DiIsTRIBUTED Al

Using Archon, Part 3:
Particle Acceleration Conirol

Fabien Perriollat, Paul Skarek, and Laszlo Zsolt Varga, European Laboratory for Partide Physics
Nick R. Jennings, Queen Mary and Westfield College ‘

P ARTICLE ACCELERATORS, IN GEN-
eral, are complex systems that provide physi-
cists with beams for their experiments—
think of them as a factory that produces
particle beams. The beam is formed by set-
ting certain physical parameters (like the
beam’s dimensions) along its path in the
accelerators and in the transfer lines between
the different accelerators. The physical para-
meters are set by the accelerator equipment
(for example, quadrupoles and bending mag-
nets), which is controlled by the control sys-
tem’s computer hardware and software. The
control system, which is managed by a num-
ber of operators, has six main functions:

* Automatic sequencing of the “beam fac-
tory” for different users,

¢ Acquisition of control values (sensor
readings of beam properties and mea-
surement devices in general),

+ Control of setpoint values and equipment
status,

¢ Analysis of alarm data obtained via sur-
veillance programs and corresponding
recovery actions,

« Execution of various test programs, and

¢ Archiving and restoring reference control
values.

We used the Archon framework to build a
distributed AI application for controlling, and
diagnosing faults in, the Proton Synchrotron,
one of CERN’s (the European Laboratory for
Particle Physics) particle accelerators.! The
PS complex is the heart of CERN’s acceler-

THE ARCHON SOFTWARE FRAMEWORK INTEGRATED TWO
PREEXISTING STANDALONE SYSTEMS INTO A CONSISTENT, §
FLEXIBLE APPLICATION. THE INTEGRATED SYSTEMS PROVIDE &

USEFUL INFORMATION TO EACH OTHER AND IMPROVE EACH
OTHER’S PERFORMANCE THROUGH COOPERATION,

ators and experimental facilities and also acts
as an injector for the larger accelerators,

‘Why use DAI techniques for

this application?

Accelerator control is a complex activity.
Running and maintaining accelerators is an
increasingly sophisticated task that requires
the help and cooperation of a number of
human experts—for example, the operators,
the fault-finding experts, and the accelerator
physics specialists. A monolithic and cen-
tralized system is no longer feasible or appro-
priate because of the domain’s sheer size. So,
CERN chose DAI as an implementation
technology because it has several features
that are well-suited to managing this inherent
complexity. It offers a means of decompos-
ing complex knowledge, assigning it to mul-
tiple processing entities (agents), and then
recombining it, and adding value through
cooperative interactions.?

A second motive for a DAI approach is
that modern control systems for large accel-
erators are inherently decentralized and dis-
tributed. CERN’s current control system, for
instance, contains a number of heterogeneous
subsystems that implement the accelerator’s
main functions.’ These subsystems include
a database system that contains details of the
accelerator’s components, an equipment
access-and control system, an alarm system,
an operators’ console system, two diagnos-
tic systems, and a setup system.

Despite this decentralization, the control
system must uphold a number of subsystem
interdependencies. For example, the diag-
nostic systems load the structural description
of the accelerator from the database. Also, the
different diagnostic systems can provide use-
ful information to one another. The setup sys-
tem, software that instantiates parts of the
accelerator after a failure or the whole accel-
erator after a shutdown period, can act as a
recovery agent for the diagnostic systems.
The diagnostic systems can provide details

80

0885-9000/96/$4.00 © 1996 IEEE

IEEE EXPERT

Figure 1. The PS accelerator control system and the cooperating agents.

