a meta-control strategy that ensures application-
specific rules take precedence over generic ones.

The configuration process may involve selecting a
subset of the available knowledge, for the problem at
hand. For example, the application builder may never
want to use a contract net, in which case they would
remove the general knowledge associated with this proto-
col. Configuration may also involve fine-tuning the
control strategies of the problem-solving modules. In the
present implementation, equal weight is given to each
module. However, in applications requiring more sophis-
ticated local control and less inter-agent interaction, the
control and situation assessment modules may need to be
provided with more resources than the co-operation
module.

This approach has significant advantages over conven-
tional means of constructing multi-agent systems, includ-
ing the reuse of problem-solving components (increasing
reliability and decreasing risks), decreasing development
time (some knowledge acquisition and coding has already
been carried out) and making effective use of specialists
[40]. It also follows the lead of other disciplines which
engineer complex artifacts (e.g. planes, cars), in that
product development would consist predominantly of
assembling components [41].

4 Using GRATE in electricity transport
management

To verify that the concepts embodied in GRATE are
useful and applicable, the domain of electricity transport
management was used and our experiences are described
in this Section. Recently, GRATE has also been applied
to the co-operative diagnosis of a particle beam accelera-
tor controller at the CERN laboratories [42]. These
problems were chosen because contacts made within the
ARCHON project afforded the opportunity to work on
real-world problems with all that involves; from a DAI
point of view, the applications are of appropriate com-
plexity [43]; and finally, they are both typical of a large
class of process control systems.

In order to be available at the required consumption
sites, electrical energy has to pass through a series of
complex processes; generation, transportation and distribu-
ton. Generation is the process of transforming ‘raw’
energy (e.g. hydraulic, thermal, nuclear and solar) into a
more manageable and useful form such as electrical
energy. Ideally, the consumption sites would be near
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Fig. 2 GRATE paradigm for building multi-agent
systems

these generation sites. However, due to various econ-
omic, social and political factors, this is often impossible.
Hence, energy needs to be transported from its gene-
ration site to the customer. To minimise losses during
transportation, the electrical voltage is made high
(132 kV or above) before it is placed on the transport
network and sent over many hundreds of kilometres. The
final operation necessary to make energy available to the
customers is the lowering of the voltage and the distribu-
tion to the consumers. This is achieved using an electri-
city distribution network, which involves many kilometres
of network (all below 132 kV) spread over a much
smaller area.

To ensure the electricity transportation network
remains within the desired safety and economical con-
straints, it is equipped with a sophisticated data acqui-
sition system. This system acquires enormous amounts
of information, which it sends to a central dispatching
control room (DCR) for analysis by control engineers
(CEs). As a result of this analysis, a CE may detect a
disturbance and deem it necessary to alter the configu-
ration of the network; achieved by sending commands
from their console through the telemetry system to the
network elements, or by giving orders over the phone to
engineers in the field (in places where telemetry is not
available).

Whenever a non-planned and sudden disconnection of
the network occurs, an emergency situation is signalled
to the operators in the DCR by displaying alarm mess-
ages related to changes in network elementst on various

+ Elements that are monitored include breakers (devices which allow
the connection or disconnection of energised lines, transformers and
busbars between them, and which may be open or closed from the
DCR), fault recorders (mechanisms that record the voltage and
intensity during the disturbance) and protective relays (mechanisms
which trip breakers after sensing a fault).
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screens. One of the software systems in the DCR (the
CSI) has to distinguish between messages related to
disturbances and those related to preplanned mainten-
ance operations. The latter are not usually relevant from
the point of view of diagnosis and restoration; the former
are. The CSI also has to organise the data into a form
which is understandable by other agents.

Once a disturbance has been identified, it must be
ascertained whether it is transient or permanent, where it
originated from and its extent. Two systems have been
constructed to carry out these tasks. The BAI calculates
the group of elements that are out of service and also
monitors the evolution of the network (detecting whether
the situation is progressing or if it is getting worse) in
order to advise whether a new restoration plan is needed.
The AAA locates the individual element at fault, analyses
the permanence of the fault and indicates any damaged
automatism in the network. While these systems are
engaged in their analysis, the auto-reclosing mecha-
nisms§ operates, provoking a reaction in the network.
This reaction has to be gathered by the CSI, and passed
onto the AAA and BAI in order to confirm, refine or even
change their prevous analysis.

