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The paper describes the work that has taken place in the
ARCHON Project, ESPRIT project P-2256. The consortium
has developed a general-purpose architecture, which can be
used to facilitate co-operative problem-solving in industrial

applications. The paper describes the need for a multiple

agent approach for industrial applications, outlines the
benefits which can be accrued by adopting this paradigm, and
describes the key difficulties which must be faced when
building a multi-agent system in this domain. Details of the
ARCHON architecture are presented, including a description
of the main functional components and their realisation in a
hybrid agent model. An example of co-operative fault
diagnosis in an electricity management application is
described in order to provide a clear illustration of the

working of the ARCHON architecture, and to provide a

concrete example of the potential benefits of a multi-agent

approach.

1 Application challenge

The initial objective of the ARCHON Project was to
build a software architecture that would allow pre-
existing expert systems, dealing with different aspects of
decision-making of a given complex environment or a
system, to co-operate in a mutually beneficial' way. Given
that all the expert systems that engage in such a co-
operation are in fact responding to the same overall
environment, any properly designed co-operation would
thus increase the effectiveness of each one. From such an
objective it soon becomes apparent that the co-operation
cannot be restricted only to expert systems, but the
system also needs to include databases and other compu-
tational systems. ARCHON therefore uses the term
‘intelligent systems’ to refer to the domain-dependent
systems to be incorporated within the co-operative archi-
tecture. Furthermore, while considering co-operation,
we also need to attend to other forms of co-ordination
that help to increase the effectiveness of a generic system
such as ARCHON.

The main design feature of ARCHON is therefore that
it places emphasis on a loose coupling as a means to
increase co-operation between a set of computational
systems. Thus, the computational systems that partici-
pate in mutual co-operation are conceived of as almost
autonomous and capable of completing their allocated
tasks without much reliance on other systems within the
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community, but benefiting from each other’s activities
through the co-operation mechanisms. ARCHON
provides various modes of co-operation including passing
of unsolicited information, one use of which is that
computational systems can anticipate future needs from
other co-operating systems; this mode of co-operation is
sometimes referred to as ‘pro-active’.

Just as the ARCHON approach is not restricted to co-
operation among expert systems, it is also not restricted
to pre-existing computational system. ARCHON can be
construed as providing a means for the creation of a
‘federated’ computational environment to support an
organisation’s computational needs. ARCHON is more
than a transient technology for integrating legacy
systems. Its design objectives were always for the inter-
working of semi-autonomous agents. It can complement
integration architectures that provide for tight coupling
of systems, such as client/server architectures in which a
client would demand a service and a server is mandated
to provide that service. ARCHON agents may enter into
a client-server relationship with each other for a con-
tracted set of tasks, but are never designed (pre-destined)
to perform one or other of those roles. ARCHON agents
can pass unsolicited information to their acquaintances,
leaving it to the recipient to decide what to do with it
(e.g. whether and when to enter a form of eager evalu-
ation in anticipation of future requests from the sender).

Having said this, it must be pointed out that, within
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the ARCHON Project, there were several application
evaluations, all of which had at least some pre-existing
systems. Furthermore, the Project itself did not evaluate
how the ARCHON approach might complement an
existing client-server type integration environment.

1.1 ARCHON applications

When deciding on the application areas to which the
ARCHON system should be applied first, the following
points were considered: )

o the application should have some ‘intelligent systems’
already running.

e it should consist of subsystems that require co-
ordination (usually by an operator), and thus can be
turned into ‘agents’.

® it should be of sufficient complexity to provide the
challenge for the research but at the same time be
manageable within this type of project.

Based on these criteria, it was decided to concentrate on
industrial supervision and control applications because

O industrial supervision and control applications are
usually built in a modular fashion, allowing separation of
subsystems more easily as, for example, applications in
the business domain.

O expert systems, at least as prototypes, could be found
more often in this domain.

O most partners were working in that domain, either as a
software company, system house, research institution or
user.

In the end, the decision was made for electricity manage-
ment. Although this may not be the most obvious
application for distributed AI (DAI), it has a number of
advantages. The most prominent ones are

e the application problem as seen from a DAI point of
view is ‘balanced’, i.e. it is not too simple but also not too
complex. A number of subsystems exist in such appli-
cations, each with a specific task but sometimes with
overlapping capabilities. In the two specific applications
we chose, a number of knowledge-based systems had
already been developed or were under development at
that time. This meant that we could really concentrate on
the important part of co-ordination among these systems.
® the application domain was familiar to some of the
research partners who had previously developed expert
systems in this area [1, 2].

