
Designing a reusable co-ordination module for co-
operative industrial control applications

N.R.Jennings
J.A. Pople
E.H. Mamdani

Indexing terms: Distributed artificial intelligence, Co-operative information systems, Knowledge-based systems, Industrial control applications

Abstract: Distributed artificial intelligence (DAI)
systems, in which multiple agents communicate
and co-operate with one another to achieve their
individual and collective goals, are a promising
enabling technology for constructing large, real-
world industrial control applications. To facilitate
the development of such systems a number of
generic DAI frameworks have been devised.
These frameworks typically aid the development
process by providing a language, a set of
structures, and/or some tools with which the
necessary infrastructure and support mechanisms
for interacting agents can be instantiated. The
paper reports on one such framework, called
ARCHONTM, which has been used to build DAI
systems in the following industrial control
domains: electricity distribution management,
electricity transportation management, cement
factory control, particle accelerator control and
flexible assembly robotic cells. A distinguishing
and novel feature of the ARCHON framework is
that it extends the level of support offered to the
system builder ~ it provides generic and reusable
knowledge about the process of co-operation, in
addition to the more standard development
facilities. This generic knowledge is embedded in
a domain-independent co-ordination module and
it is the rationale, design, implementation and
evaluation of this module which forms the major
contribution of the paper.

1 Introduction

Systems composed of multiple, interacting components
(agents) are becoming an increasingly popular means of
building complex industrial control applications [11.
The majority of these systems are functionally distrib-
uted and have subcomponents with clear, predefined
communication links which are ordered in some hierar-
chical fashion. Although this modular approach
increases the maintainability of the system, it keeps the
0 IEE, 1996
IEE Proceedings online no. 19960186
Paper first received 13th December 1994 and in revised form 27th Novem-
ber 1995
The authors are with the Department of Electronic Engineering, Queen
Mary & Westfield College, University of London, Mile End Road,
London E l 4NS. UK

overall control at a central location (i.e. a global con-
troller co-ordinates the activities of all the subcompo-
nents). This centralisation has two particular
drawbacks for industrial control applications [2].
Firstly, for large applications with a number of distinct
supervisory and control subcomponents, the activation
of tasks in the subsystems and the decision of what
data to exchange between them depends on the state of
the entire process. In a centrally controlled system this
assessment requires the controller to take into account
the different views of all the relevant subsystems and
can, therefore, lead to severe delays while the relevant
information is assembled and the appropriate decisions
are taken. Secondly, it is difficult (sometimes impossi-
ble!) to perform the modifications required to integrate
the large number of pre-existing (legacy) systems which
are often found in industrial applications into a unify-
ing whole.

To alleviate the decision-making bottleneck, increase
the flexibility of data exchange and task activation, and
facilitate software reuse, the next stage in system design
is to decentralise the control and allow the components
to interact directly with one another. This approach
not only allocates more responsibility to the subsys-
tems, but also requires them to co-ordinate their tasks
if the whole system is to interact in a coherent manner.
Such co-ordination can be hand-crafted for each and
every application or it can be undertaken in a more
structured manner by developing a framework which
can be reused in a number of different scenarios (the
approach described in this paper). The ARCHONTM
(architecture for co-operative heterogeneous online sys-
tems) framework [3], which provides the context for
this work, has been used to build co-operative, multiple
agent applications in the domains of electricity distri-
bution management [4, 51, electricity transportation
management [6], cement factory control [7], flexible
assembly robotic cells [8] and particle accelerator con-
trol [6, 91. A summary of all of these applications is
presented in [lo].

Within the ARCHON framework, each agent is com-
posed of a number of functional components, one of
which is responsible for co-ordination in a decentral-
ised environment. During the design and development
of this planning and co-ordination module (PCM) [l I]
a number of crucial issues needed to be addressed: (i)
what are the requirements for co-ordination in real-
world industrial applications? (ii) what types of facili-
ties should a general-purpose framework provide an
application developer? (iii) how can the reasoning of
the co-ordination module be controlled so that the

IEE Pvoc.-Control Theory AppL, Vol. 143, No. 1, Januury 1996 91

agent’s objectives are satisfied? (iv) how can the co-
ordination module be designed so that it responds rap-
idly to important events but also deals with events in a
fair manner avoiding resource starvation? (v) how can
a generic co-ordination module be tailored to fit a par-
ticular application? (vi) how can such a co-ordination
module be implemented so that it meets all these desid-
erata?

This paper describes how the above issues were tack-
led and solved within the ARCHON framework. These
experiences and insights are important for a number of
different reasons. From the perspective of distributed
artificial intelligence (DAI), this work represents one of
the first serious attempts to build a generic co-opera-
tion framework for large-scale, real-world industrial
applications. From the perspective of industrial control
applications, this work highlights the feasibility of
employing a co-operating systems metaphor and ena-
bles the problems associated with building decentral-
ised control systcms to be clearly stated and evaluated.
From a system engineering perspective, this work ena-
bles the approach of constructing and utilising libraries
of reusable- problem-solving know-how to
in a realistic setting.

t to and from other agents

acquaintance
models (AMs)

self model

monitor
I

I
I I I I

e evaluated

ARCHON
layer

intelligent
system (IS)

.I ARCHON agent architecture

2 Structure of an ARCHON agent

ARCHON agents have two distinct components: an
intelligent system (IS) and an ARCHON layer (Fig. 1).
The former may be pre-existing or purpose built and
solves domain-level problems such as detecting distur-
bances in electricity networks or controlling the blower
of a cement factory kiln. In the majority of
ARCHON’S applications, the co-operating community
contains a number of different types of IS, including
expert systems, databases and conventional numerical
software. From the ARCHON layer perspective, the IS
is composed of a number of atomic executable tasks,
although in terms of their actual implementation the
tasks may involve branching, sophisticated reasoning
and control actions [5]. The ARCHON layer is a meta-
level controller which operates on the IS to ensure that
its activities are co-ordinated with those of the others
within the community. The separation of the domain
and co-operation know-how into the IS and the
ARCHON layer, respectively, allows pre-existing sys-
tems to be incorporated into the multiple agent com-
munity with relatively few modifications and allows the

92

co-operation know-how to be reused in a number of
applications. Without this demarcation, extensive
changes would be required to the existing systems in
order to provide them with the necessary knowledge to
interact with, and benefit from, the other agents in the
community.

Communication between agents is via message-pass-
ing and is controlled through the high-level communi-
cation module (HLCM). This module is deemed high-
level since it not only provides standard communica-
tion facilities (achieved through a session layer imple-
mentation) but also embodies services such as
intelligent addressing and filtering. A message-passing
paradigm was chosen because of the physical distribu-
tion of the problem solving agents and the desire to
conform to OS1 standards.

