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Abstract: Distributed artificial intelligence (DAI) 
systems, in which multiple agents communicate 
and co-operate with one another to achieve their 
individual and collective goals, are a promising 
enabling technology for constructing large, real- 
world industrial control applications. To facilitate 
the development of such systems a number of 
generic DAI frameworks have been devised. 
These frameworks typically aid the development 
process by providing a language, a set of 
structures, and/or some tools with which the 
necessary infrastructure and support mechanisms 
for interacting agents can be instantiated. The 
paper reports on one such framework, called 
ARCHONTM, which has been used to build DAI 
systems in the following industrial control 
domains: electricity distribution management, 
electricity transportation management, cement 
factory control, particle accelerator control and 
flexible assembly robotic cells. A distinguishing 
and novel feature of the ARCHON framework is 
that it extends the level of support offered to the 
system builder ~ it provides generic and reusable 
knowledge about the process of co-operation, in 
addition to the more standard development 
facilities. This generic knowledge is embedded in 
a domain-independent co-ordination module and 
it is the rationale, design, implementation and 
evaluation of this module which forms the major 
contribution of the paper. 

1 Introduction 

Systems composed of multiple, interacting components 
(agents) are becoming an increasingly popular means of 
building complex industrial control applications [ 11. 
The majority of these systems are functionally distrib- 
uted and have subcomponents with clear, predefined 
communication links which are ordered in some hierar- 
chical fashion. Although this modular approach 
increases the maintainability of the system, it keeps the 
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overall control at a central location (i.e. a global con- 
troller co-ordinates the activities of all the subcompo- 
nents). This centralisation has two particular 
drawbacks for industrial control applications [2]. 
Firstly, for large applications with a number of distinct 
supervisory and control subcomponents, the activation 
of tasks in the subsystems and the decision of what 
data to exchange between them depends on the state of 
the entire process. In a centrally controlled system this 
assessment requires the controller to take into account 
the different views of all the relevant subsystems and 
can, therefore, lead to severe delays while the relevant 
information is assembled and the appropriate decisions 
are taken. Secondly, it is difficult (sometimes impossi- 
ble!) to perform the modifications required to integrate 
the large number of pre-existing (legacy) systems which 
are often found in industrial applications into a unify- 
ing whole. 

To alleviate the decision-making bottleneck, increase 
the flexibility of data exchange and task activation, and 
facilitate software reuse, the next stage in system design 
is to decentralise the control and allow the components 
to interact directly with one another. This approach 
not only allocates more responsibility to the subsys- 
tems, but also requires them to co-ordinate their tasks 
if the whole system is to interact in a coherent manner. 
Such co-ordination can be hand-crafted for each and 
every application or it can be undertaken in a more 
structured manner by developing a framework which 
can be reused in a number of different scenarios (the 
approach described in this paper). The ARCHONTM 
(architecture for co-operative heterogeneous online sys- 
tems) framework [3], which provides the context for 
this work, has been used to build co-operative, multiple 
agent applications in the domains of electricity distri- 
bution management [4, 51, electricity transportation 
management [6], cement factory control [7], flexible 
assembly robotic cells [8] and particle accelerator con- 
trol [6, 91. A summary of all of these applications is 
presented in [lo]. 

Within the ARCHON framework, each agent is com- 
posed of a number of functional components, one of 
which is responsible for co-ordination in a decentral- 
ised environment. During the design and development 
of this planning and co-ordination module (PCM) [l I] 
a number of crucial issues needed to be addressed: (i) 
what are the requirements for co-ordination in real- 
world industrial applications? (ii) what types of facili- 
ties should a general-purpose framework provide an 
application developer? (iii) how can the reasoning of 
the co-ordination module be controlled so that the 

IEE Pvoc.-Control Theory AppL, Vol. 143, No. 1, Januury 1996 91 



agent’s objectives are satisfied? (iv) how can the co- 
ordination module be designed so that it responds rap- 
idly to important events but also deals with events in a 
fair manner avoiding resource starvation? (v) how can 
a generic co-ordination module be tailored to fit a par- 
ticular application? (vi) how can such a co-ordination 
module be implemented so that it meets all these desid- 
erata? 

This paper describes how the above issues were tack- 
led and solved within the ARCHON framework. These 
experiences and insights are important for a number of 
different reasons. From the perspective of distributed 
artificial intelligence (DAI), this work represents one of 
the first serious attempts to build a generic co-opera- 
tion framework for large-scale, real-world industrial 
applications. From the perspective of industrial control 
applications, this work highlights the feasibility of 
employing a co-operating systems metaphor and ena- 
bles the problems associated with building decentral- 
ised control systcms to be clearly stated and evaluated. 
From a system engineering perspective, this work ena- 
bles the approach of constructing and utilising libraries 
of reusable- problem-solving know-how to 
in a realistic setting. 
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2 Structure of an ARCHON agent 

ARCHON agents have two distinct components: an 
intelligent system (IS) and an ARCHON layer (Fig. 1). 
The former may be pre-existing or purpose built and 
solves domain-level problems such as detecting distur- 
bances in electricity networks or controlling the blower 
of a cement factory kiln. In the majority of 
ARCHON’S applications, the co-operating community 
contains a number of different types of IS, including 
expert systems, databases and conventional numerical 
software. From the ARCHON layer perspective, the IS 
is composed of a number of atomic executable tasks, 
although in terms of their actual implementation the 
tasks may involve branching, sophisticated reasoning 
and control actions [5]. The ARCHON layer is a meta- 
level controller which operates on the IS to ensure that 
its activities are co-ordinated with those of the others 
within the community. The separation of the domain 
and co-operation know-how into the IS and the 
ARCHON layer, respectively, allows pre-existing sys- 
tems to be incorporated into the multiple agent com- 
munity with relatively few modifications and allows the 
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co-operation know-how to be reused in a number of 
applications. Without this demarcation, extensive 
changes would be required to the existing systems in 
order to provide them with the necessary knowledge to 
interact with, and benefit from, the other agents in the 
community. 

