ADEPT” - Advanced Decision Environment for Process Tasks:
Overview and Architecture

J .L.Altyi, D.GrifﬁthsT, N.R.Jenningsﬂ, E.H.Mamdaniii,
A.Struthers ', M.E.WiegandT

" BT Laboratories

TICI Engineering Technology

¥ Loughborough University of Technology
*Queen Mary and Westfield College

Abstract

This paper provides an introduction to project ADEPT (Advanced Decision
Environment for Process Tasks). The project is researching both the technology
and the methods that are needed to improve the way information is gathered,
managed, distributed and presented to people in key business functions and
operations. The paper presents a first-level breakdown of the central architecture
concepts that have been emerging during the first six months of the ADEPT
project. The use of autonomous agents to provide information services is explored
and a language for their communication and representation developed. The work
presented here represents only the preliminary steps towards the final architecture
and is likely to undergo significant refinement throughout the project life-cycle.

1.0 Introduction

Company managers make informed decisions based on a combination of judgement and
information from marketing, sales, research, development, manufacturing and finance
departments. Ideally, all relevant information should be brought together before
judgement is exercised. Requesting pertinent and consistent information across a large
company is a complex and time consuming process. Changes to information made in one
department can have repercussions throughout a company often invalidating previous

* ADEPT is a collaborative project under the DTI/EPSRC Intelligent Systems
Integration Programme (ISIP). The project partners are BT Laboratories (lead), ICI
Engineering Technology, Loughborough University of Technology, and Queen Mary
and Westfield College.

Acknowledgement: The Service Description Language described in this paper has been
developed by J. Stein of Queen Mary and Westfield College.



decisions. For these reasons, the ADEPT project is researching both the technology and
the methods that are needed to improve the way information is gathered, managed,
distributed and presented to people in key business functions and operations. The project
is creating a Concurrent Information Environment. The environment will be used to
demonstrate that requests for relevant and timely information can be made proactively by
business systems in advance, and that the systems themselves can be responsible for
maintaining the consistency of the decisions that are made with respect to this
information.

The inherent distribution of data, problem solving capabilities, and responsibilities,
coupled with the desire to maintain the integrity of the existing organisational structure,
meant that an agent-based solution was adopted. Agents are goal-oriented entities which
are able to solve autonomously particular problems and be responsive to changes in their
environment. Whilst engaged in their problem solving they may interact with other agents
using an agent communication language [1].

A short technical overview outlines the major themes of the project: information
infrastructure issues, information management and information presentation. An outline
of the architecture that provides the logical model for the negotiation of information and
services is given. Finally, languages for representation and communication are described.

2.0 Issues of Information Integration

The technology research activities address three areas that support information
integration: Information Infrastructure (section 2.1), Information Management (section
2.2), and Information Presentation (section 2.3). Specific technology research issues relate
to how information is negotiated for, transparently accessed over an heterogeneous
network and reasoned over. The research path is dictated by requirements emanating from
the work of the industrial partners.

2.1 Information Infrastructure

The information infrastructure issues relate to the provision of an open distributed
environment that supports the coordination and cooperation required to realise a complex
business process. The environment must have the ability to provide relevant information
in a timely manner. At run time the environment will determine what information should
be sent to whom and when. There must be a series of mechanisms to realise and maintain
the dependencies and interrelationships specified in the information management
definitions. It is essential that application services residing in a number of different
physical and logical contexts can be shared and accessed transparently.

The environment must provide support for agreement making, negotiation [2] and conflict
management [3]. This involves indicating where and when such agreements are necessary,
identifying who needs to be party to the agreement, and providing support for the ensuing
negotiation process.



2.2 Information Management

Information Management issues relate to the ways in which processes can be modelled
and controlled automatically. A main tenet of this research is that the model of information
flow in the work process (information viewpoint [4]) should be separated from the model
of responsibility (enterprise viewpoint) for the various stages of the work process. This
ensures a separation of information and organisational issues that leads to robust
information management.