There is, of course, a danger in focusing entirely on one
application domain. In order to ensure generality of the
architecture, we also included so-called ‘application stu-
dies’. These are smaller exercises in applying the emerg-
ing concepts to quite different applications. The ones we
were looking at are

O robotics; application of the ARCHON framework in
the area of intelligent robotics with the objective to
implement a flexible production cell. The subfields for
co-operation are robot control, sensing (proximity sensor
in the robot arm), planning for task assistance, and
vision/scene analysis [3]. A second, closely related appli-
cation study was carried out for a robot arm with six
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degrees-of-freedom in a laboratory environment. The
arm is equipped with a variety of sensors, including a
vision system and force sensing. The control hardware
consists of a VME crate containing a variety of proces-
sors, connected through a LAN to a SUN workstation.
This system, in particular, will allow testing of the
ARCHON software in a real-time environment, which is
relevant to later process control applications.

O cement production control; the purpose of this appli-
cation study is to investigate the co-ordination, through
co-operation, of the various control systems of a cement
production process [4, 5]. Individual controllers assisted
by expert systems already exist and are currently tied
together by a hierarchical and tightly coupled system.
Within ARCHON, this rigid organisation has been
replaced by a number of semi-autonomous loosely cou-
pled agents; the precalciner agent, the kiln burner agent
and the clinker cooler agent, each controlling a number
of tasks that have to be co-ordinated.

D fault finding and operational help in the control system for
particle accelerators; particle accelerators have been deve-
loped to create high-energy beams of particles to investi-
gate the subatomic world and the fundamental nature of
all matter. The CERN proton synchrotron (PS) complex
comprises particle accelerators of different types,
accumulation and storage rings, and beam transfer lines,
controlled through a large computer network of about 20
minicomputers and 150 microcomputers, interfaced by a
data acquisition system to the components of the acceler-
ators (e.g. the power supplies for bending magnets, the
radio frequency cavities for acceleration and the complex
beam measurement devices).

Running an accelerator is like controlling a large indus-
trial process. Fault finding and repair in the PS control
system have become time-consuming and difficult, and
require a significant amount of staff resources [6]. The
systems to be integrated are a large relational database, a
control system consisting of a large computer network
and several separate expert systems. The domains are
beam diagnosis and control, control system diagnosis,
and alarms treatment. The task of these expert systems is
to find faults in the control system to help maintenance
and control of the accelerator. Most of the static know-
ledge for the expert systems has to be read from the
database, and dynamic information has to be read on-line
from the control system to be diagnosed.

2 DAI use for industrial applications

Large systems are built in a distributed fashion in order
to master complexity. Ideally, this should mean a sepa-
ration of control and execution to make the control part
more explicit. Consequently, the next level to explore is
system design. Complexity of systems has two different
aspects; it refers to the solution of the primary appli-
cation problems, which determines the functional
requirements of a system and, on the other hand, it refers
to issues such as security, maintainability, flexibility and
adaptability to changing requirements during the life-
cycle of the systems. These are issues that establish the
non-functional requirements of a system.
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Essentially, these non-functional issues are those
addressed by the co-operative systems approaches like
ARCHON. It means dividing a system into several
smaller and dedicated systems, whereby not only the
execution becomes distributed but, most importantly,
the control becomes decentralised. Obviously, the
control part of each of these dedicated systems has to deal
with the solution of its own problem domain. In addi-
tion, it has to control the co-ordination with the other
systems, a task that is dealt with centrally in non-
distributed monolithic systems. By distributing this
control and assigning it to the individual systems, allow-
ing them to control not only themselves but also the way
they interact, the control complexity is reduced.

2.1 Benefits of DAI in industrial applications

The general benefits associated with using a DAI
approach stem from the distribution of control and data
and the increased software modularisation that can be
achieved [7-9]:

e modularity; traditional advantages from software engi-
neering, including decreased component complexity and
greater clarity.

® speed; sub-systems can operate in parallel.

e reliability; system can continue even if part of it fails.
e knowledge acquisition: easier to find experts in narrow
domain.

e reusability; small independent system could be part of
many co-operating communities.

In addition to the above, within the domain of industrial
systems, the benefits of enhanced problem-solving, eas-
ing the burden of the system operator and managing the
data exchange among distributed systems, are especially
pertinent [10, 11]. Individual problem-solving can be
enhanced in quality as well as speed by sharing infor-
mation and processing in an efficient manner between
community members. If an operator is in charge of
several systems working on the same process, the opera-
tor has to manually pass information between the systems
and ensure their activities are co-ordinated. However, by
automating this interchange, the operator can concen-
trate on the higher level (cognitive) actions for which the
operator is better suited. Finally, reliability is enhanced
because if part of the system fails, the performance
should degrade in a graceful manner as both the control
and data are distributed.