The acquaintance models (AMs) are a representation
of other agents in the community. Information main-
tained includes an acquaintance’s skills, interests, cur-
rent status, workload and so on [12]. These models are
essential when co-ordinating activity because they pro-
vide a characterisation of the social problem-solving
context in which the agent has to operate. Much like
the AMs represent other agents in the community, the
self model (SM) is an abstract characterisation of the
agent’s underlying IS. It contains information about
the current state of the IS and embodies a representa-
tion of the sequences of actions which can be executed
by the ARCHON layer in its underlying IS.

The monitor organises locally executable activities
and is responsible for passing information to and from
the IS. Skills are the coarsest granularity at which these
activities are described. Other ARCHON layer compo-
nents deal exclusively on the level of skills, but within
the monitor they are given a finer structure, corre-
sponding to an OR-graph in which the named branches
specify alternative solutions. The nodes of the graph
are called monitoring units and they correspond to the
invocation of individual tasks within the IS (see [5, 61
for more details of this structure).

The PCM reasons about the agent’s role in terms of
the wider co-operating community. It has to assess the
agent’s current status and decide which actions should
be taken in order to exploit interactions with others
whilst ensuring that the agent contributes to the com-
munity’s overall well-being. Specific examples of the
functionality supported include: deciding which skills
should be executed locally and which should be dele-
gated to others, directing requests for co-operation to
appropriate agents, determining how to respond to
requests from other agents, and identifying when to
disseminate timely information to acquaintances who
would benefit from receiving it.

The ARCHON approach, to construct a generic
framework which can be instantiated in a number of
different application domains, is now becoming an
accepted way of building DAI systems. Other exemplar
systems which have adopted this methodology include
MACE [13] and DASEDIS [14], although, to date, no
other framework of this genre has been applied to as
wide a range of real world applications as ARCHON.
Other paradigms for developing DAI applications
include: (i) DAI programming languages (e.g.
AGENT0 [15] and MAIL [16]); (ii) testbeds designed
specifically for a particular domain (e.g. DVMT [17]).
In this work, the former approach was eschewed
because of the difficulty of designing a coherent and

IEE Proc -Control Theory Appl , Vol 143, No 1, January 1996

usable language which covers concepts from both tradi-
tional distributed computing (e.g. communication pro-
tocols, interoperation across heterogeneous platforms,
etc.) and agent systems (e.g. co-operation protocols, sit-
uation assessment, negotiation, etc.). The latter
approach was rejected because there was a need to
develop systems for a number of different applications
without having to start from scratch in each case.

3 ARCHON’S planning and co-ordination
module

3. I Reusable generic co-operation know-
how
Analysis of a number of industrial control applications
highlighted a surprising degree of commonality in
terms of their status and their characteristics. In the
majority of cases studied, there were a number of auto-
mated components which were responsible for a well
defined portion of the overall process. Although the
subsystems made reference to the same environment,
and hence decisions and actions by one component
influenced those of another, they were not integrated.
However, when major events occurred (e.g. lightning
storms in the electrical management domains) the oper-
ators of the individual components interacted verbally
with one another to co-ordinate their problem-solving
activity [2].

In addition to this conceptual similarity at the opera-
tor level, the problem solving entities also had a
number of broadly common characteristics. Most
important from the PCM’s point of view was the fact
that the subsystems were able to undertake significant
amounts of processing in their own right - a conse-
quence of the fact that most of them were originally
intended to operate alone or with minimal intervention
from an operator. In terms of the co-operating system
metaphor, this meant that agents would spend the
majority of their time engaged in domain level compu-
tations and substantially less time on co-ordination
activities and interagent communication. Also, the
number of co-operative interactions which would be
needed were relatively small in comparison to the
number of activities undertaken within the domain
level system. However, interaction with other agents
was needed to accomplish tasks that could not be per-
formed locally and to supply information which was
needed for problem solving but which could not be
readily accessed. As well as these necessary interac-
tions, there were a number of other new interactions,
made possible by the subsystem integration, which
could enhance the problem-solving of the participating
agents [4, 61. Examples include: receiving relevant
information which helps an agent prune its search
space; cross-checking results by performing tasks which
produce the same information using different data or a
different approach; providing more timelyiaccurate
information for injection into the problem-solving
process. In general, the mandatory interactions mirror
those between the stand-alone system and its operator,
whereas the new ones are similar to the types of inter-
actions which took place between the operators when
exceptional circumstances arose.

Within these well defined constraints, it was decided
that the greatest degree of support could be offered to
the developers of ARCHON applications if a signifi-
cant portion of the co-operative functionality could be
provided as a core of in built knowledge. Thus, rather

than providing the developer with just programming
features, he is presented with a library of knowledge
about co-operation with which the application can be
constructed[’]. This core can then be augmented, if nec-
essary, with domain-specific co-operation knowledge in
order to build the co-ordination mechanism for a par-
ticular multiagent system (Fig. 2). This approach con-
trasts with the conventional means of fabricating
multiagent systems in which the application developer
is forced to continually recode a large proportion of
essentially the same knowledge in each and every case
(Fig. 3).

knowledge knowledge knowledge

working multi-agent
system application pl

working multi-agent
system applicationP2

U
Fig.2 PCM paradigm for constructing multiagent systems: PCM
upproach --

knowledge knowledge 1 required 1 I required 1
to build P, to build P2

system application pl

working multi-agent
system application P2

U
Fig. 3 PCM paradigm for constructing multiagent systems: traditionul
upproach
(i) Note that there will be an overlap of the knowledge required to build P, and
p2

The reusable knowledge approach means that each
agent has the same core know-how about co-operation
encoded in its PCM. The majority of the domain-
dependent data, which is obviously needed to define
individual behaviour, is then located in the agent mod-
els. Examples of three such generic rules are as follows:

Rulel: if an agent has generated a piece of informa-
tion i and it believes that i is of use to an acquaintance
then send i to that acquaintance

Rule2: if an agent has a skill to perform and it is not
able to perform it locally then seek assistance from
another agent

Rule3: if an agent has finished executing skill s and s
was undertaken because of a request from an acquaint-
ance then inform the acquaintance that s has finished
and return any results which have been produced
[I] This approach has been advocated by a number of researchers
concerned with the inherent difficulties and inefficiencies in the present
software engineering development process (see [18-211)

I € € Ero(c-Control Theorv Appl. . Vol. 143, No. I . January 1996 93

In the case of Rulel, the acquaintance models contain a
list of information that the other agents are interested
in receiving and a condition under which they are inter-
ested. If the condition is met, then the second clause of
the rule will be satisfied and the information will be
sent. In the case of Rule2, the self-model is used to
determine that the agent cannot complete the skill
locally and the acquaintance models are used to iden-
tify those agents who are able to furnish the necessary
skill. Rule3 is triggered when the monitor indicates that
a skill has finished. At this point, the self-model is
examined to determine the reason for executing the
skill. If this reason indicates that the skill was initiated
as a result of a request from an acquaintance, then the
information that the skill has finished and any relevant
results which have been produced are returned to the
originator. All of these rules are application-independ-
ent and are tailored to a specific domain by the appro-
priate instantiation of the agent models.