Information and process management is controlled through the maintenance of ‘audit
trails’ and automatic consistency checking of actions and decisions involved in the
process. Management functions such as planning and scheduling enable the environment
to reschedule the work process and redirect responsibility automatically in the event of
some problem occurring.

The integration of temporal information will enable the environment to make inferences
involving time, such as predicting the time to complete the work process, or advising of
delays beforehand.

2.3 Information Presentation

Information Presentation issues relate to presentation requirements of effective display
techniques for information from disparate sources, in different formats, that is propagated
across heterogeneous network environments.

Presentation techniques include the use of interface metaphors [5] to replace (or
supplement) the conventional object references in computing systems, of data files,
programs, etc. Spatial alternatives such as office or desktop metaphors need to be
supported. Information fusion is also seen as a presentation issue. This relates to how the
added value that arises from the processing of information is presented to a human or any
decision point in a process.

Furthermore, multimedia technology [6] is to be supported by the environment. This
technology will place a requirement for coordinating information presentation on the
appropriate media available in the environment.

3.0 System and Agent Architecture

3.1 System Architecture

The top-level concept of the architecture is of an infrastructure consisting of numerous
agents. An agent controls and manages the provision of a number of services to other
agents on the infrastructure. The top-level architecture concept is depicted in figure 1.



Management
Information

System

Organisation

SQL Database

& International

o carrier
S

Department

FIGURE 1. Top-Level System Architecture Concept

The agents are able to communicate, and negotiate with each other for the provision of
services. Services provided by agents can range from the provision of information and
data, or the implementation of some concurrent task within a business process, through to
the setting up of international communications on demand (by negotiating with a carrier),
or the provision of presentation functionality. An agent on the infrastructure is
characterised by the services that it provides.

There are three high-level requirements of the ADEPT architecture:

1. autonomy - the local organisation should be empowered to define how it (they) will
perform their local tasks and processes;

2. concurrency - the tasks and the services must be able to be run concurrently, with the
interactions monitored and managed automatically;

3. migration - agents will need to define new services incrementally, without the need to
redesign the entire distributed system.

3.2 Agent Organisation

The basic building block of the architecture is shown in figure 2. This basic unit comprises
an agent and the rasks that are under its control. This unit provides one or more services all
of which are under the control of the agent. In a “free market” model each of these units



would be able to negotiate with any other agent when supplying a service. Furthermore, an
agent could negotiate with any other agent in order to enhance it’s services or to create
new services.

QAgent
4 4
‘Task

FIGURE 2. Basic Unit of Organisation

The free market agent model is very simplistic, and not practical in a commercial
environment. Commercial environments are founded on organisational models where an
organisation is logically divided into a collection of services. The ADEPT architecture
draws upon this principle to group services and tasks where it makes pragmatic sense. A
grouping of tasks and services is known collectively as an agency.

Agents may communicate with other agents in two ways: loosely coupled and tightly
coupled. In a loosely coupled interaction each agent has an equal status, no one agent is
controlling another. In tightly coupled mode, one agent is a controlling agent and the other
agents have restricted access from agents outside of the agency. Even so these agents still
have a large degree of autonomy. The relationship between an agent and a task is always
close coupled; see figure 3.

Controlling

O Agent
Tight
@ Coupling
R A R Loose

Coupling

FIGURE 3. Coupling of Services and Tasks within an Agency



In this organisational model, servant agents reside in an agency. These servant agents are
loosely coupled to each other but tightly coupled to the controlling agent. The controlling
agent provides access to the world outside its agency. Agents within an agency may only
negotiate with external agents through the controlling agent. An agent can have both the
role of a controlling agent and a servant agent. A controlling agent will normally be a
loosely coupled agent in a higher level agency. Agents in an agency will usually be the
controlling agents of lower level agencies. This leads to an hierarchical organisation of
agencies reflecting the logical structure.