2.2 Design constraints of industrial systems

When considering a DAI approach to solve industrial
problems, several important characteristics of the do-
main need to be considered:

O there is a substantial amount of pre-existing software.
O industrial systems are complex and require many
diverse types of activity to be performed.

O the operator is an integral component of the problem-
solving community.

2.2.1 Pre-existing software: typically within the domain
of industrial systems, software has been developed in an
ad hoc fashion when the company has perceived that
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certain functions could profitably be automated using
available technology. The result is that such companies
possess a large number of stand-alone systems, developed
at different times, by different groups of people and
utilising different problem-solving techniques. These
systems all operate within the same physical environment
(i.e. take input from and produce output to the same
process) and could benefit from interaction (sharing of
information and problem-solving expertise) with other
such stand-alone systems. However, as they were not
constructed with the aim of integration in mind, they
employ techniques and representations that are best
suited to the particular problem(s) for which they were
designed; ensuring that data/knowledge formalisms and
the associated reasoning techniques are specific to that
particular implementation. Faced with this situation,
there are several courses of action open to the system
designer including

® rebuilding all the existing software in a common
environment, so that they all share common represen-
tations, reasoning mechanisms and knowledge seman-
tics.

® constructing a framework into which the existing
systems can be incorporated (with minimal modifica-
tions*) and allow them to interact with each other.

In most cases, the latter option is preferable because of its
lower cost, resource usage and lower general risk.
However, this means that problems associated with
heterogeneity become an important issue and require
attention within the agent architecture. There are many
different levels of heterogeneity that need to be dealt
with, ranging from different operating systems and
programming languages to issues associated with the
inherent distribution of tasks within the community and
the overlap in the understanding of domain concepts
between agents [12].

2.2.2 Diverse activities: large industrial control appli-
cations are inherently heterogeneous with respect to the
various subsystems involved. Subsystems are targeted to
specific and quite diverse tasks [13]:

O diagnosis; deliver an understanding of world state
given some information about this world.

O planning; sequence of a set of possible actions.

O control; particular case of planning where actions are
executable and low level.

O supervision; reflecting a decision link between diagno-
sis of a dynamic system and the alternative actions
needed for handling exceptional situations.

The wide range of problem-solving techniques necessary
for each of these sub-areas means that a common tech-
nique and knowledge/data representation would be un-
feasible, and hence issues related to heterogeneity are
important even when constructing completely new
systems. To obtain the necessary complexity, different

* Typical examples of the modifications that have to be made include
allowing the co-operation framework to affect the control instance of
the system and altering the system’s presentation of information to the
user (to incorporate the fact that the system is now a team member and
not merely an individual).
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techniques will be needed for different tasks and, even
within a single generic task, more than one technique
may be employed (e.g. in diagnosis there may be a
heuristic-based component and a model-based compo-
nent). For example, an alarm analysis system in an
electricity distribution network has to cope with large
numbers of incoming events and map these to the
topology of the network held in huge real-time databases.
In contrast to this, an electricity load management
system that plans and controls the overall load of a
network only deals with a small number of real-time
events, but instead has to cope with non-monotonic
planning based on crude qualitative models of the con-
sumers in the network. Therefore, it is not surprising
that these systems not only differ widely in their software
structure, but also often run on quite different hardware
platforms.

2.2.3 Operator involvement: due to the critical nature
and potential risks associated with industrial systems, it
is inevitable that human operators will remain an integral
component for the foreseeable future [14]. Therefore,
when designing a community of co-operating agents, it is
essential to ensure the operator is included as an active
problem-solving member, able to volunteer information,
carry out problem-solving tasks, focus activity etc. Some
of the issues that need to be addressed include the
allocation of tasks between operators and the artificial
agents, how to design features of the interaction so that
the best capabilities of operator and computational agents
are utilised, how authority can be implemented etc.
These issues are discussed more thoroughly elsewhere
[15, 16].

3 ARCHON functional architecture

3.1 Using the application context to derive
requirements

In order to describe the required functionality of the
ARCHON approach, we use the ‘idealised operator
analogy’. We assume a set of independent supervisory
and control (S&C) systems, each controlled by an opera-
tor with the only co-ordination taking place among the
operators {(depicted on the left of Fig. 1). The operators
share a particular overall goal, e.g. the economic
efficiency of a power distribution network or the safe
operation of a large vessel. Each operator derives their
personal aim for controlling their S&C system from such
an overall goal. Naturally, they are aware that they are
not working in isolation; they are aware of the other
operators and have some understanding of what their
tasks are and what they can achieve. This knowledge
enables them to either ask for help or to respond to
requests from the other operators.