Communication between agents is via message-pass- 
ing and is controlled through the high-level communi- 
cation module (HLCM). This module is deemed high- 
level since it not only provides standard communica- 
tion facilities (achieved through a session layer imple- 
mentation) but also embodies services such as 
intelligent addressing and filtering. A message-passing 
paradigm was chosen because of the physical distribu- 
tion of the problem solving agents and the desire to 
conform to OS1 standards. 

The acquaintance models (AMs) are a representation 
of other agents in the community. Information main- 
tained includes an acquaintance’s skills, interests, cur- 
rent status, workload and so on [12]. These models are 
essential when co-ordinating activity because they pro- 
vide a characterisation of the social problem-solving 
context in which the agent has to operate. Much like 
the AMs represent other agents in the community, the 
self model (SM) is an abstract characterisation of the 
agent’s underlying IS. It contains information about 
the current state of the IS and embodies a representa- 
tion of the sequences of actions which can be executed 
by the ARCHON layer in its underlying IS. 

The monitor organises locally executable activities 
and is responsible for passing information to and from 
the IS. Skills are the coarsest granularity at which these 
activities are described. Other ARCHON layer compo- 
nents deal exclusively on the level of skills, but within 
the monitor they are given a finer structure, corre- 
sponding to an OR-graph in which the named branches 
specify alternative solutions. The nodes of the graph 
are called monitoring units and they correspond to the 
invocation of individual tasks within the IS (see [5, 61 
for more details of this structure). 

The PCM reasons about the agent’s role in terms of 
the wider co-operating community. It has to assess the 
agent’s current status and decide which actions should 
be taken in order to exploit interactions with others 
whilst ensuring that the agent contributes to the com- 
munity’s overall well-being. Specific examples of the 
functionality supported include: deciding which skills 
should be executed locally and which should be dele- 
gated to others, directing requests for co-operation to 
appropriate agents, determining how to respond to 
requests from other agents, and identifying when to 
disseminate timely information to acquaintances who 
would benefit from receiving it. 

The ARCHON approach, to construct a generic 
framework which can be instantiated in a number of 
different application domains, is now becoming an 
accepted way of building DAI systems. Other exemplar 
systems which have adopted this methodology include 
MACE [13] and DASEDIS [14], although, to date, no 
other framework of this genre has been applied to as 
wide a range of real world applications as ARCHON. 
Other paradigms for developing DAI applications 
include: (i) DAI programming languages (e.g. 
AGENT0 [15] and MAIL [16]); (ii) testbeds designed 
specifically for a particular domain (e.g. DVMT [17]). 
In this work, the former approach was eschewed 
because of the difficulty of designing a coherent and 
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usable language which covers concepts from both tradi- 
tional distributed computing (e.g. communication pro- 
tocols, interoperation across heterogeneous platforms, 
etc.) and agent systems (e.g. co-operation protocols, sit- 
uation assessment, negotiation, etc.). The latter 
approach was rejected because there was a need to 
develop systems for a number of different applications 
without having to start from scratch in each case. 

3 ARCHON’S planning and co-ordination 
module 

3. I Reusable generic co-operation know- 
how 
Analysis of a number of industrial control applications 
highlighted a surprising degree of commonality in 
terms of their status and their characteristics. In the 
majority of cases studied, there were a number of auto- 
mated components which were responsible for a well 
defined portion of the overall process. Although the 
subsystems made reference to the same environment, 
and hence decisions and actions by one component 
influenced those of another, they were not integrated. 
However, when major events occurred (e.g. lightning 
storms in the electrical management domains) the oper- 
ators of the individual components interacted verbally 
with one another to co-ordinate their problem-solving 
activity [2]. 

In addition to this conceptual similarity at the opera- 
tor level, the problem solving entities also had a 
number of broadly common characteristics. Most 
important from the PCM’s point of view was the fact 
that the subsystems were able to undertake significant 
amounts of processing in their own right - a conse- 
quence of the fact that most of them were originally 
intended to operate alone or with minimal intervention 
from an operator. In terms of the co-operating system 
metaphor, this meant that agents would spend the 
majority of their time engaged in domain level compu- 
tations and substantially less time on co-ordination 
activities and interagent communication. Also, the 
number of co-operative interactions which would be 
needed were relatively small in comparison to the 
number of activities undertaken within the domain 
level system. However, interaction with other agents 
was needed to accomplish tasks that could not be per- 
formed locally and to supply information which was 
needed for problem solving but which could not be 
readily accessed. As well as these necessary interac- 
tions, there were a number of other new interactions, 
made possible by the subsystem integration, which 
could enhance the problem-solving of the participating 
agents [4, 61. Examples include: receiving relevant 
information which helps an agent prune its search 
space; cross-checking results by performing tasks which 
produce the same information using different data or a 
different approach; providing more timelyiaccurate 
information for injection into the problem-solving 
process. In general, the mandatory interactions mirror 
those between the stand-alone system and its operator, 
whereas the new ones are similar to the types of inter- 
actions which took place between the operators when 
exceptional circumstances arose. 

