ADEPT: An Agent-Based Approach to Business Process Management

N. R. Jennings, T. J. Norman & P. Faratin
Department of Electronic Engineering,
Queen Mary and Westfield College,
University of London, London E1 4N§S, U.K.

Abstract

Successful companies organise and run their business activi-
ties in an efficient manner. Core activities are completed on
time and within specified resource constraints. However to
stay competitive in today’s markets, companies need to con-
tinually improve their efficiency — business activities need
to be completed more quickly, to higher quality and at lower
cost. To this end, there is an increasing awareness of the ben-
efits and potential competitive advantage that well designed
business process management systems can provide. In this
paper we argue the case for an agent-based approach: show-
ing how agent technology can improve efficiency by ensuring
that business activities are better scheduled, executed, mon-
itored, and coordinated.

1 Introduction

Company managers make informed decisions based on
a combination of judgment and information from mar-
keting, sales, research, development, manufacturing and
finance departments. Ideally, all relevant information
should be brought together before judgment is exer-
cised. However obtaining pertinent, consistent and up-
to-date information across a large company is a complex
and time consuming process. For this reason, organisa-
tions have sought to develop a number of IT systems to
assist with various aspects of the management of their
business processes. Such systems aim to improve the
way that information is gathered, managed, distributed,
and presented to people in key business functions and
operations. In particular, the IT system should: (i) al-
low the decision maker to access relevant information
wherever it is situated in the organisation (this should

Research funded by DTI/EPSRC Intelligent Systems Integra-
tion Programme.

be possible despite the fact that information may be
stored in many different types of system and in many
different information models); (ii) allow the decision
maker to request and obtain information management
services both from departments within and departments
from outside the organisation; (iii) pro-actively identify
and deliver timely, relevant information that may not
have been explicitly asked for; (iv) inform the decision
maker of changes which have been made elsewhere in
the business process which impinge upon the current
decision context; and (v) identify the parties who may
be interested in the outcome and results of the decision
making activity.

Analysis of a number of business processes, from
various industrial and commercial domains, resulted in
several common characteristics being identified:

e Multiple organisations are often involved in the
business process. Each organisation attempts to
maximise its own profit within the overall activity.

e Organisations are physically distributed. This
distribution may be across a site, a country, or even
continents. This situation is even more apparent
for virtual organisations [Mowshowitz1996] which
form allegiances for short periods of time and then
disband when it is no longer profitable to stay
together.

e Within organisations, there is a decentralised owner-
ship of the tasks, information and resources involved
in the business process.

e Different groups within organisations are relatively
autonomous — they control how their resources
are consumed, by whom, at what cost, and in
what time frame. They also have their own
information systems, with their own idiosyncratic
representations, for managing their resources.

e There is a high degree of natural concurrency —
many interrelated tasks are running at any given
point of the business process.

e Business processes are highly dynamic and unpre-
dictable — it is difficult to give a complete a pri-
ori specification of all the activities that need to be
performed and how they should be ordered. Any
detailed time plans that are produced are often
disrupted by unavoidable delays or unanticipated
events.

Given these characteristics, it was decided that the
most natural way to view the business process is as a
collection of autonomous, problem solving agents which
interact when they have interdependencies. In this
context, an agent can be viewed as an encapsulated
problem solving entity which exhibits the following
properties [Wooldridge and Jennings1995]:

Autonomy: agents perform the majority of their prob-
lem solving tasks without the direct intervention of
humans or other agents, and they have control over
their own actions and their own internal state.

Social ability: agents interact, when they deem ap-
propriate, with other artificial agents and humans
in order to complete their problem solving and to
help others with their activities.

Pro-activeness: agents take the initiative where ap-
propriate.

Responsiveness: agents perceive their environment
and respond in a timely fashion to changes which
occur in it.