3.2 Design decisions
Being a key functional component of the ARCHON
architecture, it is important that the PCM’s design
rationale and philosophy are made explicit and are
open to scrutiny. This allows the factors which influ-
enced its internal structure, its representations and its
control mechanism to be evaluated and assessed for
appropriateness. Throughout the entire design process,
the primary objective was to develop a domain-inde-
pendent, reusable mechanism whose operation would
be as transparent and extensible as possible. More
details about how this design was realised are con-
tained in [l l] .

Given that the PCM is the overall director of, and
broker between, the activity of the underlying IS and
that of the agent’s acquaintances, it has two obvious
spheres of influence. First, to interact with other agents
there must be an interface to the HLCM so that mes-
sages can be sent and received across the community.
Likewise, an interface to the monitor is needed so that
the PCM can influence the activities of the IS. This
separation of concerns meant that the PCM’s opera-
tions could be divided into two distinct groups - those
related to managing the agent’s local activity in a co-
operative environment and those related to controlling
the agent’s social activities per se. For reasons of soft-
ware modularity and clarity of design, these distinct
functional roles were implemented within the PCM as
separate problem solving modules, the former as the
situation assessment module (SAM) and the latter as
the co-operation module (CM).

In more detail, the SAM is responsible for the fol-
lowing: deciding how data needed by the IS can be sup-
plied (start activity locally or enlist the help of an
acquaintance?); determining whether a request for the
performance of a skill should be carried out locally;
evaluating which skills should be started, in what order
and with what data; deciding whether external requests
should be met by starting a new skill or by exploiting
an already active one; evaluating whether new informa-
tion should be passed on to the relevant active skills.

The CM has three primary objectives. First, it has to
establish social interactions. This involves deciding how
requests from the SAM can be best satisfied. Two
forms of co-operation are currently supported: skill
and information sharing. In the former case the agent
asks an acquaintance to execute a skill or produce a

94

specified piece of information; in the latter case the
agent spontaneously volunteers information to
acquaintances who will benefit from receiving it (based
on information specified in the acquaintance models).
In both forms of interaction, the CM has to decide
with which acquaintances the interaction should take
place (i.e. which agents to request aid from and which
agents to disseminate information to). With skill shar-
ing, the CM has to additionally decide between the cli-
entserver protocol and the contract-net protocol [22] as
the means of determining how the task should be
awarded to an acquaintance. With the client-server
protocol, the request is directed to just one acquaint-
ance. With the contract-net protocol, the agent adver-
tises the activity it would like to be performed to all of
those acquaintances who are capable of providing it.
Upon receipt of the request, each acquaintance puts
together a bid which specifies when and with what
quality it could provide the service. When the originat-
ing agent receives all the bids, it evaluates them and
establishes a contract for the activity with the most
appropriate agent.

Secondly, it has to maintain ongoing co-operative
activities. So, for example, in the case in which an
agent agrees to perform a skill because an acquaintance
has asked it to, the social action’s progress must be
tracked to ensure that any relevant intermediate results
are returned and that upon completion a final report
describing the status and results of the requested activ-
ity is sent back to the originator (see, for example,
Rule3 of the preceding sub-section). Finally, the CM
has to respond to co-operation initiations from other
agents.

An early prototype of the PCM, called GRATE [12],
which implemented the SAM and the CM as concur-
rent processes, was built for evaluation purposes and
applied to the domains of electricity transportation
management [12] and particle accelerator control [9].
As a consequence of this prototyping activity, three
important points pertaining to the design of the PCM
were highlighted [23]. First, the process of controlling
the reasoning about co-operation and situation assess-
ment needed to be significantly improved (GRATE just
had a simple looping structure and consequently did
not respond quickly to important events). Secondly,
some organisational structure needed to be imposed on
the knowledge embodied within the SAM and the CM
if the application developer was to be able to add any
domain specific know-how (in GRATE all the co-oper-
ation and situation assessment knowledge was inter-
mingled). Finally, it was deemed necessary to specify
the objectives of the PCM so that important events
could be more easily recognised. With respect to the
final point, GRATE did not enable the application
developer to introduce any bias into the reasoning
process. So, for example, it was not possible to reflect
the fact that the agent’s main role in the community
may be to provide services for the others (e.g. a data-
base agent which contains large amounts of static
information about the process being controlled). Nor
was it possible to reflect the fact that another agent
carries out such an important task that it should not be
interrupted by low priority external requests (e.g. an
expert system planning how the network can be
repaired after a major fault should not be distracted by
the receipt of unrequested information which is proba-
bly out of date). In the former case, the developer

IEE Proc -Control Theory A p p l , Vol 143, No 1, January 1996

external

request available

Fig.4 Detailed structure of PCM

needs the facility to specify that external requests
should be given a higher priority than locally generated
ones and in the latter case that local activities should
take precedence.

To rectify these problems it was decided that the
PCM should be decomposed into smaller, more modu-
lar units and that some explicit reasoning about the
invocation of situation assessment and co-operation
functions needed to be introduced. First, rather than
allowing the CM and the SAM to run as concurrent
processes, and hence having no real control over their
relative resource usage, an overall controller was intro-
duced into the PCM (Fig. 4). This controller maintains
a high-level description of all the processing which the
PCM has to undertake and decides whether situation
assessment or co-operative functionality should be
invoked next. Secondly, the CM and the SAM were
further divided into two submodules according to the
interface which initiated their action. For the SAM this
resulted in one sub-module for dealing with messages
arriving from the monitor and another for dealing with
messages from the CM. Likewise for the CM, one
group of operations were activated by messages arriv-
ing from the HLCM and a separate group were related
to messages arriving from the SAM. These submodules
act on the overall controller’s instructions and use their
more detailed knowledge of that subarea of the PCM’s
operation to decide which types of functionality should
be invoked and for what duration. As functionality
invocation is now to occur as a result of reasoned
activity, rather than being purely data-driven, the mes-
sages arriving at a submodule needed to be stored in a
buffer. Rather than having just one buffer, in which the
structure of the activities to be performed would be
lost, each submodule maintains its own buffer for the
messages that it has to process. Thirdly, the individual
functionalities of the PCM were represented as distinct
blocks, called operational rule blocks. Thus the CM
submodule which processes messages from the HLCM
is responsible for controlling the operational rule
blocks which deal with the arrival of unrequested infor-
mation, with requests to carry out problem-solving
activity for other agents, and with the return of infor-

IEE Proc-Control Theory Appl., Vol. 143, No. 1, January 1996

mation which has been requested from other aged2] .
To facilitate the reasoning about invocation, each oper-
ational block is designated as having a particular orien-
tation (which mirrors the overall orientation of the
agent): serves-self (SS) means that it progresses the
agent’s own local objectives; serves-others (SO) means
that it progresses the processing of other community
members and mixed (MIX) means that it has elements
of both.