for the setup system if the latter system fails.
To effectively manage these dependencies,
the separate components must work together
in a coordinated, coherent fashion to meet the
overarching goal of maintaining the acceler-
ator’s availability for physics experiments.
A final reason for adopting a DAI approach
is that a significant amount of software
existed for this application. All of this soft-
ware connected to the same physical reality—
the accelerator—but no facilities enabled the
distinct subcomponents to interact meaning-
fully and intelligently. This software was tried
and tested, and it represented a substantial
investment. Therefore, the final delivered
solution had to integrate this software and had
to allow the obviously related components to
interact. As well as supporting software inte-
gration, Archon offered a methodology that
enabled integration of the legacy systems.
In this application, CERN based the top-
down analysis on a task decomposition of the
operator’s job and on the principle of cooper-
ating agents combining the individual, dis-
tributed problem-solving subsystems to work
together on a common goal.# They analyzed
the existing subsystems from the bottom up.
Taking into account the available resources
for development, they decided that keeping
the subsystems’ original size and making them
cooperate would produce the best invest-

ment/improvement ratio. This analysis also
revealed that the existing subsystems could
provide useful information to one another and
could improve each other’s performance
through cooperation. In particular, CERN
believed that by using the Archon system, the
two existing diagnostic expert systems could
produce more detailed results faster.

Specification of the agents

Figure 1 shows the accelerator-control envi-
ronment in which we developed the multia-
gent application. The operators (top-left cor-
ner) control equipment in the PS booster’s
transfer line through a knob-chain. (The PS
booster is a preaccelerator, boosting the
energy and the beam qualities before inject-
ing the beam into the PS.) A knob-chain is a
collection of connected hardware and soft-
ware modules through which data flows. It
starts at an operator’s console, where the
operator selects a parameter (called
OB.NAME) to be controlled. Turning the
appropriate knob on the console activates
programs in the console computer and, via
the computer network, the equipment driver
in the front-end computers. This equipment
driver controls one or more electronic inter-
face modules connected to the real equip-

ment (magnets, quadrupoles, and so on),
where the knob-chain ends.

The two diagnostic expert systems in the
accelerator control environment are Codes
(control system diagnosis expert system)’ and
Bedes (beam diagnosis expert system).5 Both
connect on line to the running accelerator.

Codes finds faulty hardware and software
modules in the accelerator control system
when malfunctions occur. It includes model-
based reasoning and on-line access to the
database (see the top-right corner of Figure
1) describing the control system’s parts and
modules and their connectivity. It was imple-
mented on a Symbolics Lisp machine using
Intellicorp’s Knowledge Engineering Envi-
ronment (KEE) to write a generic shell for
diagnostic reasoning.

Codes’ high-level reasoning procedures are
based on selecting and treating hypotheses
from an agenda. Originally, hypotheses were
created by the user via the graphics interface
or by the diagnostic rules and procedures for
a suspected entity. Then, either the user or
Codes’ diagnostic rules put the hypotheses on
the agenda. In the ensuing DAI system, coop-
erative reasoning coming from another agent
can also create hypotheses.

A Codes hypothesis is an object that com-
prises, among other attributes, this principal
information:

DECEMBER 1996

81

« Suspected entity: which object in the con-
trol system is suspected (for example, a
focusing quadrupole).

« State of the entity: what is the suspected
erroneous state (for example, switched off).

o Verification method: how to verify or aban-
don this particular hypothesis.

The verification method includes both pro-
cedural data (for example, to be collected
from the database or via accesses to the con-
trol system itself) and declarative data (that
" is, the diagnostic rules). Procedures and rules
use the initial data (such as an operator’s sus-
picions or error codes) if available, or use the
results from tests being executed.

During the diagnosis, the procedural access
routines and the declarative rules can create
(and add to the agenda) new hypotheses that
are further specializations and alternatives.
These new hypotheses then become the chil-
dren of the hypothesis that created them. In
this way, the hypotheses form a hypothesis
tree. A number of general metarules govern
the selection of the next hypothesis to be
treated from the agenda. For instance, if a
hypothesis is on a certain module and another
hypothesis is on a subpart of that module,
only the subpart hypothesis is kept, because
itis more detailed and therefore more promis-
ing. Or, if two hypotheses are on the same
suspected entity and one of them indicates a
more specific fault, the one with the more spe-
cific fault gets checked first.

