
FE
A

TU
R
E

While agent-based systems are

becoming increasingly well

understood, multiagent

systems development is not.

This article1 identifies key

pitfalls that await the agent

system developer and, where

possible, makes

recommendations to avoid or

rectify these pitfalls.

SOFTWARE
ENGINEERING
WITH AGENTS:
Pitfalls and
Pratfalls

MICHAEL J. WOOLDRIDGE AND NICHOLAS R. JENNINGS

Queen Mary and Westfield College

Industrial-strength software systems are inherently difficult to engineer
correctly and efficiently. Since the software crisis was recognized in the
1960s and 1970s, significant research and development effort has been

directed at making it easier and cheaper to engineer increasingly complex
software systems. Despite significant progress, software engineering’s fun-
damental problems, articulated most famously by Fred Brooks in his 1976
book The Mythical Man-Month, remain as true today as then.

Elsewhere we have argued that the notion of an agent as a self-contained
problem-solving system capable of autonomous, reactive, proactive, social
behavior represents yet another tool for the software engineer.1,2 We believe
this tool can lead to improvements in engineering certain types of com-
plex distributed systems. However, comparatively little effort has been
devoted to understanding the pragmatics of engineering such systems. If
agent technology is to achieve its potential, then these pragmatic aspects
must be studied and understood. Ignoring them will result in a backlash
against agents similar to that experienced against expert systems, logic pro-
gramming, and all the other good ideas that have promised to fundamen-
tally change computing.

Our aims in this article are to restate the main arguments favoring the
view that intelligent agents and multiagent systems can potentially play a
significant role in complex, distributed-systems engineering; and to
emphasize the main pitfalls awaiting the agent system developer, in hopes
that these pitfalls can subsequently be avoided.

We’ve modeled the article on Bruce Webster’s Pitfalls of Object-Orient-
ed Development.3 Following an overview of the main arguments in favor

20 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ 1089-7801/ 9 9 /$10.00 ©1999 IEEE IEEE INTERNET COMPUTING

1 This article is an updated and revised version of “Pitfalls of Agent-Oriented Development,” Proc.
Second Int’l Conf. Autonomous Agents (Agents 98), ACM Press, New York, 1998.

E N G I N E E R I N G W I T H A G E N T S

21IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

of agents as a software engineering paradigm, we
identify six categories of problems. We focus on pit-
falls common to agent-based development projects
and ignore generic software development issues.4

Finally, we present a case study of a significant
agent-based development project, in which we
encountered—and overcame—pitfalls.

AGENTS AND SOFTWARE
ENGINEERING
Arguably, software engineering’s most significant
improvements have resulted from the introduction
of powerful abstractions with which to manage
software’s inherent complexity. The key advances
in program design and development over the past
three decades—procedural abstraction, abstract
data types, and most recently, object-oriented pro-
gramming—all represent increasingly powerful
examples of such abstractions.

Probably the single most compelling argument
in favor of agents for software engineering is that
they represent yet another such abstraction. Just as
many systems may naturally be understood and
modeled as a collection of interacting but passive
objects, so many other systems may be naturally
understood and modeled as a collection of inter-
acting autonomous agents.1,5 We expect an agent-
oriented view of software to complement—not
replace—the object-oriented view.

Developers will typically implement agents
using object-oriented techniques, and there will
usually be fewer agents in the system than objects.
However, agents and objects do compete in the
sense that agent technology is more appropriate
than object technology for applications that can be
naturally modeled as societies of interacting
autonomous entities.5

Other rationales support agents as a useful para-
digm for software engineering. In particular, the tech-
nology of autonomous agents and multiagent systems
appears appropriate for building systems in which

■ data, control, expertise, or resources are dis-
tributed;

■ agents provide a natural metaphor for deliver-
ing system functionality; or

■ a number of legacy systems must be made to
interwork.

Although agent technology is an appropriate tool
for developing certain applications, it nevertheless
has its problems. We describe these in the follow-
ing sections.

POLITICAL PITFALLS
Software engineers are likely to encounter two major
pitfalls in a corporate environment.

You oversell agents
Agents are a powerful, natural metaphor for con-
ceptualizing, designing, and implementing many
complex, distributed applications. Some tasks,
however, are simply beyond the scope of automa-
tion. Indeed, many of the systems that have been
built using agent technology could likely have been
built just as easily with nonagent techniques.