Within these well defined constraints, it was decided 
that the greatest degree of support could be offered to 
the developers of ARCHON applications if a signifi- 
cant portion of the co-operative functionality could be 
provided as a core of in built knowledge. Thus, rather 

than providing the developer with just programming 
features, he is presented with a library of knowledge 
about co-operation with which the application can be 
constructed[’]. This core can then be augmented, if nec- 
essary, with domain-specific co-operation knowledge in 
order to build the co-ordination mechanism for a par- 
ticular multiagent system (Fig. 2). This approach con- 
trasts with the conventional means of fabricating 
multiagent systems in which the application developer 
is forced to continually recode a large proportion of 
essentially the same knowledge in each and every case 
(Fig. 3). 

knowledge knowledge knowledge 

working multi-agent 
system application pl 

working multi-agent 
system applicationP2 

U 
Fig.2 PCM paradigm for constructing multiagent systems: PCM 
upproach -- 

knowledge knowledge 1 required 1 I required 1 
to build P, to build P2 

system application pl 

working multi-agent 
system application P2 

U 
Fig. 3 PCM paradigm for constructing multiagent systems: traditionul 
upproach 
(i) Note that there will be an overlap of the knowledge required to build P, and 
p2 

The reusable knowledge approach means that each 
agent has the same core know-how about co-operation 
encoded in its PCM. The majority of the domain- 
dependent data, which is obviously needed to define 
individual behaviour, is then located in the agent mod- 
els. Examples of three such generic rules are as follows: 

Rulel: if an agent has generated a piece of informa- 
tion i and it believes that i is of use to an acquaintance 
then send i to that acquaintance 

Rule2: if an agent has a skill to perform and it is not 
able to perform it locally then seek assistance from 
another agent 

Rule3: if an agent has finished executing skill s and s 
was undertaken because of a request from an acquaint- 
ance then inform the acquaintance that s has finished 
and return any results which have been produced 
[ I ]  This approach has been advocated by a number of researchers 
concerned with the inherent difficulties and inefficiencies in the present 
software engineering development process (see [18-211) 
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In the case of Rulel, the acquaintance models contain a 
list of information that the other agents are interested 
in receiving and a condition under which they are inter- 
ested. If the condition is met, then the second clause of 
the rule will be satisfied and the information will be 
sent. In the case of Rule2, the self-model is used to 
determine that the agent cannot complete the skill 
locally and the acquaintance models are used to iden- 
tify those agents who are able to furnish the necessary 
skill. Rule3 is triggered when the monitor indicates that 
a skill has finished. At this point, the self-model is 
examined to determine the reason for executing the 
skill. If this reason indicates that the skill was initiated 
as a result of a request from an acquaintance, then the 
information that the skill has finished and any relevant 
results which have been produced are returned to the 
originator. All of these rules are application-independ- 
ent and are tailored to a specific domain by the appro- 
priate instantiation of the agent models. 

3.2 Design decisions 
Being a key functional component of the ARCHON 
architecture, it is important that the PCM’s design 
rationale and philosophy are made explicit and are 
open to scrutiny. This allows the factors which influ- 
enced its internal structure, its representations and its 
control mechanism to be evaluated and assessed for 
appropriateness. Throughout the entire design process, 
the primary objective was to develop a domain-inde- 
pendent, reusable mechanism whose operation would 
be as transparent and extensible as possible. More 
details about how this design was realised are con- 
tained in [ l l ] .  

Given that the PCM is the overall director of, and 
broker between, the activity of the underlying IS and 
that of the agent’s acquaintances, it has two obvious 
spheres of influence. First, to interact with other agents 
there must be an interface to the HLCM so that mes- 
sages can be sent and received across the community. 
Likewise, an interface to the monitor is needed so that 
the PCM can influence the activities of the IS. This 
separation of concerns meant that the PCM’s opera- 
tions could be divided into two distinct groups - those 
related to managing the agent’s local activity in a co- 
operative environment and those related to controlling 
the agent’s social activities per se. For reasons of soft- 
ware modularity and clarity of design, these distinct 
functional roles were implemented within the PCM as 
separate problem solving modules, the former as the 
situation assessment module (SAM) and the latter as 
the co-operation module (CM). 

In more detail, the SAM is responsible for the fol- 
lowing: deciding how data needed by the IS can be sup- 
plied (start activity locally or enlist the help of an 
acquaintance?); determining whether a request for the 
performance of a skill should be carried out locally; 
evaluating which skills should be started, in what order 
and with what data; deciding whether external requests 
should be met by starting a new skill or by exploiting 
an already active one; evaluating whether new informa- 
tion should be passed on to the relevant active skills. 

The CM has three primary objectives. First, it has to 
establish social interactions. This involves deciding how 
requests from the SAM can be best satisfied. Two 
forms of co-operation are currently supported: skill 
and information sharing. In the former case the agent 
asks an acquaintance to execute a skill or produce a 
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specified piece of information; in the latter case the 
agent spontaneously volunteers information to 
acquaintances who will benefit from receiving it (based 
on information specified in the acquaintance models). 
In both forms of interaction, the CM has to decide 
with which acquaintances the interaction should take 
place (i.e. which agents to request aid from and which 
agents to disseminate information to). With skill shar- 
ing, the CM has to additionally decide between the cli- 
entserver protocol and the contract-net protocol [22] as 
the means of determining how the task should be 
awarded to an acquaintance. With the client-server 
protocol, the request is directed to just one acquaint- 
ance. With the contract-net protocol, the agent adver- 
tises the activity it would like to be performed to all of 
those acquaintances who are capable of providing it. 
Upon receipt of the request, each acquaintance puts 
together a bid which specifies when and with what 
quality it could provide the service. When the originat- 
ing agent receives all the bids, it evaluates them and 
establishes a contract for the activity with the most 
appropriate agent. 

Secondly, it has to maintain ongoing co-operative 
activities. So, for example, in the case in which an 
agent agrees to perform a skill because an acquaintance 
has asked it to, the social action’s progress must be 
tracked to ensure that any relevant intermediate results 
are returned and that upon completion a final report 
describing the status and results of the requested activ- 
ity is sent back to the originator (see, for example, 
Rule3 of the preceding sub-section). Finally, the CM 
has to respond to co-operation initiations from other 
agents. 