The choice of agents as a solution technology was mo-
tivated by the following observations: (i) the domain in-
volves an inherent distribution of data, problem solving
capabilities, and responsibilities (conforms to the ba-
sic model of distributed, encapsulated, problem solving
components); (ii) the integrity of the existing organisa-
tional structure and the autonomy of its sub-parts needs
to be maintained (appeals to the autonomous nature of
the agents); (iii) interactions are fairly sophisticated,
including negotiation, information sharing, and coor-
dination (requires the complex social skills with which
agents are endowed); and (iv) the problem solution can-
not be entirely prescribed (problem solvers need to be
responsive to changes in the environment and to unpre-
dictability in the process and pro-actively take oppor-
tunities when they arise).

When taken together, this set of requirements leaves
agent technology as the strongest solution candidate
— (distributed) object systems have the encapsulation
but not the sophisticated reasoning required for social
interaction or pro-activeness, and distributed processing
systems deal with the distributed aspect of the domain
but not with the autonomous nature of the components.

2 The ADEPT Architecture

The ADEPT architecture can be viewed at two levels:
the architecture of the multi-agent system in which an
agent acts, and the internal architecture of a single
agent. The former represents the structure of the system
as a whole, and the role of an agent within that system.
The latter represents the separation of concerns of the
functional components of a particular agent.

The ADEPT multi-agent architecture is composed of
a number of autonomous agencies (see figure 1). The
concept of an agency has a recursive definition. An
agency contains a single responsible agent, a possibly
empty set of subsidiary agencies and a set of tasks
that are under the direct management of the respon-
sible agent. In the ADEPT environment agents are au-
tonomous; i.e. agents have control over the tasks that
they may perform, the resources available to them and
how they coordinate their activities with other agents.
Therefore, the only way in which such agents may coop-
erate in solving problems is through negotiation. Agents
operate by negotiating for services, or units of problem-
solving activity, in the management of a business pro-
cess. (A task is an atomic service.) A responsible
agent’s agency represents its domain problem solving
resources.

The recursive definition of an agency allows a nested
(hierarchical) agent system to be constructed in which
a responsible agent realises its function through the
responsible agents of lower level agencies (these lower
level agents have the same structure and can, therefore,
have subsidiary agents as well as tasks in their agency).
For example, the responsible agent of agency A may
represent a legal department whose work is carried
out by a number of lawyers, each represented by the
responsible agents of agencies such as A.1 and A.2.
This structure enables flat, hierarchical, and hybrid
organisations to be modeled in a single framework. The
differences between the responsible agent of a subsidiary
agency (A.1 and A.2 are subsidiaries of A) and that
of a peer agent (A, B and C are peers, and A.1 and
A.2 are peers) relate to their levels of autonomy and
helpfulness. In both cases, the agents negotiate to
reach agreements. However the responsible agent of
a subsidiary agency cannot reject a proposal outright
(although it can counter-propose until an acceptable
agreement is reached), and it must negotiate in a
cooperative (rather than a competitive) manner since
there is a degree of commonality of purpose.

All ADEPT agents have the same basic internal
architecture, illustrated by the responsible agent of
agency A (figure 1). An agent has a number of
functional components concerned with each of its
main activities — communication, service execution,
situation assessment, and interaction management. The

AGENCY A

RESPONSIBLE AGENT
AGENCY
»| SEM - B
sM X Y A
Communicatio
I SAM CM and negotiatio
< with peers
AM X A
= IMM [Y
AGENCY
C
AGENCY AGENCY
Al A2
4 Communication and 4
negotiation with subsidiaries
Management
of tasks

Figure 1: A view of the ADEPT architecture.

agent architecture reflects this.

2.1 Communication Module (CM)

The CM routes messages between an agent and both its
agency and peers. During task management (e.g. the ac-
tivation, suspension, or resumption of a task), messages
are routed between the agent’s Service Execution Mod-
ule (SEM) and the tasks managed by that agent. During
service execution management (e.g. the initiation or ter-
mination of a service being provided by another agent
under some agreement), messages are routed between
the agent’s SEM and the SEM of the agent providing
the service. During negotiation, messages are routed
between the agent’s Interaction Management Module
(IMM) and the IMM of the agent, or agents, being ne-
gotiated with.