Atomic problem-solving components within
agent-based systems must still perform the neces-
sary domain tasks, and their implementation can
only use the currently available (limited) tech-
niques. Developers can obtain extra leverage by
applying multiple problem-solving methods and
by carefully managing the interactions between the
components, but ultimately, a developer will need
to write these components.

Another aspect of overselling is to erroneously
assume that agents have somehow solved the prob-
lems that have dogged artificial intelligence since
its inception. Agent systems typically use AI tech-
niques—in this sense, they are an application of AI
technology—but their “intelligent” capabilities are
limited by AI’s state of the art.

You get dogmatic about agents
Although they have been used in a wide range of
applications,5 agents are not a universal solution.
For many applications, conventional software
development paradigms (such as object-oriented
programming) are more appropriate. Indeed, given
the relative immaturity of agent technology and the
small number of deployed agent applications, an
agent-based solution should evidence clear advan-
tages before developers contemplate such an
approach.

Another form of dogma associated with agents
relates to their definition. Most agent developers
have their own opinion on exactly what constitutes
an agent—and no two developers appear to share
exactly the same opinion.2 Having made a valid
case for an agent-based approach, developers then
tend to shoehorn their solution to fit with their
problem, even when their solution is inappropri-
ate to the problem at hand.

MANAGEMENT PITFALLS
Managers, in addition to software developers, may
also fall prey to the following pitfalls.

F E A T U R E

22 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

You don’t know why you want agents
Managers reading forecasts such as “agents will gen-
erate U.S. $2.6 billion in revenue by the year
2000”6 will undoubtedly want part of this revenue.
Yet frequently, managers proposing an agent pro-
ject have no clear idea about the benefits of agent
systems. Consequently, they often initiate agent
projects without clear goals. Without goals, there
are also no criteria for assessing success and project
performance. Catastrophic project failures can thus
occur, seemingly out of the blue.

A related issue concerns a general lack of under-
standing concerning the “why and how” of using
agent technology. Having perhaps first developed an
agent technology or specific agents, managers often
then search for a suitable application. Invariably,
when an application is matched with a technology,
the agent’s full potential is not achieved—the agents
have either the wrong functionality or emphasis.

You want generic solutions
Another common pitfall is devising an architecture
or testbed that supposedly enables a whole range
of potential systems to be built when what is actu-
ally required is a bespoke design to tackle a single
application. As those with object-oriented devel-
opment experience know, reuse is difficult to attain
unless development addresses a close-knit range of
problems with similar characteristics.4 Additional-
ly, general solutions are more difficult and costly
to develop, and often require extensive tailoring to
work in different applications. Generally, archi-
tectures for agents and multiagent systems are suit-
able only with certain types of applications.

CONCEPTUAL PITFALLS
Developers, having a suitable application that
would benefit from agent technology, may experi-
ence misconceptions about what they can achieve
with agents.

You believe in silver bullets
The holy grail of software engineering is a “silver
bullet”: a technique that will provide an order-of-
magnitude improvement in software development.7

Many technologies have been promoted as the sil-
ver bullet—automatic programming, expert sys-
tems, graphical programming, and formal meth-
ods, for example.

There are clearly good arguments—largely
untested—for agent technology’s leading to
improved development of complex distributed soft-
ware systems. Certainly no scientific evidence sup-

ports the claim that agents offer any advance in
software development—the evidence to date is
purely anecdotal. With time, demonstrable bene-
fits for software development through agent tech-
nology will be proven, but if agents do lead to a
genuine improvement in software development
practice, the advance is unlikely to represent an
order-of-magnitude improvement.

You forget agents are software
The development of any agent system, however
trivial, is essentially a process of experimentation.
Unfortunately, the experimental process encourages
developers to forget that they are actually develop-
ing software. Mundane software engineering
processes—requirements analysis, specification,
design, verification, and testing—are forgotten and
the project flounders. Although development tech-
niques for agent systems are in their infancy, almost
any principled software development technique is
better than none. Thus, in the absence of agent-ori-
ented development techniques, developers can
adapt object-oriented techniques to great effect.