In the above description, two extreme levels of agent interaction are outlined: negotiation/
communication and task control. In fact it will be possible to have a spectrum of
interaction between these extremes. For example a loosely coupled agent will have a
complete set of agent communication services, the tasks in an agency will have the
minimal set of communication services that allow them to merely respond to an agent.
Other agents may have partial sets of agent services.

To extend this model further, we consider how a number of agencies can be used in
providing a service. The agent requesting the service is designated as the controlling agent
and then a set of agents from different agencies can be selected to form a virtual agency;
see figure 4. Note that this model reflects the principle of concurrent engineering whereby
agents from different parts of a logical organisation may cooperate in the provision of
some specific service.

AGENCY

AGENCYQ\ LN
e |
m |
|

T~ Virtual

Agency

QV

AGENCY

AGENCY

FIGURE 4. A Virtual Agency



3.3 Agent Architecture

The top-level agent architecture is shown in figure 5. This figure illustrates that
information on the services provided is contained within the agent, as well as the
capabilities to negotiate about its services, or about the services requested from other
agents. The acquaintance model enables the agent to build a picture of information as to
which agents provided which services in the past and whether contractual agreements
were met, etc.

Acquaintance

Logical
Model

Communication

Service
Level
Agreements

Situation
Assessmen

Service Self
Model
Management
Service Service
Negotiation Descriptions

FIGURE 5. Top-Level Agent Architecture

The agent has two external interfaces: one to the rest of the community (through the
logical communication module) and one to its local agency (through the service
management module). The former enables the agent to communicate with other agents in
the system at a high-level and using the primitives of the inter-agent negotiation language
(see section 4.2) - at this level issues concerned with the physical infrastructure are
transparent. The latter is concerned with managing the services that the agent is executing
in its agency (this is achieved using the intra-agent management language) - this includes:
scheduling concurrent services, starting new services, passing information onto relevant
services, and monitoring the status of active services.

The agent also contains a situation assessment module, a service negotiation module and a
service management module. The situation assessment module serves as a link and
balancer between an agent’s two primary roles - that of being an individual and that of
being part of a social community. The service negotiation module is invoked when the
situation assessment module indicates that a contract should be established with some



external agent for providing a particular service. This module handles the negotiation to
set up a service level agreement (SLA). The service management module deals with SLAs
which have been established - ensuring that terms and conditions are honoured, that
appropriate levels of reporting take place, and that the SLA is cleanly finished.

All of the functional modules within the agent make use of the self and acquaintance
models - the self model maintains a representation about the capabilities and status of the
local agency, whilst the acquaintance model maintain a similar record of the other key
agents in the system [7].

4.0 Representation and Communication Languages

4.1 Service Description Language

One of the key roles of an ADEPT agent is that it provides application services. A service
can be requested (or negotiated for) by another agent, and typically this may result in the
transfer of information between the agents. Agents must contain the definitions of how to
provide each of the services that it offers. Accordingly, a description for each service is
represented in the agent. A service description is like a “recipe” made up of two types of
primitives:

1. tasks - that are executed entirely within the control of the agent;

2. services - provided by other agents over the infrastructure.

Tasks and services may be initiated concurrently, and the interaction and communication
between them is managed automatically by constraints in the service description and by
maintaining an “audit trail” of agent negotiations. Note that services in turn may be
defined recursively in terms of services from other agents, but that eventually the
definitions will be solely in terms of tasks. In more detail, a service is defined by the
following features:

1. Each service has a unique name.

2. Each service has a guard. A guard declares information which is required in order
to launch the service. There may be also constraints expressed, such as, a service
may be launched only when some value x is available and is greater than 5, etc.

3. Each service may have assumptions. An assumption may impose further
constraints on information, or assign default values (which are then believed, but
perhaps not yet known).