3.3 Me ta-level control of co-ordination
process
Ensuring that agents act coherently in an environment
in which control decisions are decentralised is a diffi-
cult task which has resulted in the development of a
variety of co-ordination mechanisms [24]. In terms of
the PCM, the major decision which affects the coher-
ency of the system is the decision of what operational
functionality to invoke, at what time, and for how
long. To take this decision a number of factors needed
to be taken into consideration, ranging from long-term
and relatively static information about the agent’s
objectives, to the immediate and constantly varying sta-
tus information. The PCM’s objectives are determined
by examining the designated role of the agent in the
community. Three alternatives are available; an agent’s
primary role may be: (i) serves-self, in which case its
main objective is to complete its own problem solving;
(ii) serves-others, in which case the agent is predomi-
nantly a server for the other community members; (iii)
mixed, in which case the agent has a mixture of objec-
tives (some of which are related to serving its own
needs and some of which are related to helping others).

As well as invoking the appropriate operational func-
tionality in order to fulfil the agent’s role within the
system, the control regime of the PCM has two other
desiderata. First, it must avoid resource starvation and
ensure that messages do not remain in the system for
an unacceptable amount of time without being proc-
essed. Secondly, because ARCHON is to be used in
[Z] For reasons of clarity, only 12 of the PCM’s operational blocks are
shown in Fig. 4. Those not shown are related to the rejection of co-oper-
ation requests, the resolution of conflicts and the contract-net protocol

9s

industrial applications, the decision making process
which determines the functions to be invoked should
not consume significant amounts of resource. This
means that a ‘satisficing’ [25] approach to control deci-
sions is required in which relatively simple (and compu-
tationally cheap) criteria are applied to produce
decisions which are ‘good enough’. Optimal decisions,
though desirable, may consume considerably more
resources to make only marginally better decisions and
may compromise ARCHON’S time-criticality objec-
tives.

chosen submodule are as follows:
CLEAR-BACKLOG: clear up any backlogs which

have built up.
DEFAULT: process important messages first but

also that no messages are waiting too long
before being receiving attention.

IMPORTANT-TASKS-ONLY: only process those
message
Within the constraints set by the controller, the chosen
submodule has to decide which of its associated opera-

which are

Table 1 PCM control algorithm

AgentOrientation E {SERVES-SELF, SERVES-OTHERS, MIXED);

SubModuleList E {Incoming-Messages, Outgoing-Messages,

Messages-To-Monitor, Messages-From-Monitor};

Selectioncriteria E {ROUND-ROBIN, SHORTEST-FIRST, BUSIEST-FIRST);

Loop FOREVER

NextActive = select (SubModuleList, SelectionCriteria);

IF NextActive # nil THEN

PCMWorkloadStatus = EvaluateWorkload (SubModuleList);

FORAII OperationBlk(i) E NextActive DO
CASE PCMWorkloadStatus OF

CLEAR-BACKLOG: Process all messages in buffer;

NORMAL: IE orientation (OperationBlk(i)) = AgentOrientation

THEN process all associated messages

ELSE process first associated message;

BUSY orientation(OperationBlk(i)) = AgentOrientation

high-priority(OperationBlk(i))

THEN process first associated message;

ENDCASE

EN DTHE N

The PCM’s overall controller is responsible for
selecting which of the four submodules should be proc-
essed at any one time and also for determining the
amount of resource that should be consumed during
this processing. The decision about submodule activa-
tion is based on the policy set by the application devel-
oper:

ROUND-ROBIN: select the successor of the cur-
rently active submodule until the end of the ordered list
is reached, in which case restart with the first element.

SHORTEST-FIRST: select the submodule with the
fewest messages to process.

BUSIEST-FIRST: select the submodule with the
most messages to process.
The amount of resource which should be consumed
during a particular submodule invocation depends on
the loading of the PCM. If this load is high, then
processing should be evenly spread between the sub-
modules to ensure that all the important events are
dealt with in a reasonable amount of time. If the
PCM’s load is relatively light, then some effort can be
dedicated to processing less important messages and
hence ensuring that long backlogs do not build up. The
three choices which the controller can pass onto the

96

tional blocks will be invoked and how much processing
each should undertake. So, for example, if the submod-
ule processing messages from the HLCM is chosen, it
may decide to process all of the messages correspond-
ing to replies for information which have been made to
acquaintances, one message providing unrequested
information, and no messages which are requests from
other agents for the local agent’s services. This selec-
tion will be based on the policy set by the controller,
the priority of the individual operational blocks, the
orientation of the operational blocks, and the agent’s
orientation. Table 1 gives a more detailed description
of the algorithm controlling this process.

Other work has also highlighted the importance of
utilising metalevel control knowledge to produce more
dynamically adaptable behaviour. Of particular promi-
nence in this respect is the blackboard control architec-
ture [26] which views the problem of control as one of
multiple task planning. It proposes the use of a dedi-
cated control blackboard where solution elements may
be elaborated at various levels of abstraction under the
direction of both domain independent and domain-spe-
cific control knowledge sources. There are obvious par-
allels between this approach and that of the PCM’s

IEE Proc -Control Theory Appl, Vol 143, No 1, January 1996

control mechanism. Both integrate domain and control
problem solving, and allow for the modification of the
control structure according to prevailing problem-solv-
ing situations. The PCM combines knowledge of the
utility of various domain actions, when compared to an
overall orientation, with knowledge about its workload,
to ensure that efficient execution policies are adopted,
and hence its overall performance is maintained. Simi-
larly, the blackboard architecture depends on knowl-
edge of global and temporary objectives (derived from
strategies adopted at run time) to ensure coherent
behaviour of the overall system according to those
objectives. For both approaches, the need to make
explicit control decisions and the ability to adopt varia-
ble grain control heuristics is of primary importance.
However, the blackboard control architecture incurs a
significantly greater overhead, since it is inherently
more complex. This makes it inappropriate for incor-
poration into the already complex ARCHON layer.