2.2 Interaction Management Module
(IMM)

The IMM provisions services through negotiation. The
Situation Assessment Module (SAM) invokes the IMM
to initiate negotiation for a service. The IMM’s deci-
sion making capabilities are supported by three types
of information: scheduler constraints emanating from
the SAM; knowledge an agent has about itself and its
own domain (represented in the Self Model (SM)); and

knowledge the agent holds about responsible agents of
both peer and subsidiary agencies (represented in the
Acquaintance Model (AM)). With this knowledge and
the agent’s negotiation model, the IMM generates ini-
tial proposals, evaluates incoming proposals, produces
counter-proposals, and, finally, accepts or rejects agree-
ments for the provision of a service (i.e. Service Level
Agreements, or SLAs).

2.3 Situation Assessment Module (SAM)

The SAM is responsible for assessing and monitoring
the agent’s ability to meet the SLAs it has already
agreed and any SLAs that it may agree in the future.
This involves scheduling and exception handling. The
scheduler maintains a record of resource availability
which can be used to determine whether SLAs can
be met or whether new SLAs can be accepted. The
exception handler receives exception reports from the
SEM during service execution and decides upon the
appropriate response. For example, if a service is
delayed then the SAM may decide to locally reschedule
it, to renegotiate the SLA, or to terminate it altogether.

2.4 Service Execution Module (SEM)

The SEM is responsible for managing services through-
out their execution. This involves service execution

management (start executing services as specified by the
agent’s SLAs), information management (routing infor-
mation between tasks, services and other agents during
execution), and exception handling (monitoring the ex-
ecution of tasks and services for unexpected events and
then reacting appropriately). In the event of task fail-
ure for example, the SEM may recover by attempting to
restart the task if the present schedule can still be met,
or report the exception to the SAM for rescheduling.

2.5 Acquaintance Model (AM) and Self
Model (SM)

Within the AM, the agent maintains a record of peers
and subsidiaries which can provide services of interest.
The SM is the primary storage site for SLAs to which
the agent is committed, descriptions of the services the
agent can provide, run time application/service specific
information, and generic domain information.

Both ADEPT’s multi-agent and internal architec-
tures are designed to ensure maximum flexibility to
adapt as a business process changes (see
[Jennings et al.1996] for more details). The autonomy
of each agent and the agreements it enters into with
others are the key to this flexibility. For this reason,
ADEPT’s negotiation technology is discussed further in
section 3.

3 Negotiation

Services are associated with one or more agents that
are responsible for managing and executing them.
Each service is managed by one agent, although it
may involve execution of sub-services by a number
of other agents. Since agents are autonomous there
are no control dependencies between them; therefore,
if an agent requires a service which is managed by
another agent it cannot simply instruct it to start
the service. Rather, the agents must come to a
mutually acceptable agreement about the terms and
conditions under which the desired service will be
performed (i.e an acceptable SLA must be instantiated).
The mechanism for making SLAs is negotiation —
a joint decision making process in which the parties
verbalise their (possibly contradictory) demands and
then move towards agreement by a process of concession
[Miiller1996].

There are three components of the ADEPT negoti-
ation model: (i) the communication protocol, (ii) the
service level agreements, and (iii) the reasoning model.
The protocol specifies the communication primitives
that an agent can use to query an agent on what ser-
vices it can perform (an agent sends a CAN-DO prim-
itive which is responded to with an I-CAN primitive),
to agree on the details of an agreement (PROPOSE,

| Slot Name | Instantiated Values |
SERVICE_NAME: Cost-Design-Network
SLA_ID: al001
SERVER_AGENT: DD
CLIENT_AGENT: CSD
DELIVERY_TYPE: on-demand
DURATION (minutes): 320
START_TIME: 9:00
END_TIME: 18:00
VOLUME: 35
PRICE (per costing): 35
PENALTY: 30
CLIENT_INFO: customer _profile
REPORTING_POLICY: customer_quote

Figure 2: Exemplar service level agreement.