Bedes helps operate the PS booster. It also
helps operators set up a certain particle beam,
keep stable running conditions, or change to
a different kind of beam. Bedes uses the same
hypothesis-centered-reasoning shell that had
been developed for Codes, but the initial
hypotheses that Bedes creates are monitor-
ing hypotheses. These hypotheses corre-
spond to-discrepancies detected for beam
intensities alongthe injection line and dis-
crepancies in the efficiency of the injection
into the PS Booster rings.

Both Bedes and Codes were conceived
and implemented as stand-alone systems, so
they did not interact when they were initially
installed. In some instances, however, the
operators of both systems cooperated orally
when people from the fault-finding team
were working on a particular problem. For
example, if the operators failed to adjust the
beam and suspected (with the help of Bedes)
that a certain value could not be controlled,
then they contacted the fault-finding team.
The team found out (with the help of Codes)

if a control module was broken or if a soft-
ware table was corrupted. The control team
then diverted the knob-chain to another piece
of equipment.

CERN researchers expected this cooper-
ation to be useful, because Bedes accesses
the control system in its diagnosis and can
provide input to Codes. Also, problems with
the beam’s physical properties might indi-
cate problems in the control system, and
problems in the control system might cause
deviations in the beam’s physical properties.
If the beam is lost, either the operator made
an error (the wrong setpoint value or wrong
archives, both of which are in the domain of
Bedes) or the control system is faulty (the
domain of Codes). Either way, the symptoms
on the beam are the same. Hence, the primary
role of the Archon layer (AL—see Part 1, p.
64) in this implementation is to act as an
arbiter that gives hints about where the real
problem lies.

N

The cooperation method:
conceptualization and
implementation

A principled and well-founded DAI system
required a general paradigm by which Codes
and Bedes could cooperate. Our method rests
on two key observations:

» An expert system’s diagnostic process
can be viewed as the generation and eval-
uation of a hypothesis tree;

» Cooperation between the expert systems
can be initiated by relating hypotheses in
different hypothesis trees.

The CERN application distributes the diag-
nostic knowledge between Bedes and Codes.
For example, if Bedes finds that it cannot
change a certain control value, Codes will
have the knowledge to analyze the reasons
for that error and to further diagnose the
problem. Thus, Bedes has a hypothesis that
refers to a control value with the property
“cannot be changed.” The knob-chain in the
diagnosed domains sets this value. Therefore,
Bedes’ hypothesis relates to the one in Codes
that refers to the knob-chain controlling that

control value and that has the property “not’

working.” Hypothesis translation (which
we’ll discuss in more detail later) relates
these hypotheses, analyzing a hypothesis in
one expert system and creating the appropri-

ate hypothesis in the other.

These two observations indicate that the
exchange of hypotheses provides the best
means of instantiating cooperation in this
application. In this case, the agents also
exchange diagnostic knowledge (because of
the declarative knowledge contained in the
hypotheses” verification method). This
exchange joins the knowledge distributed in
the two expert systems—for example, one
expert system can supply the suspected entity
and the state of the suspected entity, and the
other can supply the verification method.

As we stated previously, both Bedes’ and
Codes’ agendas indicated the state of the
diagnostic process. The expert systems
changed their agendas after each complete
inference cycle. In both cases, an inference
cycle involves selecting the most highly rated
hypothesis (the one at the front of the agenda)
and evaluating it. This evaluation can result
in new hypotheses being inserted into the
agenda, old ones being removed, or existing
ones being modified (having their ratings
changed). Therefore, its completion repre-
sents the most natural point for hypothesis
interchange. Given this agenda-based encap-
sulation of each agent’s diagnosis state, we
decided that the easiest way to realize the
effects of hypothesis exchange would be
for the Archon layer to manipulate the agen-
da. This means the AL can add, remove, or
modify hypotheses—just like its underlying
intelligent system (IS—see Part 1, p. 65)—
but that it need not be involved in the domain-
dependent details of hypothesis evaluation.