This operator level is the target of ARCHON, and the
problem is to identify the functionality a system requires
in order to act on this level. The right of Fig. 1 lists the
main requirements for an architecture that, in the end,
will achieve the co-operative link between independent
systems. We briefly discuss these points and indicate how
they are mapped into the functional architecture of
ARCHON.
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Fig. 1 Requirements for a co-operative framework

3.1.1 Owerall goal: although the general goal of an
application has to be represented somewhere in a suitable
form, the heterogeneity of the application suggests a
more loosely coupled approach. Consequently, we do not
represent a ‘common goal’ anywhere in our architecture
but only goals of the agents which, taken together, form
the overall goal of the community. This is one of the most
important tasks the designer of such a co-operative
systemn has to consider, and it is very closely related to the
way in which the community is represented within each
agent. No agent has to model all the others, only those
with which it is likely to interact. By representing skills,
interests and goals of its acquaintances, an agent is able to
specifically involve others in its own problem-solving
objective and at the same time respect their autonomy
{10, 11, 17].

3.1.2  View of their own system: just as an operator works
on their S&C system, the ARCHON framework functio-
nality has to provide this view. This involves monitoring
and assessing the system’s state on the one hand, and
providing the means to interact with and control it on the
other. To do this, the control interactions for the domain
system have to be described and represented in a suitable
way. In ARCHON), this is primarily done through an
event-based mechanism that allows time and data to be
captured. There are two different ways to respond to
events from the domain-system; reactive and reflective.
The first one relates to ‘standard’ responses in nominal
situations, i.e. when the system or the application is
behaving as expected. Reactive responses do not require
explicit reasoning and can be dealt with by precompiled
plans. In exceptional situations, however, such precom-
piled plans would fail. Much in the same way as an
operator has to think about such problems, ARCHON
has to provide means for explicit reasoning, i.e. it has to
contain a reflective component.

Operators usually have a certain amount of freedom in
assigning tasks to their S&C system, based on their
knowledge of the system’s tasks and goals. In order to
flexibly control the system through ARCHON, its top-
level goals and accessible tasks have to be represented.
An ARCHON system designer again has to pay attention
to this point; as long as the domain system does not
permit different control options, there is not much point
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in building a co-operative framework on top of it. It may
well be that the designer has to cluster existing systems
into suitable bundles to achieve this flexibility of control.

3.1.3 View on the community: based on the assessment
of the state of the domain system, the need for help from
other agents may arise. Equally, pre-empting urgent
requests from other community members, an operator
may volunteer certain information derived from their
system to others. Through the representation of skills,
interests and goals of other agents, coupled with the
appropriate reasoning facilities, ARCHON provides this
functionality. Being the central point of a co-operative
framework on top of existing systems, this functionality
should be as independent from any domain systems as
possible. In fact, as described later, the current imple-
mentation provides a number of such independent rules
for detecting the need for co-operation and for determin-
ing the best way of establishing it.

3.2 General architecture and its mapping to the
requirements

We explain the architecture of ARCHON in two steps;
first, the general modules that can be derived from the
requirements identified in the previous section are pre-
sented, and secondly we show how these modules map
with the ‘operator analogy’.

Fig. 2 sketches the modules of the ARCHON layer
and shows the interface to the intelligent (domain level)
system. In this architecture, there are in fact two levels of
‘intelligence’; on the domain level and, more important
in this context, on the co-ordination and co-operation
level. Each ARCHON layer is in itself a knowledge-
based system, reasoning about its domain system and the
co-ordination within the community, but not solving any
of the domain problems.

The architecture needs a communication facility, the
high-level communication module (HL.CM). It is high-
level as it not only provides the communication facilities

O

to other agents

high-level
communication

acquaintance

model

planning
and
co-ordination

monitor

vl

intelligent system

Fig. 2 Agent architecture
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(achieved through a session layer implementation), but
also services such as intelligent addressing and filtering.
For example, if the domain system produces a result that
may be relevant for other agents, the planning and co-
ordination module (PCM) just asks the HLLCM to send it
to all interested agents without specifying them.

The agent information management (AIM) module
provides an object-oriented information management
model, a query and update language to define and
manipulate the information, and a distributed/federated
information access and retrieval mechanism to support
the remote access and sharing of information among
agents. AIM is used to store both the application data
and the agent models [18], the latter are required for the
agent to reflect about its role in the community.

The agent acquaintance models (AAM) contain rep-
resentations of other agents in the community in terms of
their skills, interests, current status of workload etc.
[17]. Agents will not necessarily maintain models of all
community members; it is more likely that each agent
will merely model a subset of the total community. This
subset is constructed on the basis of similar interests/
capabilities or the ability to provide services that the local
agent cannot perform (e.g. solve certain goals or furnish
particular pieces of information).