An early prototype of the PCM, called GRATE [12], 
which implemented the SAM and the CM as concur- 
rent processes, was built for evaluation purposes and 
applied to the domains of electricity transportation 
management [12] and particle accelerator control [9]. 
As a consequence of this prototyping activity, three 
important points pertaining to the design of the PCM 
were highlighted [23]. First, the process of controlling 
the reasoning about co-operation and situation assess- 
ment needed to be significantly improved (GRATE just 
had a simple looping structure and consequently did 
not respond quickly to important events). Secondly, 
some organisational structure needed to be imposed on 
the knowledge embodied within the SAM and the CM 
if the application developer was to be able to add any 
domain specific know-how (in GRATE all the co-oper- 
ation and situation assessment knowledge was inter- 
mingled). Finally, it was deemed necessary to specify 
the objectives of the PCM so that important events 
could be more easily recognised. With respect to the 
final point, GRATE did not enable the application 
developer to introduce any bias into the reasoning 
process. So, for example, it was not possible to reflect 
the fact that the agent’s main role in the community 
may be to provide services for the others (e.g. a data- 
base agent which contains large amounts of static 
information about the process being controlled). Nor 
was it possible to reflect the fact that another agent 
carries out such an important task that it should not be 
interrupted by low priority external requests (e.g. an 
expert system planning how the network can be 
repaired after a major fault should not be distracted by 
the receipt of unrequested information which is proba- 
bly out of date). In the former case, the developer 

IEE Proc -Control Theory A p p l ,  Vol 143, No 1, January 1996 



external 

request available 

Fig.4 Detailed structure of PCM 

needs the facility to specify that external requests 
should be given a higher priority than locally generated 
ones and in the latter case that local activities should 
take precedence. 

To rectify these problems it was decided that the 
PCM should be decomposed into smaller, more modu- 
lar units and that some explicit reasoning about the 
invocation of situation assessment and co-operation 
functions needed to be introduced. First, rather than 
allowing the CM and the SAM to run as concurrent 
processes, and hence having no real control over their 
relative resource usage, an overall controller was intro- 
duced into the PCM (Fig. 4). This controller maintains 
a high-level description of all the processing which the 
PCM has to undertake and decides whether situation 
assessment or co-operative functionality should be 
invoked next. Secondly, the CM and the SAM were 
further divided into two submodules according to the 
interface which initiated their action. For the SAM this 
resulted in one sub-module for dealing with messages 
arriving from the monitor and another for dealing with 
messages from the CM. Likewise for the CM, one 
group of operations were activated by messages arriv- 
ing from the HLCM and a separate group were related 
to messages arriving from the SAM. These submodules 
act on the overall controller’s instructions and use their 
more detailed knowledge of that subarea of the PCM’s 
operation to decide which types of functionality should 
be invoked and for what duration. As functionality 
invocation is now to occur as a result of reasoned 
activity, rather than being purely data-driven, the mes- 
sages arriving at a submodule needed to be stored in a 
buffer. Rather than having just one buffer, in which the 
structure of the activities to be performed would be 
lost, each submodule maintains its own buffer for the 
messages that it has to process. Thirdly, the individual 
functionalities of the PCM were represented as distinct 
blocks, called operational rule blocks. Thus the CM 
submodule which processes messages from the HLCM 
is responsible for controlling the operational rule 
blocks which deal with the arrival of unrequested infor- 
mation, with requests to carry out problem-solving 
activity for other agents, and with the return of infor- 
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mation which has been requested from other aged2] .  
To facilitate the reasoning about invocation, each oper- 
ational block is designated as having a particular orien- 
tation (which mirrors the overall orientation of the 
agent): serves-self (SS) means that it progresses the 
agent’s own local objectives; serves-others (SO) means 
that it progresses the processing of other community 
members and mixed (MIX) means that it has elements 
of both. 

3.3 Me ta-level control of co-ordination 
process 
Ensuring that agents act coherently in an environment 
in which control decisions are decentralised is a diffi- 
cult task which has resulted in the development of a 
variety of co-ordination mechanisms [24]. In terms of 
the PCM, the major decision which affects the coher- 
ency of the system is the decision of what operational 
functionality to invoke, at what time, and for how 
long. To take this decision a number of factors needed 
to be taken into consideration, ranging from long-term 
and relatively static information about the agent’s 
objectives, to the immediate and constantly varying sta- 
tus information. The PCM’s objectives are determined 
by examining the designated role of the agent in the 
community. Three alternatives are available; an agent’s 
primary role may be: (i) serves-self, in which case its 
main objective is to complete its own problem solving; 
(ii) serves-others, in which case the agent is predomi- 
nantly a server for the other community members; (iii) 
mixed, in which case the agent has a mixture of objec- 
tives (some of which are related to serving its own 
needs and some of which are related to helping others). 

As well as invoking the appropriate operational func- 
tionality in order to fulfil the agent’s role within the 
system, the control regime of the PCM has two other 
desiderata. First, it must avoid resource starvation and 
ensure that messages do not remain in the system for 
an unacceptable amount of time without being proc- 
essed. Secondly, because ARCHON is to be used in 
[Z] For reasons of clarity, only 12 of the PCM’s operational blocks are 
shown in Fig. 4. Those not shown are related to the rejection of co-oper- 
ation requests, the resolution of conflicts and the contract-net protocol 
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industrial applications, the decision making process 
which determines the functions to be invoked should 
not consume significant amounts of resource. This 
means that a ‘satisficing’ [25] approach to control deci- 
sions is required in which relatively simple (and compu- 
tationally cheap) criteria are applied to produce 
decisions which are ‘good enough’. Optimal decisions, 
though desirable, may consume considerably more 
resources to make only marginally better decisions and 
may compromise ARCHON’S time-criticality objec- 
tives. 

chosen submodule are as follows: 
CLEAR-BACKLOG: clear up any backlogs which 

have built up. 
DEFAULT: process important messages first but 

also that no messages are waiting too long 
before being receiving attention. 