You forget agents are multithreaded
software
Long recognized as exceedingly complex to design
and implement, multithreaded systems have been
extensively researched. Researchers have tried to
understand this complexity and to develop for-
malisms and tools for managing it.8 Despite this
effort, the problems inherent in developing multi-
threaded systems cannot be considered solved.

By their very nature, multiagent systems tend to
be multithreaded, both within an agent and cer-
tainly within the society of agents. (A society of
agents is one that works together to achieve a com-
mon task.) Multiagent systems tend to lack any cen-
tral control, which makes conflict between system
components a possibility. The multiagent system
developer must therefore recognize and plan for
problems such as synchronization, mutual exclusion
for shared resources, deadlock, and livelock.8

ANALYSIS AND DESIGN
PITFALLS
Once past the initial process of deciding to use
agent technology with a suitable application, devel-
opers can still be tripped up in the design phase.

You ignore related technology
As Oren Etzioni noted, “intelligent agents are 99%
computer science and 1% AI”.9 Given this, develop-

E N G I N E E R I N G W I T H A G E N T S

23IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

ers should exploit conventional software technologies
and techniques wherever possible to engineer the
conventional 99 percent. Such exploitation speeds up
development, avoids reinventing the wheel, and
enables sufficient time to be devoted to the value-
added agent component. Many agent projects could
benefit from exploiting available technology such as
distributed computing platforms (for example, the
Object Management Group’s CORBA) to handle
low-level interoperation of heterogeneous distributed
components; database systems to handle large infor-
mation-processing requirements; and expert systems
to handle reasoning and problem-solving tasks.

An issue related to this pitfall is the failure of
many projects to exploit both official and de facto
standards. In a field as new as agent systems, few
established standards exist. Thus agents developed
by different organizations are unable to interoper-
ate. However, despite the lack of internationally
accepted standards, de facto standards can be
employed in many cases. Java, clearly becoming a
de facto standard for agent systems development,
lets developers leverage many freely available soft-
ware tools and components (such as the Remote
Method Invocation application program interface).

Another de facto standard is KQML,10 an agent
communication language that has been used in
many agent development projects. Also, the Foun-
dation for Intelligent Physical Agents is developing
a second-generation agent communication lan-
guage and an agent infrastructure.11

Your design doesn’t exploit
concurrency
Minimal, or in extreme cases nonexistent, con-
current problem solving is one of the most obvi-
ous features of a poor multiagent design. Typical-
ly, in poorly designed systems one agent does some
processing, produces some results, and then enters
into an idle state. The results are passed to anoth-
er (previously inactive) agent, which processes
them, produces more results, returns to inactivity,
and so on. Such a multiagent design is poor
because there is only ever a single thread of con-
trol. An agent-based solution may be inappropriate
for systems requiring only a single thread of con-
trol—a traditional object-oriented solution will
likely be adequate.

The analysis and design phases, therefore,
should result in developers’ producing a system that
exploits concurrent problem-solving activity. Con-
currency lets the system simultaneously handle
multiple objectives and perspectives, responding

and reacting to the environment at many different
levels. Concurrency also enables multiple, comple-
mentary problem-solving methods to interwork.

You ignore legacy
When using a new technology to build systems,
developers might assume that it is possible—or
necessary—to start from a blank slate and design
every component from scratch. A software system’s
most important components, however, will often
be legacy; that is, functionally essential but tech-
nologically obsolete software components that can-
not readily be rebuilt.

Legacy components can be incorporated into an
agent system by wrapping them with an agent
layer.12 By providing them with a software layer that
realizes an agent-level API, legacy components can
communicate and cooperate with agents. Such a
solution extends the functionality of legacy software.

AGENT-LEVEL PITFALLS
At the micro, or agent, level of software develop-
ment, designers can encounter three problems.

You want your own agent
architecture
When first attempting an agent project, develop-
ers may think that no existing agent architecture
meets the problem requirements and that it is
therefore necessary to design one. Designing an
agent architecture from scratch in order to build
agents is often a mistake for two key reasons. First,
developing a new, reliable architecture with suffi-
cient power takes significant research and develop-
ment. Such effort could otherwise be devoted to
gaining experience with, and ultimately proving,
the technology. Second, unless you were to carry
out the design process in tandem with a major
research effort, it is unlikely that the resulting archi-
tecture would be sufficiently novel to generate
either interest or revenue.