Much like the AAM models other agents, the self
model (SM) is an abstract representation of an agent’s
domain system. It primarily contains information about
the current state of this system, i.e. its workload, or what
tasks are being executed, but it also embodies the
precompiled plans (behaviours). These plans are
accessed by the monitor, which is responsible for the
control of the intelligent system and for the passing of
information to and from it. As well as representing
information about different entities, there is a clear
distinction in the way in which the self and acquaintance
models are obtained. The self model is predominantly
completed by the intelligent system designer and can be
regarded as an abstract description of the underlying
system; it only needs to represent those features that are
relevant to the ARCHON layer. The models of acquain-
tances, on the other hand, need not be so detailed as they
are used for co-operative purposes rather than for
detailed control.

The planning and co-ordination module (PCM) repre-
sents the main reflective part of the ARCHON layer. If
an exception occurs, it is the task of the PCM to reason
about it and find a way out. Its influence on the monitor
is mainly through the interface to the behaviours that are
currently being executed.

One means of verifying the general architecture is to
ensure that it fulfils the requirements that emerged from
the operator analogy. As Fig. 3 shows, this exercise
ensures that the ARCHON agent architecture provides
all the desired functionality to support both local control
and co-operative interactions.

4 Implementing the ARCHON layer modules

Having identified the basic functional architecture, a
number of important choices need to be made about the
realisation of the individual modules. Two crucial, but
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opposing, design issues are needed to make the imple-
mentation general enough to be usable in a number of
different application domains, yet powerful enough to
meet the real-time performance characteristics demanded
by the underlying industrial applications. There are no
universally appropriate techniques that provide both of
these characteristics; those which lead to powerful
systems are often hand-crafted for a given problem,
whereas those which are appropriate to a range of
problems are often too slow to. meet the real-time
performance requirements of the application.

To circumvent this problem, it was decided to adopt a
hybrid design; one with facilities to meet real-time needs
and facilities which enable the framework to be used in a
broad class of applications. In devising this hybrid, it was
first necessary to identify those techniques which provide
an application with power (adapted) [19]:

® specialisation into modalities; by identifying functions
which need to be performed and developing specialised
subsystems to implement them, the overall system per-
formance can be enhanced and a clear modular architec-
ture produced.

® compilation of knowledge and behaviour; by compil-
ing knowledge and reasoning mechanisms, processing
power can be greatly improved. Rather than having to
reason about which actions should be taken, an agent
merely has to recognise the situation and carry out the
associated action sequence.

Those techniques which enhance generality are

O explicit representations; explicit representations of the
world and an agent’s actions allow high-level descriptions
of agent behaviour to be formulated. Such mechanisms
enable it to operate in a wide variety of situations as it can
embody general principles, rather than be tightly cou-
pled to the specific situation (cf. precompiled mecha-
nisms).

0O generic structures; by using structures which are
meaningful in many different situations to represent
domain-specific information, the associated reasoning
mechanisms can obtain a degree of generality; base the
behaviour on the structure imposed by the generic
representation mechanism, rather than the idiosyncrasies
of the problem being tackled.

These principles were used to guide ARCHON’s imple-
mentation architecture. First, the modular functional
architecture was used as a direct guide for the implemen-
tation architecture, and so each module is responsible for
a particular modality; the PCM is responsible for assess-
ing the global situation and for dealing with issues
involving other agents, the monitor for dealing with local
control activities, the AIM is responsible for manage-
ment of exchanged information, the HLCM with com-
munication etc.

Secondly, the agent models and the information man-
agement facilities were devised to be reusable in a
number of different applications. These structures
obviously need to be instantiated for a given application
(e.g. an agent’s specific skills need to be described, but
the notion that agents have skills is generic and can be
reasoned about in a domain-independent manner).
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Fig. 3 Requirements mapped into the architecture

The need for both compiled behaviour and explicit
representations was another key factor when making
decisions about the implementation philosophy of the
main architectural components. Compiled behaviour
means agents can react to changing situations very
quickly as they do not reason about the world. Using
explicit representation of the world and encoding know-
ledge in a declarative manner, on the other hand,
typically leads to the opposite properties; the implemen-
tation can be more decoupled from the environment, but
it often lacks the speed to handle complex reasoning tasks
in unconstrained domains. Matching these properties
against ARCHON’s requirements leads to the following
implementation decisions.