4. Each service has a body which describes how the service can be executed.

To give an example, that part of an agent’s self model which contains the service
descriptions may be instantiated in the following manner:



(Service
:Name PriceForecast

:Guard (Region, ProductionCapacity,
CapacityCompetition, Demand,
Experience)

:Assumption (SalesLevel :Default 100
:0Obtain)

:Body (Sequence
(Parallel

(Sequence CreateTable,
SetYears (94..96))

Calculate (Region,
ProductionCapacity,
CapacityCompetition,
Demand,

Experience))

StoreInTable))

This states that a price forecast is produced based on information about a region, the
production capacity of the company and the capacity of the competition, the demand
specified by a client, and the experience of the company which is fixed in the service’s
guard. In general, this information will not be available automatically and has to be
provided on demand. This will be done by looking up an agent’s self and acquaintance
model. Most of the information which is not given beforehand might be obtained via
launching appropriate services as indicated by a “provided-by” slot. After checking this
initial condition (guard), in order to execute the appropriate calculations, the agent will
assume that the sales level (in relation to the specified demand) be 100%. Albeit, in order
to justify its calculation, the agent will have to launch a service to obtain the definite value
of the sales level. When this has been checked, the agent will initiate the service
execution, i.e. launch the body.

It should be noted that none of the services in the body needs to be executed by the agent
itself. It is likely that the parallel part of the body will be provided by different agents. In
general, each of the services in the body will be represented somewhere in the agent’s self
or acquaintance model. In fact, what the body describes is that a price forecast is provided
as a short sequence of services. The first service is a parallel service which is followed by
the service StoreInTable. The parallel service describes the creation of a table in which the
years 94 to 96 are initialised. At the same time (in parallel), an agent performs some
calculation. When this has been provided successfully, then the results may be stored in
the table.



4.2 Agent Communication

Following on from the basic organisational principles of agents, there is a need to define a
language that enables the agents to communicate and negotiate. Furthermore when two or
more agents are communicating they must share a common view of the problem domain; a
shared ontology [8]. In this section, we explore the communication primitives.

The model developed here is motivated by consideration of the negotiation that would be
required between two peer level agents each representing their own respective agencies.
The following Generic Service/Information Negotiation Model has been developed:

1. Find/Locate (a service or piece of information) - make contact.

2. Ask/Explain (what is the form or nature of the service or information) -
get the details.

3. Establish/Negotiate (setting up a service or receiving some
information) - agree what is to be done.

4. Execute/Review/Inform (perform the service or deliver the
information, with the ability to review progress and inform when necessary) -
do what you agreed.

5. Terminate.

It is important that this model should apply to both explicit service requests as well as the
more general, implicit service requirement of finding, locating and managing information
within a business. This model was then developed into a set of specific primitives that
could be used as a basis to explore further the precise nature of the negotiation semantics.
These primitives are now described using the same numbering order in the model above:

1. CAN (YOU/ANYONE) DOxa service s>
CAN (YOU/ANYONE) PROVIDE<information i)
-->> return list of service/information providers

These primitives would be equally applicable in a multi-cast situation
involving department or enterprise based agents and location brokers, as well
as a contract net type of broadcast request for the service. Various degrees of
sophistication could be imagined in terms of the details associated with the
location of the service provider dependent upon the type of models that are
developed for agents themselves. These primitives can be summarised as
saying “WHO” can do this and “WHERE” they are.

2. SERVICE DETAILS<ask agent a, regarding service s>
INFORMATION DETAILS<ask agent a, regarding information i>
-->> return list of <Inputs required>, <Outputs Given>,

<Optional Resource (“time” /’cost” /...) estimate>



These primitives let you establish exactly what the service consists of in more
detail. It can be summarised as saying “WHAT” can be done. As no global
common language is assumed, an essential additional primitive here will be
“EXPLAIN <ontology/term>" which will be needed to allow agents to handle
new terms.