Developers should therefore study the various
agent architectures described in the literature2 and
either license one or implement an off-the-shelf
design.

Your agents use too much AI
It is tempting to focus exclusively on the applica-
tion’s agent-specific, “intelligence” aspects in build-
ing an agent application. These aspects, after all,
often serve as the project’s justification. Too much
focus on AI can result in an agent framework over-
burdened with experimental techniques—such as

F E A T U R E

24 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

natural language interfaces, planners, theorem
provers, and reason maintenance systems—and
thus be unusable.

A more successful, if short-term, strategy is to
build agents with a minimum of AI techniques. As
such systems succeed in a “useful first” strategy, they
can be progressively evolved into richer systems.9

Your agents use no AI
At one extreme, developers are preoccupied with
building agent systems employing only the most
sophisticated and complex AI techniques available
and consequently failing to provide a sufficiently
robust basis for the system. At the other extreme,
developers build so-called agents that do nothing
to justify the use of the term. It’s increasingly com-
mon, for instance, to find straightforward distrib-
uted systems referred to as multiagent systems.

A very different but equally common example is
the practice of referring to Web pages having any
behind-the-scenes processing as “agents”. Such
practices are unhelpful for several reasons. First,
they will cause the term “agent” to lose its mean-
ing. Second, such practices raise the expectations
of software recipients, who will be disappointed
when they ultimately receive a very conventional
piece of software. Finally, these practices lead to
cynicism on the part of software developers (who
come to believe that “agent” is simply another
meaningless management buzzword).

SOCIETY-LEVEL PITFALLS
Finally, at the macro, or society, level, five potential
pitfalls await the developer.

You see agents everywhere
After first learning about multiagent systems, there
is a tendency to view everything as an agent, which
is perceived to be somehow conceptually clean.
After all, an object-oriented language is considered
“pure” if everything in the language is an object—
isn’t the situation identical for multiagent systems?
If you adopt this viewpoint, you end up with agents
for everything, even addition and subtraction. In
the enormously influential ACTOR paradigm of
concurrent computation,13 this is essentially what
happens.

The overheads of managing agents and intera-
gent communication will rapidly outweigh any
benefits of an agent-based solution. Generally,
agents should be coarse grained, in that each should
embody significant, coherent computational func-
tionality. As a rule of thumb, a multiagent system

is often regarded as large if it contains more than
10 agents.

You have too few agents
While some designers imagine a separate agent for
every possible task, others appear not to recognize
the value of a multiagent approach. They create a
system that completely fails to exploit the agent
paradigm’s power, and develop a solution with a
very small number of agents doing all the work.
Such solutions tend to fail the standard software
engineering test of coherence, which requires that
a software module should have a single, coherent
function. The result is as if a developer were to write
an object-oriented program by bundling all the
functionality into a single class.

You obsess on infrastructure
A major obstacle to the wider use of agent technol-
ogy is that there are no widely used software plat-
forms for developing multiagent systems. Such
platforms would provide all the basic infrastructure
(for message handling, tracing and monitoring,
runtime management, and so on) required to create
a multiagent system. As a result, almost every mul-
tiagent system project that we have encountered has
devoted significant resources to implementing this
infrastructure from scratch. During this imple-
mentation stage, valuable time (and hence money)
is often spent implementing libraries and software
tools that, in the end, do little more than exchange
KQML-like messages10 across a network.

Your agents interact too freely
Numerous systems interacting with one another
using simple rules can generate behavior that appears
considerably more complex than the sum of the com-
ponents would indicate.14 Therein lies one of the
great strengths—and weaknesses—of the multiagent
systems approach. The strength is that developers can
exploit this emergent functionality to provide simple,
robust cooperative behavior. The weakness is that
emergent functionality is akin to chaos.

One technique for managing multiagent
dynamics is to restrict the way that agents interact.
Thus, very simple cooperation protocols are prefer-
able to richer ones, with “one-shot” protocols (such
as requesting and replying) being both adequate
and desirable for many applications.