COUNTER-PROPOSE, ACCEPT, and REJECT), and
to manage the invocation of an agreement (i.e. instruct-
ing agents to activate, suspend or resume a service, and
informing agents of completions or failures of a service).

The novel aspects of negotiation in the ADEPT sys-
tem relate to the types of agreements that agents can
make and the models they use to guide their negotiation
behaviour. The requirements of the business process
domain mean that agreements need to be more encom-
passing and the reasoning more elaborate than those
found in most extant multi-agent systems. To this end,
multi-lateral and multi-issue decision mechanisms have
been developed that assist an agent in evaluating offers
and, when necessary, generating new offers. The lat-
ter mechanisms are composed of tactical and strategic
decision making. Tactics model low level decisions that
take into account the agent’s environment (such as time,
resources and other’s behaviours) and its preferences.
Strategies, in turn, model coarse grain and general be-
haviours which determine the overall style of negotiation
(such as conciliatory or competitive negotiation).

The nature and scope of the SLAs are derived from
the types of legal contract that are often used to
regulate current business transactions (figure 2 shows
a typical example taken from a BT application (see
section 4)). Service_name is the service to which the
agreement refers and sla_id is the SLA’s unique identifier
(covering the case where there are multiple agreements
for the same service). Server_agent and client_agent
represent the agents who are party to the agreement.
Delivery_type identifies the way in which the service
is to be provisioned. In figure 2 the delivery type is
“on-demand”. This indicates that the service may be
invoked under this SLA whenever it is required by the

client, but within the times stated and at a frequency
below that indicated in the volume slot. Alternatively,
the SLA may represent a “one-off” service. This
indicates that the service can be invoked only once
by the client within the time period indicated. The
SLA’s scheduling information is used by the SAM and
the SEM for service execution and management —
duration represents the maximum time the server can
take to finish the service, and start_time and end_time
represent the time during which the agreement is valid.
In this case, the agreement specifies that an agent called
CSD can invoke an agent called DD to cost and design
a customer network whenever it is required between
09:00 and 18:00 and each service execution should
take no more than 320 minutes. The agreement also
contains meta-service information such as the volume
of invocations permissible between the start and end
times, the price paid per invocation, and the penalty the
server incurs for every violation. Client_info specifies
the information the client must provide to the server
at service invocation (in this case CSD must provide
the customer profile) and reporting_policy specifies the
information the server returns upon completion.

Existing theoretical work on negotiation [Nash1950,
Raiffa1982, Rosenschein and Zlotkin1994] provides im-
portant insights into how agents should negotiate to
produce optimal solutions. However, a number of un-
realistic assumptions are common in these negotiation
models; typical assumptions include the availability of
complete action descriptions, a utility function that can
order all alternatives in all contexts, and that agents
exhibit perfect rationality when selecting actions. In
contrast, practical applications typically adopt simplis-
tic approaches to negotiation. In the contract net pro-
tocol [Smith and Davis1981], for instance, a manager
sends out a request to a number of potential contrac-
tors to provide a given service to a given degree of qual-
ity. The potential contractors return a bid if they are
capable of fulfilling all the requirements. The manager
then selects the best bid. However, this model fails to
capture many intuitive and important aspects of the ne-
gotiation process. For example, bidders cannot counter-
propose better options, they cannot modify any of the
service agreement parameters, and the emphasis in de-
vising a complete specification is placed solely with the
task manager. Given these limitations, the approach
within ADEPT has been to develop a deep and explicit
model of the process of negotiation. The model covers
the whole process of generating initial offers, evaluating
offers, and counter proposing if offers are unacceptable
(see [Faratin et al.1998] for more details). In this model,
agents evaluate proposals. Then, using both a predic-
tive model of the behaviour of other agents and its own
preferences, a decision is made on whether to accept or

reject the current proposal, or to counter-propose an al-
ternative. Issues such as the time by which an agent
requires the service, and minimum or maximum prices
that are acceptable for a service are considered when
the contents of the SLA to be proposed are determined.
The parameters within which an agent may negotiate,
e.g. the maximum price it is prepared to pay for a ser-
vice, are dependent on the application.