3. PROPOSE<agent q, service s, conditions c, optional rationale r>
MODIFY
REJECT
ACCEPT

-->> return <agreement (working conventions, reporting level, penalties, etc.)>

These are the basic primitives that allow agents to agree how a service is to be
provided. The conditions will be split into “mandatory” and “desirable”. The
optional rationale and details of service provision should provide agents with a
mechanism to break deadlocks arising from (unnecessary) mandatory
requirements, or provide more novel/alternative forms of service provision.
This should allow much more sophisticated forms of negotiation processes to
be developed/researched. The key thing to note here is that accepting a
proposal, after any modifications (and perhaps nested asking/explanation),
results in a specific service level agreement that can then be scheduled to be
carried out.

4. INVOKE<agent a, service s, agreement c)
INFORM (i.e. notify)<agent a, mode of acknowledgement m>
QUERY/INSPECT<service s>
REVIEW«<services delivered d>

Services are invoked with respect to some prior agreement, after which the
progress can be queried or formally reviewed according to the reporting levels
in the service level agreement. If it is necessary for the agents to inform each
other of events (unforeseen or otherwise) then this can be done with the mode
of acknowledgement set to “none”, or ‘“need acknowledgement” or
“renegotiate”. This is a critical primitive that will allow the whole negotiation
process to become nested if necessary.

5. TERMINATE<status s, optional reason r>
When a service terminates it will either have satisfied its “success” or

“delivery” criteria set out in the service level agreement or not. If not, an
optional reason should be given for termination.



5.0 Conclusions

This paper has presented a brief insight into the ADEPT project. ADEPT proposes the use
of autonomous agents to provide information services. The agents are able to negotiate for
services to provide a flexible and dynamic process management environment. The
advantage of this approach is the suitability to global interworking and proactive
(anticipatory) information management.

A first-level breakdown of the central architecture concepts that have been emerging
during the first six months of the ADEPT project have been presented. This paper has put
forward a number of terms and definitions and architecture concepts to be adopted within
the project as a way of integrating the various research and application work areas.

The developing system architecture and the research paths are directed by requirements
emanating from a number of applications drawn from the domains of the industrial
partners. BT are investigating the use of the ADEPT environment to support a number of
concurrent business processes, such as in the generation of customer quotes, from
accepting customer requirements through to producing appropriate network designs. ICI
Engineering Technology are applying the ADEPT concepts to supporting the safety
procedures that must be followed in industrial plant design. Another application is
considering the information support process for advising on financial and marketing
Strategy.

The work presented here represents the preliminary steps towards the final architecture,
and these ideas are likely to undergo significant refinement throughout the project life-
cycle.

6.0 References

[1] M. J. Wooldridge & N. R. Jennings (1995) “Intelligent Agents: Theory and Practice”
Knowledge Engineering Review.

[2] B. Laasri, H. Laasri, S. Lander and V. R. Lesser (1992) “A Generic Model of
Intelligent Negotiating Agents” Journal of Intelligent & Cooperative Information
Systems” 1(2) 291-318.

[3] M. Klein (1991) “Supporting Conflict Resolution in Cooperative Design Systems”
IEEE Trans. on Systems Man and Cybernetics 21 (6) 1379-1390.

[4] Recommendation X.901, ISO/IEC 10746-1 “Basic Reference Model of Open
Distributed Processing - Part 1: Overview and Guide to Use”.

[5] J. M. Carroll and R. L. Mack (1985) “Metaphor, Computer Systems and Active
Learning” Int. Journal of Man-Machine Studies 22 39-57.



[6] J. L. Alty (1991) “Multimedia: What is it and how do we exploit it?”” Keynote Address
to HCI’91, in D. Diaper and R. Winder (eds.) Cambridge University Press 31-44.

[7] N. R. Jennings, E. H. Mamdani, 1. Laresgoiti, J. Perez & J. Corera (1992) “GRATE: A
general framework for cooperative problem solving” IEE-BCS Journal of Intelligent
Systems Engineering 1(2) 102-114.

[8] T. R. Gruber (1991) “The Role of Common Ontology in Achieving Sharable Reusable
Knowledge Bases” Proc. of Second International Conf. on Principles of Knowledge
Representation and Reasoning, San Mate, CA.