IMPORTANT-TASKS-ONLY: only process those 
message 
Within the constraints set by the controller, the chosen 
submodule has to decide which of its associated opera- 

which are 

Table 1 PCM control algorithm 

AgentOrientation E {SERVES-SELF, SERVES-OTHERS, MIXED); 

SubModuleList E {Incoming-Messages, Outgoing-Messages, 

Messages-To-Monitor, Messages-From-Monitor}; 

Selectioncriteria E {ROUND-ROBIN, SHORTEST-FIRST, BUSIEST-FIRST); 

Loop FOREVER 

NextActive = select (SubModuleList, SelectionCriteria); 

IF NextActive # nil THEN 

PCMWorkloadStatus = EvaluateWorkload (SubModuleList); 

FORAII OperationBlk(i) E NextActive DO 
CASE PCMWorkloadStatus OF 

CLEAR-BACKLOG: Process all messages in buffer; 

NORMAL: IE orientation (OperationBlk(i)) = AgentOrientation 

THEN process all associated messages 

ELSE process first associated message; 

BUSY orientation(OperationBlk(i)) = AgentOrientation 

high-priority(OperationBlk(i)) 

THEN process first associated message; 

ENDCASE 

EN DTHE N 

The PCM’s overall controller is responsible for 
selecting which of the four submodules should be proc- 
essed at any one time and also for determining the 
amount of resource that should be consumed during 
this processing. The decision about submodule activa- 
tion is based on the policy set by the application devel- 
oper: 

ROUND-ROBIN: select the successor of the cur- 
rently active submodule until the end of the ordered list 
is reached, in which case restart with the first element. 

SHORTEST-FIRST: select the submodule with the 
fewest messages to process. 

BUSIEST-FIRST: select the submodule with the 
most messages to process. 
The amount of resource which should be consumed 
during a particular submodule invocation depends on 
the loading of the PCM. If this load is high, then 
processing should be evenly spread between the sub- 
modules to ensure that all the important events are 
dealt with in a reasonable amount of time. If the 
PCM’s load is relatively light, then some effort can be 
dedicated to processing less important messages and 
hence ensuring that long backlogs do not build up. The 
three choices which the controller can pass onto the 
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tional blocks will be invoked and how much processing 
each should undertake. So, for example, if the submod- 
ule processing messages from the HLCM is chosen, it 
may decide to process all of the messages correspond- 
ing to replies for information which have been made to 
acquaintances, one message providing unrequested 
information, and no messages which are requests from 
other agents for the local agent’s services. This selec- 
tion will be based on the policy set by the controller, 
the priority of the individual operational blocks, the 
orientation of the operational blocks, and the agent’s 
orientation. Table 1 gives a more detailed description 
of the algorithm controlling this process. 

Other work has also highlighted the importance of 
utilising metalevel control knowledge to produce more 
dynamically adaptable behaviour. Of particular promi- 
nence in this respect is the blackboard control architec- 
ture [26] which views the problem of control as one of 
multiple task planning. It proposes the use of a dedi- 
cated control blackboard where solution elements may 
be elaborated at various levels of abstraction under the 
direction of both domain independent and domain-spe- 
cific control knowledge sources. There are obvious par- 
allels between this approach and that of the PCM’s 
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control mechanism. Both integrate domain and control 
problem solving, and allow for the modification of the 
control structure according to prevailing problem-solv- 
ing situations. The PCM combines knowledge of the 
utility of various domain actions, when compared to an 
overall orientation, with knowledge about its workload, 
to ensure that efficient execution policies are adopted, 
and hence its overall performance is maintained. Simi- 
larly, the blackboard architecture depends on knowl- 
edge of global and temporary objectives (derived from 
strategies adopted at run time) to ensure coherent 
behaviour of the overall system according to those 
objectives. For both approaches, the need to make 
explicit control decisions and the ability to adopt varia- 
ble grain control heuristics is of primary importance. 
However, the blackboard control architecture incurs a 
significantly greater overhead, since it is inherently 
more complex. This makes it inappropriate for incor- 
poration into the already complex ARCHON layer. 

Still further work in this area has stressed the utility 
of metalevel knowledge as a means of dynamically 
adapting a parameterised control mechanism to chang- 
ing problem-solving situations. Whether this is through 
the use of dedicated meta-rules for resolving control 
decisions [27] or through the diagnosis of system 
behaviour to select appropriate parameter settings [28], 
the central theme is to ensure a correspondence 
between the control strategies employed and the state 
of problem-solving at any given point. The PCM’s 
meta-level control mechanism aims to address the issue 
of adaptability through a flexible control strategy capa- 
ble of updating certain parameters. These dictate run- 
time behaviour of the agent and allow it to respond 
effectively, under a variety of circumstances, according 
to its particular bias. There is, however, the possibility 
of extensions that would allow high-level monitoring, 
not only of load characteristics, but also of the prob- 
lem-solving state of the agent and its acquaintances. 
This abstract view could be used as the motivation for 
dynamically setting the bias introducing parameters 
(e.g. agent orientation, ruleset orientation and priority) 
that are currently fixed on initialisation. 

knowledge built into 
PCM 

3.4 Instantiating the PCM for a particular 
application 
The first step when instantiating the PCM is to analyse 
the in-built generic knowledge to determine whether it 
contains all the functionality and reasoning required to 
build the application. In all of the ARCHON applica- 
tions which have been built so far, this generic knowl- 
edge has been sufficient and has not needed 
modification. However, in general, the application 
builder may wish to augment this knowledge with co- 
operation know-how which is specific to the applica- 
tion being developed. In the present implementation, 
this process is limited to the modification of existing 
functionality (i.e. the developer can change the way in 
which unrequested information is processed, but a new 
message type cannot be added to the system, nor can 
the PCM structure be altered other than in the modifi- 
cation of its control parameters). See [ l l ]  for a more 
detailed explanation of how domain-specific reasoning 
can be added to the system. 

This corpus of knowledge (generic plus application- 
specific) together with its associated structure (as 
described in Section 3.3) then forms the basis of the 
working PCM for a given application (Fig. 5). 
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Fig.5 Instantiating the PCM 

The application designer then has to specify what 
constitutes a small number of messages for the PCM to 
process and what constitutes a large number. In 
between these two values, the PCM is operating in nor- 
mal mode. These parameters are important because, as 
Table 1 indicates, the PCM behaves differently if it has 
a large number of messages to process from when it 
has a normal amount and when it has a small number. 
Finally, the policy for selecting the next submodule 
needs to be fixed. 