4 Exemplar Application: BT’s
Provide Customer Quote Process

ADEPT technology has been used to develop business
process management systems for a number of real-world
applications. Here we outline one such application: a
system for managing a British Telecom (BT) process
for providing a quotation for designing a network to
provide particular services to a customer. The process
receives a customer service request as its input and
generates as its output a quote specifying how much it
would cost to build a network to realise that service.
It involves up to six parties: the sales department,
the customer service division, the legal department,
the design division, the surveyor department, and the
provider of an out-sourced service for vetting customers.
The process is initiated by a customer contacting the
customer service division. The customer’s details are
captured, and, while the customer is being vetted (in
terms of its credit worthiness, false ID, etc.), their re-
quirements are elicited. If the customer fails the vetting
procedure, then the quote process terminates. Assum-
ing the customer is satisfactory, its requirements are
recorded and mapped against the service portfolio. If
the requirements can be met by a standard off-the-shelf
item then an immediate quote can be offered based on
previous examples. In the case of bespoke services, how-
ever, the process is more complex. The customer service
division further analyses the customer’s requirements
and while this is occurring the legal department checks
the legality of the proposed service. If the desired ser-
vice is illegal, then the entire quote process terminates.
If the requested service is legal, then the design phase
starts. To prepare a network design it is usually neces-
sary to have a detailed plan of the existing equipment at
the customer’s premises. Sometimes such plans might
not exist and sometimes they may be out of date. In ei-
ther case, the designer determines whether the customer
site(s) should be surveyed. On completion of the net-
work design and costing, the customer is informed of the
service quote. The business process then terminates.
From the business process description, the following
agent system was designed (figure 3). The agents
(denoted by the circles) were chosen to represent
distinct departments or enterprises involved in the

business process. The VC agents represent the concerns
of external enterprises as this activity is out-sourced.
Agent SD is within DD’s agency because the design
division has overall management responsibility for the
surveyors.

The process is triggered when the sales agent sends a
request to the CSD agent to provide a customer quote.
The CSD agent identifies the SLA associated with the
request: in this case it relates to the Provide-Customer-
Quote service. The corresponding service description
is parsed to create a tree of possible routes that the
SEM can take. A depth first path is selected and
the tasks and services in that path are scheduled and
resourced (by the SAM). The SEM begins executing the
constituent sub-services and tasks. One of the first sub-
services it encounters is to vet the customer (this occurs
in parallel with the capture-customer-requirements task
and after capture-customer-details). When the SEM
comes to execute this service it realises (by checking its
SM) there is no associated SLA and so it reports an
exception to the SAM. The SAM determines that the
service cannot be realised locally (by referring to its SM)
and so it must be bought in from an external agent. It
also decides that the service should be provisioned in
an on-demand manner because it is an activity that is
needed on each invocation of the business process. As
such, it is preferable to negotiate for a longer term SLA
covering multiple invocations rather than negotiating
for one each time the business process is invoked. In
addition to identifying the service name and the desired
provisioning mode, the SAM indicates any scheduler
information which influences the provisioning of the
service (e.g. the service’s earliest start and latest end
times).