Your system lacks structure
A common misconception is that agent-based sys-
tems require no real structuring. Although perhaps

E N G I N E E R I N G W I T H A G E N T S

25IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

true in certain cases, it should not be viewed as the
only way of developing agent societies. Many agent
systems require considerably more system-level
engineering, particularly large-scale systems or
those in which the society is supposed to act with
some commonality of purpose. In such cases, a
means of structuring the society is needed to reduce
the system’s complexity, increase the system’s effi-
ciency, and more accurately model the problem
being tackled. The precise nature of this structur-
ing clearly depends on the problem at hand. Com-
mon options include close-knit teams of agents
cooperatively achieving a common goal; abstrac-
tion hierarchies modeling the problem from dif-
ferent perspectives; and intermediaries acting as a
single point of contact for a number of agents.15

REAL-WORLD CASE STUDY
In this case study, we show how potential pitfalls
were managed or avoided in a large-scale industri-
al project with which we were involved. The sys-
tem was developed in the Advanced Design Envi-
ronment for Process Tasks (ADEPT) project.16

ADEPT is a multiagent application shell that can
be instantiated for various business application
domains. When instantiated, the system manages

the business process. The specific domain consid-
ered here is managing a British Telecom business
process that provides quotes for installing a net-
work to deliver telecommunications service. The
process, as Figure 1 shows, involves BT’s customer
service, design, surveyor, and legal departments,
and the various organizations that provide the out-
sourced service of vetting customers (VCs).

To initiate the process, a customer contacts Cus-
tomer Service with a set of requirements. In paral-
lel to capturing the requirements, Customer Service
arranges to have the customer vetted. If the cus-
tomer fails the vetting procedure, the quote process
terminates. Assuming the customer is satisfactory,
their requirements are mapped against the service
portfolio. When requirements can be met by an off-
the-shelf item, an immediate quote is offered.

In the case of bespoke services, however, the
process is more complex. Customer Service further
analyzes the customer’s requirements, and Legal
checks the legality of the proposed service. If the
desired service is illegal, the quote process termi-
nates. If the requested service is legal, the design
phase can start.

To prepare a network design, BT must usually
dispatch a surveyor to the customer’s premises so

Provide_Customer_Quote

Cost_Network_Design

Legal_Advice

Agent
Organizational grouping
Customer-subcontractor relation
Peer negotiations
Manager-subordinate relation

Vet_Customer

Design
division

Surveyor
department

Legal
department

SD

LD

DDVC

CSD

Pool of surveyors

Survey_Premises

Pool of designers

Design_Network
Cost_Design

Check_Legality

Pool of lawyers

Do_Survey

Handle_Customer

Pool of customer handlers

VC

VC

VC

VC

Customer

S1

L1 L2 L3

L4 L5 L6

D2

D1

CH1

D3 D4 D5
S2 S3

S4
S5

S6

Vet customer
organizations

CH2
CH3 CH4

CH5

CH6

Customer
service

division

Figure 1. The Advanced Design Environment for Process Tasks (ADEPT) manages a British Telecom business process that
provides quotes for installing a network to deliver telecommunications services.

F E A T U R E

26 MAY • JUNE 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

that a detailed plan of the existing equipment can
be produced. When the network design and cost-
ing are complete, Design sends the quote to Cus-
tomer Service, which, in turn, forwards it to the cus-
tomer. This action completes the business process.

From this high-level system description, we
identified a number of autonomous problem-solv-
ing entities. Each department became an agent, and
each individual within a department became an
agent. To achieve their individual objectives, agents
interacted with one another. All interactions took
the form of negotiations about which services the
agents would provide to one another and under
what terms and conditions. Successful negotiations
resulted in mutually agreeable contracts.

Project Pragmatics
Centralized workflow systems are simply too unre-
sponsive and unable to cope with unpredictable
events. British Telecom therefore decided to devolve
responsibility for managing the business process to
software entities that could respond more rapidly to
changing circumstances. Since the various devolved
functions inevitably have interdependencies, these
software entities must interact to resolve conflicts.
Such an approach leaves autonomous agents as the
most natural means of modeling the solution.

The ADEPT project was run according to a strong
set of software management procedures, with a par-
ticular focus on the analysis, specification, and design
phases. Developers borrowed a number of object-ori-
ented techniques (in particular, use cases and inter-
action diagrams). However, the project would have
benefitted from stronger testing and evaluation pro-
cedures, especially when it came to demonstrating the
value-added nature of the agent-oriented approach.