Exchange of hypotheses and manipula-
tions of the agenda by the AL were the cru-
cial points that opened up Codes and Bedes
for cooperation. This method’s advantage is
that the expert systems and their respective
ALs can easily connect. The agenda provides
a clean interface, because we do not have to
modify the basic functioning of the expert
systems and because we can easily separate
the agenda-manipulation tasks from the
existing systems. In this way, the AL acts as
a broker of hypotheses and initiator for
changes in their ratings, while the underly-
ing IS acts as a hypothesis evaluator whose
focus of attention can be set through both
local and cooperative know-how.

The implementation of this generic coop-
eration method required’

s opening the expert systems so that the
" internal tasks become visible to the AL as
IS tasks,

82

IEEE EXPERT

* implementing the new cooperation-
specific tasks,

¢ implementing the translation tasks that
relate hypotheses in different trees to one
another, and

* instantiating the AL so that the expert sys-
tems can exhibit the desired cooperative
behavior.

To open the expert systems, we needed to
identify each of their main activities and
encapsulate the activities as monitoring units
(MUs—see Part 1, p. 66) in the AL (because
of Bedes’ and Codes’ similar implementation
structure, the same analysis applied to both).
We identified these activities: INITIALIZE,
which sets up the expert system; EVALU-
ATE NEXT HYPOTHESIS, which evaluates
asingle hypothesis; REARRANGE_AGENDA,
which applies metarules and rearranges the
agenda according to the priority ratings; and
INJECT_HYPOTHESIS, which places a new
hypothesis onto the agenda. The modular
design of the expert systems meant that mak-
ing these activities available as IS tasks
required no significant effort. By directly start-
ing these tasks, the AL can execute inference
cycles in its underlying expert system. By
starting the INJECT HYPOTHESIS task, the
AL can also insert into the agenda hypothe-
ses coming from cooperation.

To satisfy the additional needs coming
from multiple-agent interactions, we had to
develop new cooperation-specific tasks that
fell into two categories. First, we needed
simple tasks that make some previously
internal information visible to the AL. One
such task is GET_AGENDA , which returns
the current agenda. This task helps find out
whether the agenda is empty. The other is
HYPO_IN_AGENDA, a Boolean task that
returns “true” if the given hypothesis, or
any of its children, can be found on the
agenda. This task helps determine whether
the diagnosis concerning a certain hypoth-
esis is finished.

Second, we needed tasks that exploit the
advantages of cooperation. For example,
DECREASE_ATTENTION and INCREASE__
ATTENTION focus the expert system’s atten-
tion; they correspondingly decrease and
increase the priority rating of a given hypoth-
esis and all its children on the agenda. The
final required task is CHECK_CONFLICT,
which checks whether the results provided by
Bedes and Codes contradict one another. This
task encodes the fact that Codes has better
knowledge of the control system and thus is

Figure 2. A portion of Bedes' acquaintance model of Codes.

Figure 3. Trigger that starts (odes’ InferenceCycle behavior.

always more reliable. The tasks in this sec-
ond category are somewhat more complex
than those in the first. Nevertheless, they are
reasonably simple, and they provide the
expert systems with strategic information
coming from cooperation.

We implemented the translation tasks by
relating the beam’s physical properties and
control elements in the control system. The
tasks are relatively straightforward and
involve relating suspected entity names to
each other so that each expert system’s
knowledge base can refer to them. The first
translation task, INJECT_HYPOS_AND__
TRANSLATE, converts a hypothesis received
from another agent. For example, when
Codes receives a hypothesis from Bedes, it
must create a hypothesis for the part of the
conirol system that controls the physical
property or control value suspected by
Bedes’ hypothesis. The second translation
task, BACK_TRANSLATE, translates back
those hypotheses that are children of a
hypothesis received from another agent. For
example, when Codes evaluates the children
of the hypothesis created by INJECT
HYPOS_AND_TRANSLATE, it has to relate
the hypothesis to thé root of the tree and
report the result back to the sender of the
original hypothesis.