Still further work in this area has stressed the utility
of metalevel knowledge as a means of dynamically
adapting a parameterised control mechanism to chang-
ing problem-solving situations. Whether this is through
the use of dedicated meta-rules for resolving control
decisions [27] or through the diagnosis of system
behaviour to select appropriate parameter settings [28],
the central theme is to ensure a correspondence
between the control strategies employed and the state
of problem-solving at any given point. The PCM’s
meta-level control mechanism aims to address the issue
of adaptability through a flexible control strategy capa-
ble of updating certain parameters. These dictate run-
time behaviour of the agent and allow it to respond
effectively, under a variety of circumstances, according
to its particular bias. There is, however, the possibility
of extensions that would allow high-level monitoring,
not only of load characteristics, but also of the prob-
lem-solving state of the agent and its acquaintances.
This abstract view could be used as the motivation for
dynamically setting the bias introducing parameters
(e.g. agent orientation, ruleset orientation and priority)
that are currently fixed on initialisation.

knowledge built into
PCM

3.4 Instantiating the PCM for a particular
application
The first step when instantiating the PCM is to analyse
the in-built generic knowledge to determine whether it
contains all the functionality and reasoning required to
build the application. In all of the ARCHON applica-
tions which have been built so far, this generic knowl-
edge has been sufficient and has not needed
modification. However, in general, the application
builder may wish to augment this knowledge with co-
operation know-how which is specific to the applica-
tion being developed. In the present implementation,
this process is limited to the modification of existing
functionality (i.e. the developer can change the way in
which unrequested information is processed, but a new
message type cannot be added to the system, nor can
the PCM structure be altered other than in the modifi-
cation of its control parameters). See [l l] for a more
detailed explanation of how domain-specific reasoning
can be added to the system.

This corpus of knowledge (generic plus application-
specific) together with its associated structure (as
described in Section 3.3) then forms the basis of the
working PCM for a given application (Fig. 5).

IEE Proc-Control Theory Appl., Vol. 143, No. 1, January 1996

application specific
co-operation knowledge

I
working PCM

I \ i t e r a t i o u

Fig.5 Instantiating the PCM

The application designer then has to specify what
constitutes a small number of messages for the PCM to
process and what constitutes a large number. In
between these two values, the PCM is operating in nor-
mal mode. These parameters are important because, as
Table 1 indicates, the PCM behaves differently if it has
a large number of messages to process from when it
has a normal amount and when it has a small number.
Finally, the policy for selecting the next submodule
needs to be fixed.

As Fig. 5 highlights, the process of tuning the
parameters is iterative. The designer sets up a first
approximation for each of the agents, based on the
experimental findings of Section 4, and then tests how
they perform in their operational environment. As a
result of this analysis, the parameters of one or more of
the agents will be modified. This process continues
until the community attains a satisfactory level of per-
formance across a broad range of tasks.

4
control

Experiments with the PCM‘s meta-level

The purpose of these experiments is to offer a quantita-
tive means of evaluating how the setting of the various
parameters of the PCM’s control regime affect its per-
formance. In evaluating a particular configuration the
following main objectives should be borne in mind:

(i) the PCM should ensure that the agent’s local
objectives are met (Section 4.1)

(ii) the PCM should ensure that the agent assists its
acquaintances in their processing where necessary and
appropriate (Section 4.2)

91

(iii) the PCM should ensure that no messages are left
unprocessed for a significant length of time (fairness
criterion) (Section 4.3)

(iv) the PCM should ensure that as many messages
as possible are processed in the available time (Section

All of these objectives are interrelated and to a certain
extent inconsistent with one another. Thus, for exam-
ple, if the PCM decides to devote a large proportion of
its time to furthering its local needs, then this may be
detrimental to the attainment of its acquaintances’
objectives. Similarly, when there are a large number of
messages to process, the PCM may decide to focus on
high-priority tasks in order to ensure that it maximises
its local and global processing throughput, in which
case certain less important message types may remain
unprocessed within the PCM for a considerable period
of time (contravening the fairness criterion).

The experiments described in the remainder of this
Section arc designed to assess the affect of the follow-
ing parameters on the PCM’s performance:

(i) the orientation of the agent
(ii) the submodule selection criterion
(iii) the relative effect of spending time in ‘clear

backlog’ mode against ‘normal’ mode against ‘busy’
mode.
To offer a fair means of comparing the different con-
figurations, the following factors remained constant in
all the experiments: the duration of the experiment, the
number of operational rule packages, the orientation of
the operational rule packages, the priority of the opera-
tional rule packages, and the setting of what constitutes
a high-priority rule package. The following assump-
tions were also made: message arrival rateL3] is uni-
formly distributed over the duration of the experiment
(there are no sudden bursts of activity), each message is
processed by only one operational rule package, the
time taken to process a particular message is constant
across all rule packages, the amount of time making
control decisions is negligible in comparison to the time
that the operational rule packages take to process a
message, and the arrival of requests from acquaint-
ances and the generation of new local goals are uni-
formly spread out over the duration of the experiment.
So that the results reflect an unbiased evaluation of
each configuration, it was important that the PCM did
not start from scratch in each experiment. To overcome
this problem, the configuration was allowed to reach a
stable state (messages in all the buffers, tasks running
in the underlying IS, outstanding requests made to
acquaintances, etc.) before the measurements started.
The values plotted in each of the following graphs are
averaged over ten runs.

To provide an additional yardstick for comparison,
two other common (but simple) control regimes were
included in the experiments. The first-come, first-served
approach had a common buffer for all the submodules
(rather than the four separate ones) and messages were
processed in the order in which they arrived. The
depth-first approach placed a unique ordering on the
operational rules within the PCM (i.e. the submodule
level was removed) and then processed them in a
[3] Arrival rate refers to unsolicited messages only. This would include,
for example, an acquaintance spontaneously volunteering information or
asking for a service to be provided, but not the case where the message is
the result of a request that the agent has made

98

4.4).

round-robin order. When a particular operational rule
package was invoked, all its associated messages were
processed (irrespective of their arrival time or the load
of the PCM).

4. I Achieving local objectives
In these experiments, agents only acquire new local
objectives when they receive a piece of information
which triggers one of their skills (i.e. there is no goal-
driven activation of local skills). The number of locally
motivated activations is directly proportional to the
number of pieces of information which arrive at the
HLCM; the percentage of message arrivals which gen-
erate new local goals is - 30 in all experiments. The
chosen means of measuring how well an agent achieves
its local objectives is to measure the percentage of its
local goals that it completes. This percentage is com-
puted from the number of potential local goals, rather
than the actual number of local goals which are recog-
nised; thqe two diverge when the agent receives infor-
mation which would trigger a local skill but which it
docs not have the opportunity to process. Most skills
require certain information to be present before they
can be executed; in these experiments there was a uni-
form distribution between cases in which the skill could
be activated immediately because the necessary infor-
mation was already available (either because the agent
had generated it from previous activity or because an
acquaintance had sent it) and cases in which the neces-
sary information was unavailable and so skill activa-
tion had to be delayed while the PCM initiated a social
interaction to obtain it.