Vet customer service provisioning begins with the
CSD agent sending CAN-DO messages to all the agents
it can identify (using its AM) as being potentially able
to provide this service (in this scenario there are three
such agents: VCI1, VC2 and VC3). These messages
emanate from the IMM. Negotiation proper begins
when CSD concurrently sends out initial proposals
(in the form of instantiated SLAs) to all the vet
customer agents which responded with I-CAN. This
initial proposal may be acceptable to one of the VC
agents in which case an agreement is made and the
negotiation is terminated. However, in most cases the
VC agents find some part of the proposal unsatisfactory
(it is a competitive negotiation after all) and so return
a revised counter proposal to CSD. The CSD and VC
agents then engage in several concurrent rounds of
exchanging SLA messages until either the CSD comes to
an agreement with one of the VC agents or all the VC
agents reject all the offers and break off negotiation.
If the CSD agent receives more than one acceptable

offer, it selects the one closest to its specified optimum.
The chosen agent is informed of its success and an
SLA for the Vet-Customer service comes into force.
Within the CSD agent, the IMM tells the SAM of
this new agreement. The SAM then instructs the
SEM to continue the execution of Provide-Customer-
Quote service with the freshly agreed Vet-Customer
SLA stored in its SM. Since the agreement is for on-
demand provisioning, the CSD agent can ask the chosen
VC agent to vet customers as and when new customers
are presented to it from the sales department. The
SEM of the CSD agent sends a service activation request
to the SEM of the selected VC agent within the time
frame specified in the SLA. When the customer has
been vetted, the client VC agent informs the CSD
agent of the result (as specified by the SLA’s reporting
policy). If the customer fails the vetting procedure then
Provide-Customer-Quote fails and the sales department
is informed. If the customer is successfully vetted, the
CSD agent starts executing the next sub-service.

The next sub-service checks whether the customer’s
request is for a portfolio item. If it is a portfolio item
then the service is identified (identify-service) and a
quote is looked up (provide-quote) and returned to the
sales department (as specified in the SLA between the
CSD and the sales department). Execution of Provide-
Customer-Quote then terminates.

If the desired service is bespoke then the next
sub-service to be executed is Cost-Design-Customer-
Network. Again the SEM informs the SAM that there
is no associated SLA in place. The SAM decides the
service must be bought in (after examining its SM) and
that it should be provisioned in an on-demand manner
(because it is required every time a customer requests a
bespoke service. A one-off SLA would be justified if a
significant proportion of the customer service requests
were for portfolio items). It then asks the IMM to
obtain an appropriate agreement. The IMM notes from
its AM that the only agent offering this service is DD
and so it starts negotiating with it. Assuming the
two agents reach an agreement, the IMM of the CSD
agent informs its SAM which informs its SEM that an
appropriate SLA is now in place (see figure 2). When
CSD indicates that the Cost-Design-Customer-Network
service should be invoked, the DD agent starts executing
it under the newly agreed SLA. When the customer’s
requirements have been analysed in more detail, the
legality of the customer’s request is checked. The DD
agent realises (by checking its AM) this service can only
be provided by the LD agent and so it starts to negotiate
with it. The service is provisioned in a one-off manner
because it is too expensive to have waiting idle when
there are no designs to check. When the agreed legal
service is invoked, the requirements are checked and the

analyse-reqs

thS}gn design-network
Division -

~
~

<> provide-quote <>

-

A -~ Survey-Customer-Site
S -
\

<

survey-customer-site

Surveyor
Department

~

Vet customer
organisations

vet-customer @

<

&

vet-customer

&

Vet-Custqmer
vet-customer

Legal—AdviEe\ ~

<

provide-legal-advice

LegalDepartment

Provide-Customer-Quote

Cost-Design-Customer-Network

\\

AgentQ Task < >

Customer
Service .) Agency []
Divisi capture-customer-details provide-quote
1vision On-Demand Service S —=
capture-customer-requirements <> identify—service<> One-Off Service S — — —=>

Figure 3: Agent system for managing the provide customer quote business process.

appropriate course of action is taken depending on the
outcome of this review.