To instantiate the AL, we need to populate
the acquaintance and self models (see Part
1, p. 67) and define the skills and behaviors
(see Part 1, p. 67). In this application, the
acquaintance models primarily describe
which hypotheses should be sent to which
acquaintances in which circumstances. Three
cases must be considered. The first is when
Bedes creates new hypotheses. Bedes should
always send them to Codes so that it can ver-
ify those parts of the control system that are
referenced in these hypotheses. The second
case is when Bedes evaluates a hypothesis.
This evaluation can contain useful informa-
tion for Codes. For instance, confirmation of
the hypothesis might indicate to Codes that
the control-system modules related to the

object referred to in Bedes’ hypothesis might
be faulty. Nonconfirmation of the hypothe-
sis might indicate the opposite. The third case
is when Codes evaluates a hypothesis that is
a child of a hypothesis received from Bedes.
Codes should report the result back to Bedes,
because if Bedes is still working on the
hypothesis and its consequences, Codes’
result can be useful (as we’ll discuss in the
next section).

Figure 2 shows a portion of Bedes’
acquaintance model of Codes. After each
inference cycle (particularly after the EVAL~
UATE_NEXT_ HYPOTHESIS task), Bedes
should send the hypothesis that has just been
evaluated (HYPO) and those just created
(NEW_HYPOS) to Codes in all cases (the
missing condition signifies “in all cases™).

In this application, the self models mainly
describe the underlying IS’s local skills and
behaviors. The skills that control the agent’s
main domain-level problem-solving activities
are StartUp and InferenceCycle.
StartUp executes the initialization when the
agent starts. The planning and coordination
module (PCM—see Part 1, p. 68) calls
InferenceCycle during the diagnosis to
execute one inference cycle; this skill involves
executing the EVALUATE_NEXT HYPOTH-
ESIS task. It triggers when the AGENDA is
not empty and there are hypotheses to evalu-
ate (see Figure 3).

The skills that control the cooperation-
specific activities are Attent ionTrack-
ing and InjectHypos. Attention-
Tracking manages the focusing of an
agent’s problem solving in light of the infor-
mation received from its acquaintances; we’ll
explain it in detail in the next section.
InjectHypos triggers when the agent
receives data of the NEW_HYPOS type that
contains the CREATED . BY . AGENT BEDES
string (see Figure 4). The second condition’
prevents this behavior from triggering
in the agent that created the hypothesis.
InjectHypos translates the hypotheses
from cooperative actions and puts them into

DECEMBER 1996

83

Figure 5. InjectHypos behavior.

the agenda of the underlying IS (see Figure
5). First, the InjectHypos behavior locks
the agenda (using the AGENDA semaphore)
to avoid other behaviors changing it while
this behavior is active. Next, InjectHy-
pos places the hypothesis on the agenda
(using the mInjectHypos MU, which is
associated with the IS task INJECT__
HYPOTHESTIS). Then, it returns the agenda’s
status (using the mGetAgenda MU, which
is associated with the cooperation-specific
task GET_AGENDA). Finally, it releases its
lock on the AGENDA. This behavior results
in the data item AGENDA (that is, the
agenda’s status).

The implementation of the generic coop-
eration method had three characteristics.
First, the existing systems required only small
modifications (after the careful design, we

| Controlled

carried out the modifications in a few days).
Second, the AL included all the cooperative
features. Third, the implementation allowed
stand-alone operation of the expert systems.