100

80

E 60

3 40

20

.’.a

- s
2-

25 50 75 100 125 150 175 200
number of message arrivals

Percentage of local goals met: serves-self orientation Fig.6
-W- round robin -4- busiest first -A- shortest first
-0- first come, first served -0- depth first

100

80

X 60
E

40
0

-

2oL 0 25 50 75 100 125 150 17!
5 200

number of message arrivals
Fig. 7 -.- round robin -4- busiest first -A- shortest first
-0- first come, first served -0- depth first

Percentage of local goals met: serves-others orientation

As can be seen from Figs. 6-8, all the configurations
complete a very high percentage of their local goals
when the number of message arrivals is low (less than
75). This is because there are so few messages in the
buffers at any one time that the overriding selection

IEE Proc -Control Theory Appl., Vol 143, No 1, January 1996

xiterion is that of finding a rule package with a mes-
sage to process; hence virtually all messages are dealt
with.

numberof message arrivals
‘ig. 8 Percentage of local goals met: mixed orientation
B- round robin -*- busiest first -A- shortest first
U- first come, first served -0- depth first

For arrival rates above 75, the bias introduced by the
gent orientation becomes the dominant factor. For the
;erves-others (Fig. 7) and mixed orientations (Fig. S),
he percentage of local goals completed drops markedly
i s the PCM starts to discriminate against those rule
2ackages which are necessary for the completion of
oca1 goals. As this discrimination becomes worse
more time spent in busy mode) the number of local
:oak completed continues to fall until none of them
ire met. The depth-first and first-come, first-served
3olicies fare better than both the mixed and the serves-
jthers policies precisely because they do not discrimi-
late against these rule packages. Depth-first is margin-
illy better than first-come, first-served because it is less
listracted by the large volume of new message arrivals
vhich build up in the HLCM buffer as the simulation
Jrogresses. With the serves-self orientation (Fig. 6), the
)ercentage of local goals met falls less sharply and
emains at a higher overall value because as it becomes
u i e r the PCM chooses to favour those rule packages
vhich facilitate the completion of locally activated
kills.
The submodule selection criterion is a less dominant

actor in determining the amount of local processing
vhich is completed. For the mixed and serves other ori-
ntations, there is very little difference between the
hree selection criteria. In both cases, however, short-
:st-first is the best choice because it concentrates the
’CM’s processing effort on the agent’s ongoing activi-
ies at the expense of the range of new activities which
irrive at the HLCM. With the serves-self orientation,
)n the other hand, by far the best selection criterion is
ound-robin, as this ensures that a significant amount
)f potential local goals which arrive later in the simula-
ion are actually dealt with and result in new local
ictivities which are subsequently completed (this can be
ichieved because of the bias towards rule packages
vhich further local processing needs; with the other
rientations round-robin spreads the PCM’s resources
00 thinly). With a serves-self orientation, busiest-first
)erforms better then shortest-first for large (greater
han 150) arrivals because it ensures that more poten-
ial local goals become actual local goals (again this is
mly possible because of the discrimination in favour of
he rule packages which assist this process).

Z.2 Helping acquaintances achieve their
ibjectives
Vhen agents require assistance from their acquaint-

EE ProcControl Theory Appl , Vol. 143, No. I , January 1996

ances they make a direct request (either for a particular
piece of information to be provided or for a particular
skill to be executed). The chosen means of gauging an
agent’s degree of helpfulness towards others is to meas-
ure the percentage of external requests which it com-
pletes. In this case, completion is defined as providing
the desired service and returning the result to the origi-
nating agent. The number of external requests rises lin-
early with the number of message arrivals and they
account for - 20% of the total in all the experiments.
As with local goals, requested skills may require a
social interaction to obtain the information which is
needed to carry out its processing.

As with local processing, there is a relatively high
completion rate for all orientations when there is a
small number of messages arriving (Figs. 9-1 1); in most
cases it is not as high as with the local processing
because external requests require more activity to initi-
ate and also because they are not deemed to be com-
plete until the desired result has left the agent who is
providing the service (local goals are deemed to be fin-
ished when the monitor returns the result to the PCM
and the PCM starts to process it).

inn,

number of messagearrivals
Percentage of external requests satisfied: serves-self orientation Fig. 9

-W- round robin -+- busiest first -A- shortest first
-0- first come, first served -0- depth first

number of message arrivals
Fig. 10
tion -.- round robin -+- busiest first -A- shortest first
-0- first come, first served -0- depth first

Percentage of external requests satisfied: serves-others orienta-

25 50 75 100 125 150 175 200
number of message arrivals

Fig. 11 -.- round robin -*- busiest first -A- shortest first
-0- first come, first served -0- depth first

Percentage of external requests satisfied mixed orientation

99

Again in these experiments, the dominant parameter
is the orientation of the agent, although the submodule
selection criterion plays a more important role than it
did in the local processing measurements. With the
serves-self orientation (Fig. 9), the completion rate falls
very sharply and to a very low value once the arrival
rate is greater than 75 (it reaches zero much more
quickly than it does for the local processing measure-
ments because more rule packages need to be invoked
in order to complete an external request). In fact, the
serves-self orientation performs worse than both the
first-come, first-served and the depth-first ones because
of its policy of active discrimination against those rule
packages which are needed to process requests originat-
ing from acquaintances. First-come, first-served per-
forms better than depth-first for small numbers of
arrivals because it ensures that more of the external
requests are recognised and acted upon. Above this
arrival rate, however, the depth-first mode of operation
is better because it is not unduly distracted by the large
numbers of new messages which are from the HLCM
and it ensures that the service completion messages
which are needed to count external requests are dealt
with in a systematic fashion.

With the serves-others (Fig. 10) and the mixed
(Fig. 1 1) orientations, the percentage of external
requests satisfied falls off much more gradually as the
number of arrivals increases. Serves-others outperforms
the mixed orientation as it places greater emphasis on
those rule packages which assist with the processing of
external requests.

In all cases in which there are a significant number of
arrivals (greater than 7 9 , the best submodule selection
criterion is round-robin; this strikes a good balance
between maintaining ongoing activities and starting
new ones (with the serves-others and mixed orienta-
tions, this policy is far superior to the others because
more time is devoted to rule packages which help with
the processing of external goals, and hence it is impor-
tant to obtain a balance of new and ongoing activities).
Busiest-first is better than shortest-first (especially in
the serves-others and mixed orientations) because it
focuses processing on the two HLCM buffers; this not
only ensures that more new external requests are
brought into the system, but also that messages which
report successful completion are dealt with promptly
(this is necessary before an external request can be
counted as finished).

4.3 Fairness of processing
The chosen means of assessing the fairness of a given
PCM configuration is to determine the percentage of
messages which remain within its internal buffers for a
‘significant amount of time’ - in this case greater than
50 time units. Messages which remain within the buff-
ers for longer than this threshold value are deemed to
have been starved of processing and thus have been
dealt with unfairly. The graphs show the percentage of
all the messages which the PCM has had to process
which fall into this category.

As Figs. 12-14 illustrate, none of the PCM configu-
rations process messages unfairly when there are a
small number (less than 75) of messages to deal with.
The overall fairest policies are first-come, first-served
and depth-first because they do not discriminate
against any message types and hence spread their
processing around evenly. Of the two, depth-first per-

IO0

forms better because all message categories are proc-
essed at regular intervals and related functionality is
processed in close temporal proximity (in first-come,
first-served, once a message has been processed it has
to go to the end of the queue, which means there will
be a significant delay before it is dealt with again if
there are a large number of messages in the system).