As Fig. 5 highlights, the process of tuning the 
parameters is iterative. The designer sets up a first 
approximation for each of the agents, based on the 
experimental findings of Section 4, and then tests how 
they perform in their operational environment. As a 
result of this analysis, the parameters of one or more of 
the agents will be modified. This process continues 
until the community attains a satisfactory level of per- 
formance across a broad range of tasks. 

4 
control 

Experiments with the PCM‘s meta-level 

The purpose of these experiments is to offer a quantita- 
tive means of evaluating how the setting of the various 
parameters of the PCM’s control regime affect its per- 
formance. In evaluating a particular configuration the 
following main objectives should be borne in mind: 

(i) the PCM should ensure that the agent’s local 
objectives are met (Section 4.1) 

(ii) the PCM should ensure that the agent assists its 
acquaintances in their processing where necessary and 
appropriate (Section 4.2) 
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(iii) the PCM should ensure that no messages are left 
unprocessed for a significant length of time (fairness 
criterion) (Section 4.3) 

(iv) the PCM should ensure that as many messages 
as possible are processed in the available time (Section 

All of these objectives are interrelated and to a certain 
extent inconsistent with one another. Thus, for exam- 
ple, if the PCM decides to devote a large proportion of 
its time to furthering its local needs, then this may be 
detrimental to the attainment of its acquaintances’ 
objectives. Similarly, when there are a large number of 
messages to process, the PCM may decide to focus on 
high-priority tasks in order to ensure that it maximises 
its local and global processing throughput, in which 
case certain less important message types may remain 
unprocessed within the PCM for a considerable period 
of time (contravening the fairness criterion). 

The experiments described in the remainder of this 
Section arc designed to assess the affect of the follow- 
ing parameters on the PCM’s performance: 

(i) the orientation of the agent 
(ii) the submodule selection criterion 
(iii) the relative effect of spending time in ‘clear 

backlog’ mode against ‘normal’ mode against ‘busy’ 
mode. 
To offer a fair means of comparing the different con- 
figurations, the following factors remained constant in 
all the experiments: the duration of the experiment, the 
number of operational rule packages, the orientation of 
the operational rule packages, the priority of the opera- 
tional rule packages, and the setting of what constitutes 
a high-priority rule package. The following assump- 
tions were also made: message arrival rateL3] is uni- 
formly distributed over the duration of the experiment 
(there are no sudden bursts of activity), each message is 
processed by only one operational rule package, the 
time taken to process a particular message is constant 
across all rule packages, the amount of time making 
control decisions is negligible in comparison to the time 
that the operational rule packages take to process a 
message, and the arrival of requests from acquaint- 
ances and the generation of new local goals are uni- 
formly spread out over the duration of the experiment. 
So that the results reflect an unbiased evaluation of 
each configuration, it was important that the PCM did 
not start from scratch in each experiment. To overcome 
this problem, the configuration was allowed to reach a 
stable state (messages in all the buffers, tasks running 
in the underlying IS, outstanding requests made to 
acquaintances, etc.) before the measurements started. 
The values plotted in each of the following graphs are 
averaged over ten runs. 

To provide an additional yardstick for comparison, 
two other common (but simple) control regimes were 
included in the experiments. The first-come, first-served 
approach had a common buffer for all the submodules 
(rather than the four separate ones) and messages were 
processed in the order in which they arrived. The 
depth-first approach placed a unique ordering on the 
operational rules within the PCM (i.e. the submodule 
level was removed) and then processed them in a 
[3] Arrival rate refers to unsolicited messages only. This would include, 
for example, an acquaintance spontaneously volunteering information or 
asking for a service to be provided, but not the case where the message is 
the result of a request that the agent has made 
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round-robin order. When a particular operational rule 
package was invoked, all its associated messages were 
processed (irrespective of their arrival time or the load 
of the PCM). 

4. I Achieving local objectives 
In these experiments, agents only acquire new local 
objectives when they receive a piece of information 
which triggers one of their skills (i.e. there is no goal- 
driven activation of local skills). The number of locally 
motivated activations is directly proportional to the 
number of pieces of information which arrive at the 
HLCM; the percentage of message arrivals which gen- 
erate new local goals is - 30 in all experiments. The 
chosen means of measuring how well an agent achieves 
its local objectives is to measure the percentage of its 
local goals that it completes. This percentage is com- 
puted from the number of potential local goals, rather 
than the actual number of local goals which are recog- 
nised; thqe two diverge when the agent receives infor- 
mation which would trigger a local skill but which it 
docs not have the opportunity to process. Most skills 
require certain information to be present before they 
can be executed; in these experiments there was a uni- 
form distribution between cases in which the skill could 
be activated immediately because the necessary infor- 
mation was already available (either because the agent 
had generated it from previous activity or because an 
acquaintance had sent it) and cases in which the neces- 
sary information was unavailable and so skill activa- 
tion had to be delayed while the PCM initiated a social 
interaction to obtain it. 
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As can be seen from Figs. 6-8, all the configurations 
complete a very high percentage of their local goals 
when the number of message arrivals is low (less than 
75). This is because there are so few messages in the 
buffers at any one time that the overriding selection 
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xiterion is that of finding a rule package with a mes- 
sage to process; hence virtually all messages are dealt 
with. 

numberof message arrivals 
‘ig. 8 Percentage of local goals met: mixed orientation 
B- round robin -*- busiest first -A- shortest first 
U- first come, first served -0- depth first 