A cooperative scenario

‘We’ll now describe in detail this application’s
main cooperative scenario. This scenario
shows how the agents can focus each other’s
problem-solving activities by sharing rele-
vant and timely information (hypotheses). It
has two phases. First, Bedes sends unevalu-
ated hypotheses to Codes, which starts
Codes’ diagnosis activities. Even this very
modest information exchange represents an
improvement over the original stand-alone
system, in that Codes does not have to con-

parameter
| (0B.NAME) |

i
Control

Control
module 3

module 1

tinuously monitor the accelerator. (The accel-
erator can now start on demand by the receipt
of information from Bedes.) Second, Bedes
sends evaluated hypotheses to Codes, which
enables Codes to concentrate its efforts on a
further-reduced area of the problem space.

Initially, Codes is inactive and has an
empty agenda. When Bedes’ StartUp
behavior executes, Bedes automatically
inserts onto its agenda two general monitor-
ing hypotheses: EFFICIENCY (a suspicion
about bad- injection -efficiency) and
INJ . TRA (a suspicion about wrong particle
trajectories). Because Bedes’ agenda is not
empty, its AL starts the InferenceCycle
behavior (the T_InferenceCycle trig-
ger is satisfied). Bedes evaluates its first
hypothesis (B1 in Figure 6). As part of the
evaluation, it acquires the beam intensities
via the beam-current transformers along the
injection part of the PS booster transfer line.
It finds that the intensity is too low (say, only
70% of the incoming beam’s intensity). Run-
ning the rules to justify this, Bedes creates
three new hypotheses: B2 (a focusing
quadrupole is not correctly set), B3 (a mea-
surement screen forgotten in the beam line
is a beam obstacle), and B4 (the setpoint
value for a bending magnet is wrong). These
hypotheses represent a suspected fault for
some elements along the beam line that could
explain the intensity drop.

The InferenceCycle behavior pro-
duces the result NEW_HYPOS, from its
EVALUATE_NEXT HYPOTHESIS task,
which Bedes sends to Codes as unrequested
information because of its acquaintance
model definition (see Figure 2). The reason
for sending such preliminary hypotheses is
that Codes might be able to find the result
more quickly or that it might reveal more
details about the fault. Upon receipt of
the hypotheses, Codes’ INJECT _HYPOS__
AND_TRANSLATE activity fires. This con-
verts B2, B3, and B4 into their corresponding
hypotheses (C1, C2, and C3—see Figure 6)
about knob-chains, with which Codes can
work. For example, for B2, Codes should sus-
pect the subelements in the control chain for
this quadrupole (for example, a wrong setpoint
value, a faulty electronic interface module, or
an uninitialized data table in the equipment
driver), represented by the hypotheses C4,
C5, and C6. When the translation is complete,
Codes’s AL invokes its InjectHypos
behavior, which adds the new hypotheses to
its agenda. Because Codes now has a non-
empty agenda, its T_InferenceCycle

84

IEEE EXPERT

trigger is satisfied and the InferenceCy-
cle behavior starts. While Codes’ agenda
remains nonempty, the PCM continually
invokes the InferenceCycle behavior to
process each hypothesis.

The scenario’s second phase starts when
Bedes evaluates its hypotheses (B2, B3, or
B4) and determines that one of them is con-
firmed (or is not confirmed). Its Infer-
enceCycle behavior returns the evaluated
hypothesis as a separate data unit (called
HYPO, as opposed to NEW_HYPOS, which
are the unevaluated hypotheses). Based on
Bedes’ model of Codes (see Figure 2), the
behavior sends out the updated information
as unrequested data.

Receipt of the evaluated hypotheses by
Codes means that its T_HYPO trigger (see Fig-
ure 7) is satisfied and that its Attention~
Tracking skill (see Figure 8) is invoked.
This behavior uses this additional information
to direct its own problem solving. Codes will
already have received HYPO from Bedes as an
unevaluated hypothesis (phase 1 of this sce-
nario) and will have injected it into its agenda,
maybe started to work on it, and perhaps even
finished its own evaluation.