0 25 50 75 100 125 150 175 200
number of message arrivals

Fig. 12
-W- round robin -+- busiest first -A- shortest first
-0- first come, first served -0- depth first

Percentage of messages unfairly processed: serves-self orientation

90 I I

0 25 50 75 100 125 150 175 200
number of message arrivals

Fig. 13
tion
-W- round robin -+- busiest first -A- shortest first
-0- first come, first served -0- depth first

Percentage of messages unfairly procesred serves-others orienta-

- ,--I 10
0 -

0 25 50 75 100 125 150 175 200

Percentage of messages unfairly processed: mixed orientation
number of message arrivals

Fig. 14
-W- round robin -+- busiest first -A- shortest first
-0- first come, first served -0- depth first

When there are a medium number of message arriv-
als (between 75 and 125) the fairest submodule selec-
tion criterion is busiest-first. This policy ensures that
large backlogs of unprocessed messages do not build
up because it directs the PCM to those buffers which
are the busiest. In this range, the worst performance
configuration is shortest-first; this policy results in a
large build-up of unprocessed messages at the HLCM
buffer which are only started on when the PCM has
very few other activities to perform. The busiest first
policy becomes counterproductive as the number of
messages becomes large (greater than 125) because it
means that the PCM concentrates on getting new activ-

IEE Proc.-Control Theory Appl., Vol. 143, No. I , January 1996

ities under way at the expense of those which it has
already managed to get started. On this performance
index the most consistent overall strategy is round-
robin; it ensures that each of the submodules is dealt
with in turn and thus reduces the likelihood of starva-
tion. Shortest-first does particularly badly with the
serves-self orientation because it means that virtually
all of the external requests which are made are ignored
by the PCM as it becomes busier.

4.4 Processing throughput
This metric is designed to give an indication of the
overall efficiency of the PCM configuration. It meas-
ures the number of messages which the PCM is able to
complete the processing of in the available time; thus,
for example, with messages containing volunteered
information they must be processed by both the CM's
and the SAM's unrequested information available
operational rule package before they can be deemed as
completed. Partially processed messages (i.e. those
processed by only a subset of the necessary rule pack-
ages) are deemed to be unprocessed for these purposes.

"25 50 75 100 125 150 175 2001
number of messagearrivals

Fig. 15

-0- lirst come, first served -0.- depth first

Percentuge of mr.vsuges processed: serves-self orientation
W round robin -e- busiest first -A- shortest first

I
25 50 75 100 125 150 175 200

numberof messagearrivab
Pcrcmtage of messages processed: serves-others orientation Fig. 16

-m- round robin -e- busiest first -A- shortest first
-3- first come. first served -0- depth first

8 60 h

d '-

E 20;
2

numberof message arrivals
Fig. 17

-0- lirst come. first served -0- depth first

IEE Pro~.-Control Theorv Appl., Vol. 143, No. I , Junuury 1996

Percentage of'mc..s.suges processed: mixed orientation
W ~ round robin -e- busiest first -A- shortest first

As Figs. 15-17 show, all of the PCM configurations
process a very high percentage of their messages when
the arrival rate is low (less than 75). However, as the
arrival rate increases, so the percentage of messages
processed gradually begins to decline. All three orienta-
tions exhibit broadly similar patterns of behaviour:
busiest-first is marginally the best policy in the medium
ranges (because a large number of the quickest to proc-
ess message type (unrequested information arrived) can
be processed); round-robin is the best for large num-
bers of messages (effort spread out over a number of
activities - not just initiating the processing of a few
message types); shortest-first is the worst policy most of
the time (relatively few unrequested information mes-
sages dealt with). However with the serves others
(Fig. 16) and mixed (Fig. 17) orientations, busiest first
performs the worst for large numbers of messages. This
is because too much time is spent getting new messages
into the system at the expense of devoting resources to
activities that could be completed if they were allocated
slightly more processing time. The overall best per-
formance on this metric is given by a serves-others ori-
entation and setting the submodule selection criterion
to round-robin. This configuration ensures that
processing is divided equally between all of the four
submodules and that most of the really time-consuming
activities (dealing with external requests) are not
unduly delayed. The first-come, first-served and depth-
first policies do best on this metric because they process
messages in a systematic manner. Of the two, depth-
first is marginally better because it means messages are
not unduly delayed by the large queues which can build
UP.

4.5 Discussion
These experiments show how the PCM can be made to
exhibit different behaviour simply by changing a few of
its key control parameter settings. Such flexibility is
essential because the PCM has been designed to be
used in a number of different application contexts and
to control a number of different types of agent (e.g.
databases, expert systems, planners) which play a dif-
ferent role in the multiagent community. For example,
a database agent is typically a provider of information
to the others in the community, whereas an expert sys-
tem agent typically has the role of solving the problem
for which it was designed and its inclusion in a multia-
gent context is to exploit the opportunities for interac-
tions provided by its acquaintances. The builder of an
ARCHON application can use these results to broadly
give individual agents their desired properties and then
fine tune the settings to produce the optimal configura-
tion for his particular application (as described in
Fig. 5).

The experiments show that there is no universally
best configuration, each combination of settings gives
varying degrees of satisfiability along the key perform-
ance dimensions of achieving local goals, being helpful
to others, processing messages fairly, and having a
large throughput of messages. Setting the orientation to
serves-self ensures that a high percentage of local goals
are met, but that a low percentage of external ones are
dealt with. A serves others orientation has the opposite
properties. A mixed orientation ensures a reasonable
number of external and local goals are met, that fewer
messages on average are significantly late, but that
there is a lower throughput. The submodule selection

101

criteria have a similarly radical affect on the PCMs
performance: round-robin ensures that all the different
message types are dealt with in a systematic and fair
manner; busiest-first ensures that the newly arriving
messages from the HLCM are dealt with promptly and
not left to build up; shortest-first ensures that ongoing
activities are given priority over starting fresh ones.

5 Conclusions

This paper has described the rationale, design and
implementation of ARCHON’S planning and co-ordi-
nation module. This module has been used to instanti-
ate co-operative problem-solving in a number of real-
world control applications - at the time of writing
there are approximately 17 PCMs running in four dif-
ferent industrial settings [ll]. The novel approach of
utilising a corpus of in-built generic knowledge about
co-operation and situation assessment has been
explained and a number of empirical experiments have
been undertaken to assess the quantitative affect on a
number of key dimensions of changing the PCM’s con-
trol parameters. This analysis is a significant aid to the
agent designer in that it provides guidance on the
tradeoffs involved in configuring the PCM for a given
application.