After a while, the network reaches a steady state*, and
it is time to assess the situation and start planning the
actions required to restore the network. The SRA agent
is responsible for planning the restoration process, and
once a plan which complies with all the known con-
straints has been developed, its execution and monitoring
starts. Monitoring is necessary because the plan may
have been constructed incorrectly or is based on invalid
assumptions about the status of the network, and is
carried out by the BAIL

The following describes how GRATE has been applied
to one of the co-operative scenarios in this domain. The
social interaction described involves the CSI, AAA and
BAI agents in detecting and locating a fault in the
network. Owing to space limitations, the restoration
process is not covered. The co-operative scenario illus-
trates how both task and result-sharing forms of co-
operation can be instantiated. A more extensive list of
co-operative scenarios for this application can be found
in Reference 44.

4.1 Co-operatively detecting and locating faults

If the network is stable, alarm messages corresponding to
changes of network state arrive at the CSI in relatively
small numbers. Their arrival triggers a CSI recipe which
analyses them in order to determine whether they corre-
spond to planned maintenance operations or whether
they represent a disturbance in the network. In most
cases, they correspond to planned operations and, after a

§ The breakers are provided with a mechanism for automatic reclosing,
which is triggered when sufficient voltage returns or if sufficient time
has elapsed for a non-permanent fault to disappear.

* This means the network has reached a state (configuration, voltages,
energy flows) in which it remains until an action is performed by the
CEs. This contrasts with the transient state, generated initially by a
fault, in which the state is constantly and automatically changing. A
steady state is signified by the fact that, during a certain period of time
(e.g. one minute), there are no alarm messages.
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fixed time delay of ten seconds, the messages are grouped
together and the plan finishes. The outcome of this plan
(i.e. the block of messages and the fact that there is no
disturbance) is then passed to the CSI co-operation
module to see if the results are of use to any other agents
in the community. The CSI model of the AAA and BAI
contains the following information:

MODEL OF AAA/BAI: INTERESTS:
{. .. (BLOCK-ALARM-MESSAGES, T),
(DISTURBANCE-DETECTION-MESSAGE,
HAS-VALUE(DISTURBANCE)) . . .}

On receipt of this information, the co-operation module
invokes rule 5 (see Section 3.1). The block of alarm
messages is sent to the AAA and the BAI as unrequested
information (since ‘T’ trivially evaluates to true), but the
disturbance-detection message information is not passed
on since it does not have value ‘disturbance’. If, however,
the alarms correspond to a disturbance, the disturbance-
detection message is also sent to the other agents.

On receipt of the notification of a disturbance, the
situation assessment module of the AAA determines that
the recipe ‘DIAGNOSE-FAULT’ (see Section 2.2.1)
should be started; this process is tllustrated in Fig. 3a.
The plan is retrieved from the self model and the
situation asssessment module tells the control module to
start the first task, hypothesis generaton (HYP-GEN)
(action 1). Hypothesis generation is a fast but inaccurate
task and typically produces a large number of hypotheses
for the network element at fault.

The situation assessment module also notes (from the
second action in the recipe) that information concerned
with the black out area (BOA) is useful. The reason for
this being that the BOA identifies a list of network
elements in which the fault must be situated. Therefore,
in order to be consistent with the BAI findings, the
individual network element pinpointed by the AAA
should appear in the BOA. This constraint means that
any faults which the AAA proposes in its first approxima-
tion that are not within the BOA can be disregarded.
Based on its self model, the AAA is able to deduce that
the BOA cannot be produced locally, and so, using
situation assessment rule 14 (see section 3.1), a request
for aid with this goal is sent to the co-operation module
(action 2). The co-operation module then examines its
acquaintance models and sees that the BAI is the only
agent in the community capable of generating it. It
selects the BAI as the agent with which to interact, the
client-server as the appropriate protocol and sends a co-
operation initiation request (action 3).

The BAI receives the co-operation initiation request,
which its co-operation module confirms as an activity
that the BAI is capable of, through the identify black out
area (IBOA) task. The request is then passed to the
situation assessment module to determine whether the
request should be honoured (action 4). The situation
assessment module confirms the request will be met and
informs the co-operation module of this fact (action 5).
The co-operation module then confirms with the AAA
that its initiation has been accepted (action 6). In parallel
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with the confirmation process, the BAIs situation assess-
ment module tells the control module to execute the
IBOA task (action 7).