From the beginning, ADEPT was conceived as a
full-fledged distributed application. This meant the
project had to expend considerable effort tackling
the problems of debugging and visualizing multi-
threaded, distributed software. Indeed, a significant
proportion of the research and development effort
was on tools to track events in the system. Rather
than reimplementing communications from first
principles, we built ADEPT on top of a commer-
cial CORBA platform. This platform provided the
basis of handling distribution and heterogeneity in
the ADEPT system. ADEPT agents also required
the ability to undertake context-dependent reason-
ing, and so we incorporated a widely used expert
system shell into the agent architecture.

On the negative side, ADEPT failed to exploit
any available standards for agent communication

languages. This shortcoming restricted the inter-
operation of the ADEPT system. ADEPT did,
however, exploit an off-the-shelf communications
framework, and it also used an architecture that had
been developed in two previous projects, Architec-
ture for Cooperating Heterogeneous Online Sys-
tems (ARCHON) and Generic Rules and Agent
Model Testbed Environment (GRATE).12,17 This
shortened the analysis and design phases.

The business process domain has a large num-
ber of legacy components, especially databases and
scheduling software. In this case, we wrapped these
as resources or tasks within particular agents.

Agent Interactions
ADEPT agents embodied comparatively small
amounts of AI technology compared to most agent
systems. For example, planning was handled by stor-
ing partial plans in a plan library (in the style of the
Procedural Reasoning System).18 AI techniques were
used specifically for agent negotiation and the way
that agents responded to their environment. In the
former case, each agent had a rich set of rules gov-
erning which negotiation strategy to adopt in which
circumstances, how it should respond to incoming
negotiation proposals, and when it should change
its negotiation strategy. In the latter case, agents were
required to respond to unanticipated events in a
dynamic and uncertain environment.

ADEPT agents were relatively coarse grained in
nature. They represented organizations, depart-
ments, or individuals. Each such agent controlled
a number of resources and was capable of a range
of problem-solving behaviors. This led to a system
design in which there were typically fewer than 10
agents at each level of abstraction and in which the
primitive agents were still capable of fulfilling some
high-level goals.

The complexity of agent interactions in ADEPT
was ameliorated through its notion of agency: a col-
lection of agents working together to achieve an
objective. For example, Design was an agency com-
posed of individual designers. From the outside,
agents interacted with a representative of the agency
and not with the individual members. This helped
reduce the number of interactions in the system
and so limited the scope for unexpected emergent
behavior.

The other technique for controlling interactions
was to allow service contracts to cover multiple
invocations. Thus, the Customer Service agent
negotiated with the VC agents for a number of vet-
tings (say, 50) in a given contract. This meant that

E N G I N E E R I N G W I T H A G E N T S

27IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

a new negotiation was not required for each and
every quote to be generated. There was still a rea-
sonable degree of uncertainty about how negotia-
tions would progress, primarily because the agents
were free to adopt whichever negotiation strategy
best fitted their current situation. We explored this
facet of the system through systematic empirical
evaluation of a number of negotiation use cases.

CONCLUSION
In the future, we intend to investigate development
methodologies for agent-based systems. Such
methodologies will offer developers a systematic
framework to address the pragmatic concerns of
software engineers charged with the development
of agent-based systems. We also intend to develop
models that will enable us to predict and verify the
behavior of complex multiagent systems. ■

ACKNOWLEDGMENTS
We thank Simon Lewis for informing us about Bruce Webster’s

book, Pitfalls of Object-Oriented Development (M&T Books,

1995), which provided a model framework for this article.

Thanks also to Van Parunak for detailed, helpful comments on

an earlier article draft.

REFERENCES
1. M. Wooldridge and N.R. Jennings, “Intelligent Agents:

Theory and Practice,” The Knowledge Eng. Rev., Vol. 10,

No. 2, 1995, pp. 115–152.

2. M. Wooldridge and N.R. Jennings, “Pitfalls of Agent-Ori-

ented Development,” Proc. Second Int’l Conf. Autonomous

Agents, ACM Press, New York, May 1998, pp. 385–391.

3. B.F. Webster, Pitfalls of Object-Oriented Development, M&T

Books, New York, 1995.

4. M. Wooldridge, “Agent-based Software Engineering, IEE

Proc. Software Eng., Vol. 144, No. 1, IEE Press, London,

1997, pp. 26–37.