For the future, there are a number of issues which
require further investigation. First, the co-operation
paradigms encoded in the PCM are relatively straight-
forward; how will the reusable knowledge approach
cope with more sophisticated scenarios? Secondly, the
corpus of generic knowledge has been devised from the
perspective of a particular class of actions (i.e. indus-
trial control); will it also be appropriate in domains
such as office systems, telecommunications network
management, concurrent engineering and enterprise
integration? Thirdly, the prospect of the PCM adapting
itself to its environment at run time needs to be
explored. Finally, there is a need to develop a model
which relates the control decisions of individual agents
to the performance of the overall community so that
the application developer can devise optimal global
policies.

6 Acknowledgments

The work described in this paper was carried out in the
ESPRIT I1 project ARCHON (P2256), whose partners
were: Atlas Elektronik, Framentec-Cognitech, Labein,
Queen Mary and Westfield College, IRIDIA, Iber-
drola, EA Technology, Amber, Technical University of
Athens, FWI University of Amsterdam, CAP-Volmac,
CERN and University of Porto.

7 References

1 JENNINGS, N.R.: ‘ Cooperation in industrial multi-agent sys-
tems’ (World Scientific Press, 1994)

2 JENNINGS, N.R., and WITTIG, T.: ‘ARCHON: Theory and
practice’, in AVOURIS, N.M., and GASSER, L., (Eds.): ‘Distrib-
uted artificial intelligence: Theory and practice’ (Kluwer, 1992),
pp. 179-196

3 WITTIG, T. (Ed.): ‘ARCHON: An architecture for multi-agent
systems’ (Ellis Horwood, 1992)

4 VARGA, L.Z., JENNINGS, N.R., and COCKBURN, D.: ‘Inte-
grating intelligent systems into a cooperating community for elec-
tricity distribution management’, Expert Syst. Appl., 1994, 7, (4),

COCKBURN, D., and JENNINGS, N.R.: ‘ARCHON: A dis-
tributed artificial intelligence system for industrial applications’ in
O’HARE, G.M.P., and JENNINGS, N.R., (Eds.): ‘Foundations
of distributed artificial intelligence’ (Wiley, 1996), pp. 3 19-344

DAN1 ,E.H., PERRIOLAT, F., SKAREK, P., and VAR-
GA, L.Z.: ‘Using ARCHON to develop real-word DAI
applications for electricity transportation management and parti-
cle accelerator control’, IEEE Expert, 11
STASSINOPOULOS, G., and LEMBESSIS, E.: ‘Application of a
multi-agent cooperative architecture to process control in the
cement factorv’. ARCHON technical reuort 43/3-93. 1993

pp. 563-579
5

6 JENNINGS, N.R., CORERA, J., LARESGOITI, I., MAM-

7

8 OLIVEIRA, E., CAMACHO, R., andA RAMOS, C.: ‘A multi-
agent environment in robotics’, Robotica, 1991, 4, (9)

9 JENNINGS, N.R., VARGA, L.Z., AARNTS, R.P., FUCHS, J.,
and SKAREK, P.: ‘Transforming standalone expert systems into
a community of cooperating agents’, Znt. J. kng. Appl. Art$
Intell., 1993, 6, (4), pp. 317-331

10 JENNINGS, N.R.: ‘The ARCHON system and its applications’.
Proc. of second international working conference on Cooperating
knowledge based systems, Keele, United mngdom, 1YY4, lnvited
paper, pp. 13-29

11 JENNINGS, N.R., and POPLE, J.A.: ‘Design and implementa-
tion of ARCHONS coordinating module’. Proc. workshop on
Cooperating knowledge based systems, Keele, United Kingdom,
1993. nD. 61-82

2 J E N N G S , N.R., MAMDANI, EH., LARESGOITI, I.,
PEREZ, J., and CORERA, J.: ‘GRATE: A general framework
for cooperative problem solving’, J. Intell. Syst. Enx., 1992, 1, (2),
pp. 1021-114

3 GASSER, L., BRAGANZA, C., and HERMAN, N.: ‘Imple-
menting distributed artificial intelligence systems using MACE’.
Proc. Third IEEE conference on ATtGcial intelligence applica-
tions, 1987, pp. 315-320

4 BURMEISTER. B.. and SUNDERMEYER. K.: ‘Coouerative
problem-solving guided by intentions and perceptihn’, in
WERNER, E., and DEMAZEAU, Y., (Eds.): ‘Decentralized
A.I., vol. 3’ (Elsevier. 1992), pp. 77-92

15 SHOHAM, Y. , THOMAS; B., SCHWARTZ, A., and
KRAUS, S.: ‘Preliminary thoughts on an agent description lan-
guage’, Int. J. Intell. Syst., 1991, 6, pp. 497-508

16 HAUGHENDER, H.: ‘IMAGINE final project report’. IMAG-
INE, Esprit Project 5362, 1994, Siemens

17 DURFEE, E.H., LESSER, V.R., and CORKILL, D.: ‘Coherent
cooperation among communicating problem solvers’, ZEEE
Trans.,1987, C-36, pp. 1275-1291

18 BLUM, B.I.: ‘The fourth decade of software engineering: some
issues in knowledge management’, J. Zntell Cooperative Inf Syst.,
1992. 1. (3, 4). UU. 475-514 , ~, l _ l l

19 COX, B.J.: ‘Planning the software industrial revolution’, IEEE

20 NECHES, R., FIKES, R., FININ, T., GRUBER, T.,
PATIL. R.. SENATOR, T.. and SWARTOUT. T.: ‘Enabline

Softw., 1990, 7, pp. 25-33

technolbgy’for knowledge sharing’, A 1 Mug., 1991; 12, pp. 36-56-
21 STEFIK, M.: ‘The next knowledge medium’, AI Mag., 1986, 7 ,

22 SMITH, R.G.: ‘The contract net protocol: high level communica-
tion and control in a distributed problem solver’, IEEE trans.,
1980, 29, (12), pp. 11041113

23 JENNINGS, N.R.: ‘Using GRATE to build cooperating agents
for industrial control’. Proc. IFACIIFIPIIMACS international
symposium on Artificial intelligence in real time control, Delft,
The Netherlands, 1992, pp. 691-696

24 JENNINGS. N.R.: ‘Commitments and conventions: The founda-

U), PP. 3&46

tion of coor’dination in multi-agent systems’, Knowl. Eng. Rev.,
1993, 8, (3), pp. 223-250

25 SIMON, H.A.: ‘Artificial intelligence: An empirical science’,
Artif: Zntell., 1995, 77, (l), pp. 95-127

26 HAYES-ROTH. B.: ‘Intellipent control’. Artif: Intell.. 1993. 59.
I _ I

pp. 213-220
21 DAVIS. R.: ‘Meta-rules: Reasoninn about control’. A y t i f Intell.. ” , _ I

1980, 15, pp. 179-122
28 HUDLICKA, E., and LESSER, V.R.: ‘Meta-level control

through fault detection and diagnosis’. Proc. 1984 conf. of the
American Association of Artificial Intelligence, 1984, pp. 153-161

102 IEE Proc.-Control Theory Appl., Vol. 143, No. I , January 1996