Based on the additional information in
HYPO and Codes’ current processing status
for its own version of HYPO, Codes’ Atten-
tionTracking behavior might decrease
or increase attention for certain areas of the

problem space or check for a conflict situa- -

tion. First, the AttentionTracking
behavior locks the agenda to stop other
behaviors from changing the agenda. Then,
it checks if HYPO (or one of its children) is
currently in the agenda. It achieves this
through the mBypoInAgenda MU, which is
attached to the HYPO_ IN_AGENDA coopet-
ation-specific task.

HYPO’s presence in the agenda indicates
whether Codes’ diagnosis related to HYPO is
ongoing or has been completed. If the diag-
nosis is ongoing, then the rating of those
hypotheses that are HYPO’s children must
increase or decrease, depending on the sta-
tus of Bedes’ evaluation. If Bedes has con-
firmed HYPO, HYPO shows promise, and its
children’s ratings should increase. (Codes
achieves this by the mIncreaseAtten~
tion MU, which is attached to the
INCREASE_ATTENTION task.) If Bedes
cannot confirm HYPO, then HYPO shows lit-
tle promise, so its children’s ratings should
decrease. (Codes achieves this by the mDe -
creaseAttention MU, which is
attached to the DECREASE_ATTENTION

Figure 7. Trigger for Codes’ At tent ionTracking behavior.

Figure 8. At tent ionTracking hehavior.

task.) Codes calls these MUs selectively,
using constraints between them.

If Codes has finished its diagnosis related
to HYPO, then it must check if the new infor-
mation from Bedes contradicts its own find-
ings. (Codes achieves this by the mCheck-
Conflict MU, which is associated with
the CHECK_CONFLICT task.)

Although this scenario concentrates on
Bedes focusing Codes’ reasoning, the reverse
can happen: Codes sends evaluated hypothe-
ses to Bedes. Sending hypotheses in this
direction, however, adds complexity; Codes
must back-translate the hypothesis before
sending it. To achieve back-translation,
Codes’ InferenceCycle behavior pro-
duces an additional Boolean variable (called
HYPO_TREE_FINISHED). This variable
indicates whether the whole hypothesis tree
(to which the hypothesis evaluated in the
inference cycle belongs) has been evaluated.
The BACK_TRANSLATE behavior triggers
if Codes has evaluated a hypothesis that is not
a root hypothesis of a knob-chain (the evalu-
ation of the root hypothesis cannot result in
finding the fault). The behavior also triggers
if Codes has evaluated a whole hypothesis
tree (HYPO_TREE_ FINTSHED has the value
“true”) and the fault is not confirmed. The
BACK_TRANSLATE behavior results in a
hypothesis that has the same form as Bedes’
hypotheses. Codes sends this result to Bedes
because Codes’ acquaintance model specifies
that Bedes is interested in back-translated
hypotheses. After receiving this information,
Bedes can shift its problem solving away
from the areas that are connected to the back-

translated hypotheses, because these are
unlikely to be the fault’s cause.

THE DAI SYSTEM ENHANCES CON-
trol-room operation in five ways. First, it can
give more details and more accurate results
than do stand-alone systems, so information
can be presented to the system’s operators
more coherently. In stand-alone operation,
Bedes can tell that a certain control value
cannot be set, and then the operators can ask
Codes why the control value does not work.
The DAI system, on the other hand, can
immediately present the information that the
beam’s efficiency decreased or that the beam
is lost because a control module is stopped
and a control value cannot be set.

Second, the DAI system produces the
results rore quickly. This speedup has two
factors:

» The information transfer between the
expert systems is now direct (no need to
wait for the result from one expert system
and enter it into the other);

» The agents can exchange partial results,
so they can home in on more promising
areas more quickly.?

Third, the intelligent exchange of hypothe-
ses improves the focus of diagnosis. (A pre-
viously uninformed search becomes better
informed, and those hypotheses that are
likely to lead to the final fault get higher rat-
ings and are evaluated earlier).