For arrival rates above 75, the bias introduced by the 
gent orientation becomes the dominant factor. For the 
;erves-others (Fig. 7) and mixed orientations (Fig. S), 
he percentage of local goals completed drops markedly 
i s  the PCM starts to discriminate against those rule 
2ackages which are necessary for the completion of 
oca1 goals. As this discrimination becomes worse 
more time spent in busy mode) the number of local 
:oak completed continues to fall until none of them 
ire met. The depth-first and first-come, first-served 
3olicies fare better than both the mixed and the serves- 
jthers policies precisely because they do not discrimi- 
late against these rule packages. Depth-first is margin- 
illy better than first-come, first-served because it is less 
listracted by the large volume of new message arrivals 
vhich build up in the HLCM buffer as the simulation 
Jrogresses. With the serves-self orientation (Fig. 6), the 
)ercentage of local goals met falls less sharply and 
emains at a higher overall value because as it becomes 
u i e r  the PCM chooses to favour those rule packages 
vhich facilitate the completion of locally activated 
kills. 
The submodule selection criterion is a less dominant 

actor in determining the amount of local processing 
vhich is completed. For the mixed and serves other ori- 
ntations, there is very little difference between the 
hree selection criteria. In both cases, however, short- 
:st-first is the best choice because it concentrates the 
’CM’s processing effort on the agent’s ongoing activi- 
ies at the expense of the range of new activities which 
irrive at the HLCM. With the serves-self orientation, 
)n the other hand, by far the best selection criterion is 
ound-robin, as this ensures that a significant amount 
)f potential local goals which arrive later in the simula- 
ion are actually dealt with and result in new local 
ictivities which are subsequently completed (this can be 
ichieved because of the bias towards rule packages 
vhich further local processing needs; with the other 
rientations round-robin spreads the PCM’s resources 
00 thinly). With a serves-self orientation, busiest-first 
)erforms better then shortest-first for large (greater 
han 150) arrivals because it ensures that more poten- 
ial local goals become actual local goals (again this is 
mly possible because of the discrimination in favour of 
he rule packages which assist this process). 

Z.2 Helping acquaintances achieve their 
ibjectives 
Vhen agents require assistance from their acquaint- 
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ances they make a direct request (either for a particular 
piece of information to be provided or for a particular 
skill to be executed). The chosen means of gauging an 
agent’s degree of helpfulness towards others is to meas- 
ure the percentage of external requests which it com- 
pletes. In this case, completion is defined as providing 
the desired service and returning the result to the origi- 
nating agent. The number of external requests rises lin- 
early with the number of message arrivals and they 
account for - 20% of the total in all the experiments. 
As with local goals, requested skills may require a 
social interaction to obtain the information which is 
needed to carry out its processing. 

As with local processing, there is a relatively high 
completion rate for all orientations when there is a 
small number of messages arriving (Figs. 9-1 1); in most 
cases it is not as high as with the local processing 
because external requests require more activity to initi- 
ate and also because they are not deemed to be com- 
plete until the desired result has left the agent who is 
providing the service (local goals are deemed to be fin- 
ished when the monitor returns the result to the PCM 
and the PCM starts to process it). 

inn, 

number of messagearrivals 
Percentage of external requests satisfied: serves-self orientation Fig. 9 

-W- round robin -+- busiest first -A- shortest first 
-0- first come, first served -0- depth first 
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Percentage of external requests satisfied mixed orientation 
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Again in these experiments, the dominant parameter 
is the orientation of the agent, although the submodule 
selection criterion plays a more important role than it 
did in the local processing measurements. With the 
serves-self orientation (Fig. 9), the completion rate falls 
very sharply and to a very low value once the arrival 
rate is greater than 75 (it reaches zero much more 
quickly than it does for the local processing measure- 
ments because more rule packages need to be invoked 
in order to complete an external request). In fact, the 
serves-self orientation performs worse than both the 
first-come, first-served and the depth-first ones because 
of its policy of active discrimination against those rule 
packages which are needed to process requests originat- 
ing from acquaintances. First-come, first-served per- 
forms better than depth-first for small numbers of 
arrivals because it ensures that more of the external 
requests are recognised and acted upon. Above this 
arrival rate, however, the depth-first mode of operation 
is better because it is not unduly distracted by the large 
numbers of new messages which are from the HLCM 
and it ensures that the service completion messages 
which are needed to count external requests are dealt 
with in a systematic fashion. 

With the serves-others (Fig. 10) and the mixed 
(Fig. 1 1) orientations, the percentage of external 
requests satisfied falls off much more gradually as the 
number of arrivals increases. Serves-others outperforms 
the mixed orientation as it places greater emphasis on 
those rule packages which assist with the processing of 
external requests. 

In all cases in which there are a significant number of 
arrivals (greater than 7 9 ,  the best submodule selection 
criterion is round-robin; this strikes a good balance 
between maintaining ongoing activities and starting 
new ones (with the serves-others and mixed orienta- 
tions, this policy is far superior to the others because 
more time is devoted to rule packages which help with 
the processing of external goals, and hence it is impor- 
tant to obtain a balance of new and ongoing activities). 
Busiest-first is better than shortest-first (especially in 
the serves-others and mixed orientations) because it 
focuses processing on the two HLCM buffers; this not 
only ensures that more new external requests are 
brought into the system, but also that messages which 
report successful completion are dealt with promptly 
(this is necessary before an external request can be 
counted as finished). 

4.3 Fairness of processing 
The chosen means of assessing the fairness of a given 
PCM configuration is to determine the percentage of 
messages which remain within its internal buffers for a 
‘significant amount of time’ - in this case greater than 
50 time units. Messages which remain within the buff- 
ers for longer than this threshold value are deemed to 
have been starved of processing and thus have been 
dealt with unfairly. The graphs show the percentage of 
all the messages which the PCM has had to process 
which fall into this category. 