® Planning and co-ordination (PCM); the number of
co-operative requests occurring will be relatively few in
number because agents will spend most of their time
engaged in problem-solving, rather than in communicat-
ing information, and are typically capable of solving a
substantial proportion of their problems themselves. It is
also fairly easy to identify the types of co-operation
request which may occur and the reasons behind them.
For example, agents may request pieces of information or
ask for tasks to be performed because they cannot be
realised locally or because it is deemed better to ask for
somebody else to carry them out. As such activities can
be described at a relatively high (general) level and
because they are relatively few in number, such know-
ledge is well suited to a declarative reasoning mechanism
with explicit representation of the domain of co-
operation.

® L.ocal control (monitor); requires a fast response to
numerous events and situations arising in the domain
system. Such control varies from application to appli-
cation and is difficult to generalise. Therefore, it is well
suited to the compiled action approach.

® Situation assessment (PCM and Monitor together);
assessment activities are intermediate in number and in
terms of their generality. Some high-level assessment
functionality can be considered general, whereas other
components need to be specialised for a particular
application. Therefore, in terms of knowledge represen-
tation, this functionality has been implemented as a
mixture of declarative rules and precompiled mecha-
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nisms.

We provide below the details of the implementation of
the HLCM, AIM, PCM and the monitor.

4.1 High-level communication

The functionality of the HLCM allows agents to establish
meaningful dialogues necessary for decentralised
problem-solving and co-ordination. The HLCM
provides both generic communication functionality (e.g.
‘send this message to all agents which are interested in it”)
and physical communication functionality (e.g. classical
send and receive to a known agent). The three key
services provided by the HLCM are intelligent address-
ing, filtering and message scheduling.

O Intelligent addressing allows agents to send messages
to ‘relevant’ acquaintances. The relevance of a message
for an acquaintance is determined using parameters
provided by the PCM and information stored in the
acquaintance models.

O Filtering allows agents to receive only relevant mess-
ages. For example an agent can use filtering facilities to
receive messages only from certain acquaintances or
about certain objects.

0 Message scheduling allows agents to influence the
order in which the messages are processed. This ordering
mechanism is based on priorities. The scheduling mecha-
nism also supports a time-out facility, e.g. messages will
become obsolete after a certain period of time.

With respect to the ISO/OSI standard, the functionality
of the session layer has been integrated into the HLCM.
This session layer functionality provides a standardised
set of communication services based on the broadly used
communication protocol TCP/IP. To this end, it creates
various session entities based on TCP/IP which employ
protocols in order to implement the services provided to
session users. The session layer functionality is conti-
nuously checking the communication links and provides
automatic recovery of connection breaks if possible.
Furthermore, it provides statistical information about
the message traffic handled.

4.2 AIM

The complexity of the information that needs to be
exchanged in industrial applications is substantially
greater than in more traditional DAI applications. For
example, in electricity management we can easily find
data sets of several Mbytes in size (e.g. the updated
topology of a section of the network containing all
elements with their current status). A number of agents
may be interested in certain aspects of such data, but
rarely in all of it. Therefore, either the agent where this
information was generated sends the complete set to all
interested agents (so that they can select whatever they
want and discard the rest), or the agent could select all
subsets that may be required by some other agents. Both
approaches are unsatisfactory; the first because it would
overload the communication channels with irrelevant
information, and the latter because it would consume
considerable computation resources for results that may

174

not be needed in the end. Thus, the solution developed
for ARCHON consists of a distributed (federated) data-
base architecture embedded in the general communica-
tion facilities of ARCHON (within the AIM module)t.
The main idea in this approach is that any generated
information is stored and kept at the source, i.e. in the
AIM module of the generating agent.

The architecture of the AIM module is based on three
main components:

® a common object-oriented database model, the 3DIS.
® a common database language, the 3DIS/ISL.

® a co-operation architecture, called the distributed
AIM.

In the AIM module of each ARCHON agent, a ‘local
schema’, one or more ‘export schemas’, a number of
‘import schemas’ and an ‘integrated schema’ have to be
developed. Each of these schemas is represented in the
3DIS information modelling formalism.

Each schema represents the classification and organisa-
tion defined on the data, is described by a directed acylic
graph, and contains the types, subtype/supertype rela-
tionships among types, and the mappings and behaviours
(operations) defined on each type. The local schema
represents the structure of the information that is stored
locally in the information system. Export schemas repre-
sent the structure of the information an agent wishes to
share with other agents. Each import schema represents
the structure of the information that this agent wishes to
access and another agent is willing to share. Therefore,
one agent’s import schema is exactly the same as another
agent’s export schema. The integrated schema represents
a coherent view of all the information that an agent can
access, including both the local information and a part of
the remote information which is modelled in its import
schema and the agent wishes to access.