When the IBOA task finishes (see Fig. 3b), the control
module is informed, and it gathers the information
produced (action 1) and passes it onto the situation
assessment module (action 2). The situation assessment
module monitoring the plan execution realises that the
plan has been successfully completed (i.e. rule 20 (see
Section 3.2) is not applicable). It then passes the results
onto the co-operation module (action 3). The co-
operation module tracking the social interaction progress
is informed that the request has been satisfied and sends
an activity complete message back to the originating
agent (using rule 19 (see Section 3.1)), along with the
desired piece of information (action 4). On receipt of the
BOA, the AAA terminates the social action and passes
the desired result onto its situation assessment module
(action 5).

When the AAA situation assessment module receives
the BOA it must determine what action to take. The
third action (i.e. WHILE-WHEN) of the ‘DIAGNOSE-
FAULT’ recipe is depicted in Fig. 4 and shows that the
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next step depends on the current problem-solving con-
text. If it has not yet started validation, the refinement
task is executed before validation is undertaken. If it has
started validation, it will be suspended, hypothesis refi-
nement executed and then validation restarted.

The rationale behind this is that validation is thorough
and time-consuming (verifying a single fault may take a
significant amount of time [45]), and in the worst case, it
may have to work on the large number of approximate
hypotheses produced during generation. The refinement
task is very fast, and involves scanning the list of
hypothesis which have yet to be validated and removing
any which are not in the black out area; thus, enabling a
substantial speed-up on the validation process to be
achieved because fewer hypothesis have to be examined.

The evaluation of the next action to be carried out is
performed by the situation assessment module (making
use of the current action component of the recipe), and
then the appropriate commands (e.g. SUSPEND,
START) are issued to the control module. When the list
of validated fault locations have been produced, they are
sent to the operator and the SRA so fault repair can
commence.
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5 Conclusions

The aim of this work was to investigate the feasibility of
constructing a new and more powerful development
environment for multi-agent systems. This environment
contains significant amounts of inbuilt knowledge which
the builder can utilise, rather than coding the whole
system afresh. Such environments offer a new paradigm
for building systems, one in which a significant propor-
tion of the time is spent configuring existing repositories
of knowledge and then augmenting them with any
domain-specific information that is required. The appli-
cability of this approach has been validated by the fact
that such a framework has been constructed and applied
to a real-world problem in the field of electricity trans-
port management. Further evidence to support the
generality claim has emerged from preliminary investi-
gations into applying GRATE to the domain of co-
operative fault diagnosis for a particle accelerator beam
controller [42].

The logical extension of GRATE is to present the
application builder with a framework in which all the
necessary control knowledge is inbuilt, and all that has to
be done is to instantiate each agent’s self model.
Community members would then be able to automati-
cally build up models of other agents and the participate
in co-operative problem solving based on this general
knowledge. Although this appears attractive, it is un-
likely that such an approach would have the necessary
expressive power for any sufficiently large application
nor be able to handle more complex interactions requir-
ing substantial amounts of domain-specific reasoning.
The problem is then to find a sufficiently general
approach, which retains the expressiveness necessary for
real-size applications, and to find mechanisms for incor-
porating domain-specific reasoning.

The problem of devising a system powerful enough to
handle complex interactions in real-size domains, while
retaining the necessary performance characteristics and
generality, 1s at present an open research problem in
DAI. Based on our experiences with GRATE, we feel
that generic knowledge should be an integral part of the
solution, but that it needs to be augmented with more
powerful mechanisms. Many of the GRATE generic
rules encode sequences of actions, and so well established
patterns of rule firings can be observed. To enhance the
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system’s power, well defined sequences could be com-
piled down and activated as a single unit when the
appropriate stimulus is received. Such units of activity
are similar in nature to reactive planning systems
[46, 47], in which agents act on objects and react to
events in a contingent, immediate, and therefore in the
traditional Al sense of the word, unplanned manner. As a
result of these insights, a hybrid approach, in which both
general rules and reactive mechanisms are combined, is
now being followed within the ARCHON project [25].

An unexpected benefit of the work in developing
generic control and co-operation knowledge was that a
substantial part of a theory emerged for describing how
groups of agents should work together. This theory
defines the necessary preconditions for group activity to
commence and prescribes how individuals should behave
when engaged in joint problem solving [48, 49].
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