As Figs. 12-14 illustrate, none of the PCM configu- 
rations process messages unfairly when there are a 
small number (less than 75) of messages to deal with. 
The overall fairest policies are first-come, first-served 
and depth-first because they do not discriminate 
against any message types and hence spread their 
processing around evenly. Of the two, depth-first per- 

IO0 

forms better because all message categories are proc- 
essed at regular intervals and related functionality is 
processed in close temporal proximity (in first-come, 
first-served, once a message has been processed it has 
to go to the end of the queue, which means there will 
be a significant delay before it is dealt with again if 
there are a large number of messages in the system). 
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When there are a medium number of message arriv- 
als (between 75 and 125) the fairest submodule selec- 
tion criterion is busiest-first. This policy ensures that 
large backlogs of unprocessed messages do not build 
up because it directs the PCM to those buffers which 
are the busiest. In this range, the worst performance 
configuration is shortest-first; this policy results in a 
large build-up of unprocessed messages at the HLCM 
buffer which are only started on when the PCM has 
very few other activities to perform. The busiest first 
policy becomes counterproductive as the number of 
messages becomes large (greater than 125) because it 
means that the PCM concentrates on getting new activ- 
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ities under way at the expense of those which it has 
already managed to get started. On this performance 
index the most consistent overall strategy is round- 
robin; it ensures that each of the submodules is dealt 
with in turn and thus reduces the likelihood of starva- 
tion. Shortest-first does particularly badly with the 
serves-self orientation because it means that virtually 
all of the external requests which are made are ignored 
by the PCM as it becomes busier. 

4.4 Processing throughput 
This metric is designed to give an indication of the 
overall efficiency of the PCM configuration. It meas- 
ures the number of messages which the PCM is able to 
complete the processing of in the available time; thus, 
for example, with messages containing volunteered 
information they must be processed by both the CM's 
and the SAM's unrequested information available 
operational rule package before they can be deemed as 
completed. Partially processed messages (i.e. those 
processed by only a subset of the necessary rule pack- 
ages) are deemed to be unprocessed for these purposes. 
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As Figs. 15-17 show, all of the PCM configurations 
process a very high percentage of their messages when 
the arrival rate is low (less than 75). However, as the 
arrival rate increases, so the percentage of messages 
processed gradually begins to decline. All three orienta- 
tions exhibit broadly similar patterns of behaviour: 
busiest-first is marginally the best policy in the medium 
ranges (because a large number of the quickest to proc- 
ess message type (unrequested information arrived) can 
be processed); round-robin is the best for large num- 
bers of messages (effort spread out over a number of 
activities - not just initiating the processing of a few 
message types); shortest-first is the worst policy most of 
the time (relatively few unrequested information mes- 
sages dealt with). However with the serves others 
(Fig. 16) and mixed (Fig. 17) orientations, busiest first 
performs the worst for large numbers of messages. This 
is because too much time is spent getting new messages 
into the system at the expense of devoting resources to 
activities that could be completed if they were allocated 
slightly more processing time. The overall best per- 
formance on this metric is given by a serves-others ori- 
entation and setting the submodule selection criterion 
to round-robin. This configuration ensures that 
processing is divided equally between all of the four 
submodules and that most of the really time-consuming 
activities (dealing with external requests) are not 
unduly delayed. The first-come, first-served and depth- 
first policies do best on this metric because they process 
messages in a systematic manner. Of the two, depth- 
first is marginally better because it means messages are 
not unduly delayed by the large queues which can build 
UP. 

4.5 Discussion 
These experiments show how the PCM can be made to 
exhibit different behaviour simply by changing a few of 
its key control parameter settings. Such flexibility is 
essential because the PCM has been designed to be 
used in a number of different application contexts and 
to control a number of different types of agent (e.g. 
databases, expert systems, planners) which play a dif- 
ferent role in the multiagent community. For example, 
a database agent is typically a provider of information 
to the others in the community, whereas an expert sys- 
tem agent typically has the role of solving the problem 
for which it was designed and its inclusion in a multia- 
gent context is to exploit the opportunities for interac- 
tions provided by its acquaintances. The builder of an 
ARCHON application can use these results to broadly 
give individual agents their desired properties and then 
fine tune the settings to produce the optimal configura- 
tion for his particular application (as described in 
Fig. 5). 

The experiments show that there is no universally 
best configuration, each combination of settings gives 
varying degrees of satisfiability along the key perform- 
ance dimensions of achieving local goals, being helpful 
to others, processing messages fairly, and having a 
large throughput of messages. Setting the orientation to 
serves-self ensures that a high percentage of local goals 
are met, but that a low percentage of external ones are 
dealt with. A serves others orientation has the opposite 
properties. A mixed orientation ensures a reasonable 
number of external and local goals are met, that fewer 
messages on average are significantly late, but that 
there is a lower throughput. The submodule selection 
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criteria have a similarly radical affect on the PCMs 
performance: round-robin ensures that all the different 
message types are dealt with in a systematic and fair 
manner; busiest-first ensures that the newly arriving 
messages from the HLCM are dealt with promptly and 
not left to build up; shortest-first ensures that ongoing 
activities are given priority over starting fresh ones. 

5 Conclusions 

This paper has described the rationale, design and 
implementation of ARCHON’S planning and co-ordi- 
nation module. This module has been used to instanti- 
ate co-operative problem-solving in a number of real- 
world control applications - at the time of writing 
there are approximately 17 PCMs running in four dif- 
ferent industrial settings [ll]. The novel approach of 
utilising a corpus of in-built generic knowledge about 
co-operation and situation assessment has been 
explained and a number of empirical experiments have 
been undertaken to assess the quantitative affect on a 
number of key dimensions of changing the PCM’s con- 
trol parameters. This analysis is a significant aid to the 
agent designer in that it provides guidance on the 
tradeoffs involved in configuring the PCM for a given 
application. 

For the future, there are a number of issues which 
require further investigation. First, the co-operation 
paradigms encoded in the PCM are relatively straight- 
forward; how will the reusable knowledge approach 
cope with more sophisticated scenarios? Secondly, the 
corpus of generic knowledge has been devised from the 
perspective of a particular class of actions (i.e. indus- 
trial control); will it also be appropriate in domains 
such as office systems, telecommunications network 
management, concurrent engineering and enterprise 
integration? Thirdly, the prospect of the PCM adapting 
itself to its environment at run time needs to be 
explored. Finally, there is a need to develop a model 
which relates the control decisions of individual agents 
to the performance of the overall community so that 
the application developer can devise optimal global 
policies. 
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