Within an agent, the specification of the relationships
between the various schemas is done with the use of (type
and map) derivation operators, i.e. export schemas are
derived from the local schema. The integrated schema of
an agent is also derived from the local schema and the
import schemas of the agent. Queries that originate
within an agent (local queries) can be evaluated against
any of the schemas in an agent, but the default is the
integrated schema. Queries that come from another agent
(remote queries) are always evaluated against the appro-
priate export schema. On the basis of the derivation
specification, the query processor of an agent decom-
poses queries on the integrated schema in terms of
queries on the local schema and queries on relevant
import schemas of another agent. The query processor at
another agent, in turn, processes remote queries in terms
of its appropriate export schemas and transforms them
into queries on its local schema.

1 A centralised control and a common structure (e.g. a global shared
schema) describing the information shared among different application
activities is too restrictive, unnecessarily constrains the freedom of each
agent, and certainly in large organisations, leads to cumbersome and
bureaucratic maintenance procedures. Additionally, a centralised
approach cannot be accomplished efficiently if there is a large number
of agents.
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5 Example: co-operative diagnosis in electrical
networks

Alarms analysis in electrical networks for many years has
been one of the major problem domains for the appli-
cation of artificial intelligence in the energy management
industries. The example that has been selected to show
the instantiation process of the multi-agent system
involves several fault diagnosis systems and is available in
the dispatching control room of IBERDROLA in Bilbao,
Spain.

The increasing automation and complexity of the
automatic controllers have brought the electric utility to
the point where human intervention is scarcely needed,
but whenever it does occur, the responsibility of the
operator’s decisions is greater than ever before. This
increase in automation has also produced an increase in
the amount, reliability and complexity of the information
received. In order to help the operator during the
monitoring of the network, the necessity of providing an
abstract view of the situation has arisen. This, in turn,
has led to the development of several expert systems in a
multi-agent community to help during this process (Fig.
S):

® alarms analysis agent (AAA); the objective of this
agent is to analyse the non-chronological alarm messages
in order to identify the element at fault. The time tag
attached to these messages refers to the arrival time but
not to the time of the fault. Thus it has to be treated with
caution.

® breakers and relays supervisor (BRS): the objective of
this agent is similar to that of the AAA, but the analysis is

based on chronological alarm messages, whose time tag is
stamped locally at the substation, allowing a correct
sequencing of events. However, these data are transmit-
ted with a delay due to a lower priority in relation to
other data.

® black-out area identifier (BAI): the objective of this
system is to identify the section of the network that has
initially been isolated at the time of the occurrence of the
fault, and before the automatic reclosing trial mecha-
nisms started to restore the network. The element at fault
has to be within that area and, if all the automatic
mechanisms work correctly, they isolate the faulty ele-
ment. This agent works with non-chronological alarm
messages and snapshots.

e control system interface (CSI); this agent acts as a
front end between the control computer and the other
three agents that are in charge of the diagnosis process.

An important example of co-operation in this system
involves the information interchange between the AAA,
BRS and BAI agents. The AAA and the BRS have to
produce the same result from different sources of infor-
mation, and the BAI applies different knowledge to this
information producing a result that should be coherent
with the AAA and the BRS results.

Let us assume that a block of non-chronological alarm
messages has been provided by the SCADA (system
control acquisition data), and these alarm messages have
been identified as related to a disturbance by the task
Get_Alarm_Messages of the CSI. This information is
received at the CSI monitor level through the corres-
ponding MUs. The monitor sends this information to the
PCM as intermediate results. When the PCM receives
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Fig. 4 Modelling control in the monitor
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Fig. 5 Agents in the IBERDROLA application

this information, it is passed to those agents with a
declared interest in it. In our example, this information is
sent to the AAA and BAI agents:

ALARM_MESSAGES,
DISTURBANCE IDENTIFIER--->AAA,BAI

Some time later, the same process is repeated when the
corresponding chronological alarms are provided by the
SCADA system. In this case, the BRS has declared an
interest in these data:

ALARM _MESSAGES--->BRS

At this point of the execution, the three agents (AAA,
BAI and BRS) are working in parallel.

When the AAA receives the alarm messages and the
corresponding disturbance identifier has identified the
alarm messages as a consequence of a fault, the ‘behav-
iour’ New_Alarms is triggered and its associated plan
executed. The plan execution activates the MU
Set_Alarm_Messages, which provides the IS with the
alarm messages. Once this MU finishes, this plan has
been completed, the ‘behaviour’ New _Fault is triggered,
and the execution of its associated plan generates a set of
hypotheses.