5. N.R. Jennings and M. Wooldridge, “Applications of Intel-

ligent Agents,” in Agent Technology: Foundations, Applica-

tions, and Markets, N.R. Jennings and M. Wooldridge, eds.,

Springer-Verlag, Berlin, 1998, pp. 3–28.

6. C. Guilfoyle, Intelligent Agents: The Next Revolution in Soft-

ware, Ovum Ltd., London, 1994.

7. F.P. Brooks, “No Silver Bullet,” Proc. IFIP Tenth World

Computer Conf., H.J. Kugler, ed., Elsevier Science, Ams-

terdam, Netherlands, pp. 1,069–1,076.

8. M. BenAri, Principles of Concurrent and Distributed Pro-

gramming, Prentice Hall, Englewood Cliffs, N.J., 1990.

9. O. Etzioni, “Moving Up the Information Food Chain:

Deploying Softbots on the Worldwide Web,” Proc. 13th

Nat’l Conf. Artificial Intelligence (AAAI 96), AAAI Press,

San Mateo, Calif., 1996.

10. J. Mayfield, Y. Labrou, and T. Finin, “Evaluating KQML as

an Agent Communication Language,” in Intelligent Agents II

(LNAI Volume 1037), M. Wooldridge, J.P. Müller, and M.

Tambe, eds., Springer-Verlag, Berlin, 1996, pp. 347–360.

11. FIPA 97, Version 2, Part 2: Agent Communication Language,

Foundation for Intelligent Physical Agents, Geneva, 1998.

12. N.R. Jennings et al., “Using ARCHON to Develop Real-

World DAI Applications for Electricity Transportation

Management and Particle Acceleration Control,” IEEE

Expert, Vol. 11, No. 6, Dec. 1996, pp. 60–88.

13. G. Agha, ACTORS: A Model of Concurrent Computation in

Distributed Systems, MIT Press, Cambridge, Mass., 1986.

14. L. Steels, “Cooperation between Distributed Agents

through Self Organization,” Decentralized AI—Proc. First

European Workshop on Modeling Autonomous Agents in a

Multi-Agent World, Y. Demazeau and J.P. Müller, eds., Else-

vier Science, Amsterdam, Netherlands, 1990, pp. 175–196.

15. A.H. Bond and L. Gasser, eds., Readings in Distributed Arti-

ficial Intelligence, Morgan Kaufmann, San Mateo, Calif.,

1988.

16. N.R. Jennings et al., “Agent-Based Business Process Man-

agement,” Int’l J. Cooperative Information Systems, Vol. 5,

No. 23, 1996, pp. 105–130.

17. N.R. Jennings, “Specification and Implementation of a

Belief Desire Joint-Intention Architecture for Collabora-

tive Problem Solving,” J. Intelligent and Cooperative Infor-

mation Systems, Vol. 2, No. 3, 1993, pp. 289–318.

18. M.P. Georgeff and A.L. Lansky, “Reactive Reasoning and

Planning,” Proc. Sixth Nat’l Conf. Artificial Intelligence (AAAI

87), AAAI Press, San Mateo, Calif., 1987, pp. 677–682.

Michael J. Wooldridge is a reader in the Department of Elec-

tronic Engineering at Queen Mary and Westfield College,

University of London. He is an associate editor of the Jour-

nal of Autonomous Agents and Multi-Agent Systems and is

on the editorial board of the Journal of Applied AI. He

coordinates the European Network of Excellence for agent-

based computing (http://www.AgentLink.org/).

Wooldridge earned a PhD in computation from the Uni-

versity of Manchester.

Nicholas R. Jennings is a professor of intelligent systems and

head of the Intelligent Systems Group in the Department

of Electronic Engineering at Queen Mary and Westfield

College. He is editor-in-chief of the Journal of Autonomous

Agents and Multi-Agent Systems. Jennings received the Inter-

national Joint Conference on Artificial Intelligence (IJCAI)

Computers and Thought Award in 1999. He earned a PhD

in artificial intelligence from the University of London.

Readers may contact the authors at Dept. of Electronic Engineer-

ing, Queen Mary and Westfield College, Univ. of London, London

E1 4NS, UK; {M.J.Wooldridge, N.R.Jennings}@elec.qmw.ac.uk.