DECEMBER 1996

85

Fourth, the subsystems can still be separate,
so the relevant different groups of experts can
more easily develop and maintain them (this is
why Bedes and Codes were developed origi-
nally as stand-alone systems).

Finally, the DAI system’s level of integra-
tion means that users can obtain a broader and
more unified view of the particle accelerator’s
operation and that the system’s results can be
presented coherently.

At present, the expertise of Bedes and Codes
only covers certain parts of the accelerator com-
plex. For maintainability, we cannot extend
them to cover the whole complex. Therefore,
we need to develop a number of new intelligent
systems and incorporate them into the DAT sys-
tem. Particularly impottant is the development
of a setup system® and a timing diagnostic sys-
tem. The setup system would initialize the con-
trol system and take the necessary recovery
actions after a fault has been detected and diag-
nosed. The diagnostic system would comple-
ment the areas of expertise of Codes and Bedes
by embodying diagnostic knowledge about
timing problems—a common cause of faults
in accelerator control. This diagnostic system
typifies an incremental approach that we will
adopt to extend diagnosis and recovery to the
whole accelerator complex. Namely, we plan

to clone new Archon agents that differ from one
another only in that their domain-level knowl-
edge bases each address a different aspect of
accelerator diagnosis.

1.

W

F. Perriollat, P. Skarek, and L.Z. Varga,
“Report on the CERN Application Study,”
tech. report, Archon Public Deliverable 1060,
Atlas Elektronik, Bremen, Germany, 1993,

. F. Perriollat and P. Skarek, “Applications of

Distributed Artificial Intelligence for Accel-
erator Control,” Proc. 11th IASTED Int’l
Conf. Applied Informatics, Int’l Assoc. of Sci-
ence and Technology, Calgary, Alta., Canada,
1993, pp. 129-130.

. E. Perriollat and C. Serre, “The New CERN

PS Control System—Overview and Status,”
Proc. Int’l Conf. Accelerator and Large
Experimental Physics Control Systems, spe-
cial issue of Nuclear Instruments & Methods
in Physics Research. Section A, Accelerators,
Spectrometers, Detectors, and Associated
Equipment, Vol. A347,1993, pp. 86-90.

. J. Fuchs et al., “Distributed Cooperative

Architecture for Accelerator Operation,”
Proc.-Second Int’l Workshop Software Engi-
neering, Al and Expert Systems for High
Energy and Nuclear Physics, World Scien-
tific, Singapore, 1992, pp. 507-515.

5. E. Malandain, S. Pasinelli, and P. Skarek, “A
Fault Diagnosis Expert System for the CERN
PS.” Proc. Europhysics Conf. Control Systems
Jfor Experimental Physics, European Center
for Nuclear Research (CERN), Geneva, 1987,
pp. 217-220.

6. E. Malandain, “An Expert System in the
Accelerator Domain,” Proc. First Int’l Work-
shop on Software Engineering, Al and Expert
Systems for High Energy and Nuclear
Physics, Lyon Villurbanne, France, 1990.

-~

. N.R. Jennings et al., “Transforming Stand-
alone Expert Systems into a Community of
Cooperating Agents,” Int’l J. Engineering
Applications of Artificial Intelligence, Vol. 6,
No. 4, Aug. 1993, pp. 317-331.

8. V.R. Lesser, “A Retrospective View of FA/C
Distributed Problem Solving,” IEEE Trans.
Systems, Man and Cybernetics, Vol. 21, No.
6, Nov.—Dec. 1991, pp. 1347-1362.

9. G. Daems et al., “A Knowledge Based Con-
trol Method: Application to Accelerator
Equipment Setup,” Proc. Int’l Conf. Acceler-
ator and Large Experimental Physics Con-
trol Systems, special issue of Nuclear Instru-
ments & Methods in Physics Research.
Section A, Accelerators, Spectrometers,
Detectors, and Associated Equipment, Vol.
A347, 1993, pp. 325-328.

The authors’ biographies are on p. 70.

86

IEEE EXPERT