At the same time, the BAI has received the same
information (alarm messages and disturbance identifier),
which triggers the ‘behaviour’ Initial_Black_Out_ Area.
The execution of the associated plan activates sequen-
tially several MUs, e.g. the Initial Area Out Of
Service MU, which provides the Initial Area_Out_
Of Service data. When the plan is completed, this
information is sent to the PCM as a final result of the
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behaviour. The BAI then checks whether there is any
agent that is interested in this information and finds out
that the AAA is interested in it. Consequently, the
Initial Black_Out_Area is sent to the AAA:

INITIAL BLACK OUT AREA--->AAA

Simultaneously, but with a certain delay, the BRS agent
has started working on the analysis of the chronological
alarm messages, because as soon as its PCM has received
the chronological alarm messages, the New_Block
behaviour is triggered. Its associated plan is executed and
the Read_Chronological Alarm_Messages MU is trig-
gered, which means that the alarm messages are fed into
the IS and that the block of chronological alarm messages
is divided into smaller subsets of 1s. However, for
simplicity, we assume that there is just one subset. Once
this MU finishes, the plan is also completed and the
behaviour -Subset_Analysis is executed. The
Subset Alarm_Messages MU identifies a faulty pattern
in the alarms subset received, and consequently the
Trips_Generation and Hypotheses_ Generation MUs are
executed. As results of the execution of the last MU, the
monitor receives the Generated_Hypotheses, which are
sent to the PCM as an intermediate result. The BRS then
checks whether there is any agent interested in this
information and finds out that the AAA is interested in it.
Consequently, the Generated Hypotheses data is sent to
the AAA:

GENERATED HYPOTHESES->AAA

The AAA, after the New_Fault behaviour execution has
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finished, continues with the alarm messages analysis. In
the meantime, the other two agents proceed with their
analysis. The following situations may then occur.

0 The Initial-Black—Out-Area is available to the AAA.
This triggers the Refinement_Based _On_Initial _
Black_Out_Area behaviour, possibly reducing the
number of hypotheses to be validated because the BAI
has given a focused view of the situation.

O The Generated _Hypotheses provided by the BRS are
available and sent to the AAA, which can now trigger the
Refinement _Based _On_ Generated _Hypotheses behav-
iour, obtammg a better reordermg of the hypotheses to
be validated and a benefit in finding the element at fault.
O The Validated Hypotheses provided by the BRS are
available and sent to the AAA, which triggers the
Refinement _Based _On_Validated _Hypotheses behav-
1our; this has the same functlonahty as the previous one,
but the reordering is based on validated hypotheses,
which are more accurate.

O If no information is available from the BAI or BRS,
the AAA proceeds with the validation of the hypotheses
as a stand-alone agent. Therefore, if the other agents are
down or they are too slow to provide the information, the
AAA continues and finds a faulty element, although its
reliability is less and the speed in finding the solution is
reduced.

6 Conclusions and future work

The view presented here is only partial, and interested
readers should refer elsewhere [20] for further details.
We have identified heterogeneity and the ability of an
operator to actively participate in problem-solving as
critical design forces in the construction of co-operation
frameworks for industrial applications. The type of
problems that ARCHON is addressing have been
detailed, and the associated requirements have been
mapped into the functional architecture.

Finally, ARCHON’s hybrid approach and the use of
generic structures have been identified as key techniques
for confronting the power generality problem.

The Project has applied these concepts to applications
in order to achieve its final goal; the ARCHON frame-
work as an industrial product for a wide range of
supervision and control applications. This involves a
two-step approach; first, to restructure the control level
of already existing applications and, at the same time,
develop the ‘principle ARCHON layer’. This refers
mainly to designing and implementing the monitor,
which finally deals with the intelligent systems of the
application and, by its very nature, is highly domain-
dependent.

As mentioned in Section 1, the ARCHON architecture
as it now stands only concentrates on loose coupling of
semi-autonomous agents. Clearly, if an organisation has a
collection of pre-existing computational systems, each
dealing with a separate aspect of the same underlying
domain, then the architecture presents an opportunity
for bringing these together into a useful co-operative
framework. Pilot studies carried out within the Project
itself provide a convincing demonstration of the use of
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ARCHON where there are pre-existing computational
systems. However, ARCHON is not designed only for
pre-existing systems, but also providing co-operation
between any set of semi-autonomous systems. Clearly,
future work needs to be carried out to examine the use of
ARCHON concepts in a more general case. Before this
can be done, an important matter needs to be considered;
ARCHON, on its own, would restrict an integration
approach to formulating a solution only in terms of
loosely coupled semi-autonomous agents. ARCHON
concepts may well have their best use as enhancements to
more conventional (e.g. client-server or any other distri-
buted computing platform) integration architectures.
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