As part of the design activity, a survey of the
customer’s premises may be needed. If this is the case,
the SEM of the DD agent informs its SAM that no SLA
is in place. The SAM notes (by examining its AM)
that an agent (SD) within its agency can provide the
service. It decides the service should be provisioned in a
one-off manner (because the service is only occasionally
required) and so the DD’s IMM negotiates with SD.
Assuming they reach an agreement (and they should
since the negotiation is inherently cooperative), the DD
agent invokes the agreement and requests SD to obtain
a survey for the customer’s premises. When the survey
is complete or after the service is declared legal if no
survey is required, the design-network task is carried
out and then a costing is produced. The cost of the
service is returned to the CSD agent as specified in the
Cost-Design-Customer-Network SLA (figure 2). The
Provide-Customer-Quote service then completes and
the quote is returned to the sales department.

For subsequent service quote requests, several of the
basic agreements for managing the business process are
already in situ. The CSD agent has an on-demand SLA
for vetting customers and it may also have an agreement
for costing and designing the customer’s network.
This means there is less of a negotiation overhead
on subsequent process invocations. The services that

may generate further negotiations in subsequent quote
processes are those which are only occasionally invoked
— legal services and survey customer site.

5 Conclusions

The ADEPT system is presented as a novel solution
to the problem of software agent inter-operation in do-
mains such as business process management and elec-
tronic commerce. The architecture can model the struc-
ture of hierarchical or flat organisations, or a mixture of
the two, through the concepts of agents and agencies. In
coordinating the actions of agents within a multi-agent
architecture it is important to find a balance between
the autonomy of agents within the system and the com-
munication overheads involved in coordinating action.
Agents with little autonomy typically require less com-
munication bandwidth; for example, a subservient agent
will simply follow instructions. Agents with greater
autonomy must be persuaded to act on another’s be-
half, and hence agents must negotiate for services. The
ADEPT architecture supports the encapsulation of ser-
vices through the hierarchy of agencies, and so enables
abstracted services to be negotiated for, reducing com-
munication overheads. To enable service encapsulation,
subsidiary agencies behave more cooperatively with the
responsible agent of their agency, surrendering a de-
gree of autonomy. However, these agents retain control

over their own resources, the tasks that they perform
and their coordination and communication with other
agents. They simply cooperate in negotiation with their
responsible agent wherever possible; i.e. they are sub-
sidiary, not subservient. Peer agents have no such dis-
position, and so the provision of a service is predicated
on there being a mutually acceptable agreement pro-
duced through negotiation. However, an agent may be
more cooperative with a peer that represents a differ-
ent department of the same organisation than a peer
representing the interests of a different organisation.

References

[Faratin et al.1998] Faratin, P., Sierra, C., and Jen-
nings, N. R. 1998. Negotiation Decision Functions
for Autonomous Agents. International Journal of
Robotics and Autonomous Systems.

[Jennings et al.1996] Jennings, N. R., Faratin, P., John-
son, M. J., Norman, T. J., O’Brien, P., and Wiegand,
M. E. 1996. Agent-based business process manage-
ment. International Journal of Cooperative Informa-
tion Systems 5, 2&3, 105-130.

[Mowshowitz1996] Mowshowitz, A. 1996. Social dimen-
sions of office automation. In Advances in Computers
25, pp. 335—-404.

[Miiller1996] Miiller, H. J. 1996. Negotiation principles.
In G. M. P. O’Hare and N. R. Jennings Eds.,
Foundations of Distributed Artificial Intelligence, pp.
211-229. Wiley.

[Nash1950] Nash, J. F. 1950. The bargaining problem.
Econometrica 28, 155-162.

[Raiffal982] Raiffa, H. 1982. The Art and Science of
Negotiation. Harvard University Press.

[Rosenschein and Zlotkin1994] Rosenschein, J. S. and
Zlotkin, G. 1994. Rules of encounter: Designing
conventions for negotiation among computers. MIT
Press.

[Smith and Davis1981] Smith, R. G. and Davis, R.
1981. Frameworks for cooperation in distributed
problem solving. IEEE Transactions on Systems,
Man and Cybernetics 11, 1, 61-70.

[Wooldridge and Jennings1995] Wooldridge, M. and
Jennings, N. R. 1995. Intelligent agents: Theory and
practice. Knowledge Engineering Review 10, 2, 115—
152.

