
ADEPT: Managing Business Processes using Intelligent Agents

N. R. Jennings1, P. Faratin1, T. J. Norman1, P. O’Brien2, M. E. Wiegand2,

C.Voudouris2, J. L. Alty3, T. Miah3 & E. H. Mamdani4

1 Dept. Electronic Engineering, Queen Mary & Westfield College, London E1 4NS.
{N.R.Jennings, P.Faratin, T.J.Norman}@qmw.ac.uk

2 BT Research Labs, Martlesham Heath, Ipswich, Suffolk IP5 7RE.
{paul, mew, chrisv}@info.bt.co.uk

3 Dept. Computer Studies, Loughborough University, Loughborough, Leicestershire, LE11 3TU.
{J.L.Alty, T.Miah}@lboro.ac.uk

4 Dept. Electronic Engineering, Imperial College, London SW7 2AZ.
E.Mamdani@ic.ac.uk

ABSTRACT

This paper describes work undertaken in the ADEPT (Advanced Decision Environment for Proc-
ess Tasks) project towards developing an agent-based infrastructure for managing business proc-
esses. We describe how the key technology of negotiating, service providing, autonomous agents
was realised and demonstrate how this was applied to the BT business process of providing a cus-
tomer quote for network services. Issues of agent visualisation are also addressed.

1. INTRODUCTION

Company managers make informed decisions based on a combination of judgement and informa-
tion from marketing, sales, research, development, manufacturing and finance departments. Ide-
ally, all relevant information should be brought together before judgement is exercised. However
obtaining pertinent, consistent and up-to-date information across a large company is a complex
and time consuming process. For this reason, organisations have sought to develop a number of IT
systems to assist with various aspects of the management of their business processes. Such sys-
tems aim to improve the way that information is gathered, managed, distributed, and presented to
people in key business functions and operations. In particular, the IT system should: (i) allow the
decision maker to access relevant information wherever it is situated in the organisation (this
should be possible despite the fact that information may be stored in many different types of sys-
tem and in many different information models); (ii) allow the decision maker to request and
obtain information management services from other departments within the organisation (and in
some cases even from outside the organisation); (iii) proactively identify and deliver timely, rele-
vant information which may not have been explicitly asked for (e.g. because the decision maker is
unaware of its existence); (iv) inform the decision maker of changes which have been made else-
where in the business process which impinge upon the current decision context; and (v) identify
the parties who may be interested in the outcome and results of the decision making activity.

Analysis of a number of business processes from various industrial and commercial domains
resulted in several common characteristics being identified: (i) Multiple organisations are often
involved in the business process. Each organisation attempts to maximise its own profit within the
overall activity. (ii) Organisations are physically distributed. This distribution may be across one
site, across a country, or even across continents. This situation is even more apparent for virtual
organisations (10) which form allegiances for short periods of time and then disband when it is no
longer profitable to stay together. (iii) Within organisations, there is a decentralised ownership of
the tasks, information and resources involved in the business process. (iv) Different groups within
organisations are relatively autonomous—they control how their resources are consumed, by

whom, at what cost, and in what time frame. They also have their own information systems, with
their own idiosyncratic representations, for managing their resources. (v) There is a high degree of
natural concurrency—many interrelated tasks are running at any given point of the business proc-
ess. (vi) There is a requirement to monitor and manage the overall business process. Although the
control and resources of the constituent sub-parts are decentralised, there is often a need to place
constraints on the entire process (e.g. total time or total budget). (vii) Business processes are
highly dynamic and unpredictable—it is difficult to give a complete a priori specification of all
the activities that need to be performed and how they should be ordered. Any detailed time plans
which are produced are often disrupted by unavoidable delays or unanticipated events (e.g. people
are ill or tasks take longer than expected).

Given these characteristics, it was decided that the most natural way to view the business
process is as a collection of autonomous, problem solving agents which interact when they have
interdependencies. In this context, an agent can be viewed as an encapsulated problem solving
entity which exhibits the following properties (18):

• Autonomy: agents perform the majority of their problem solving tasks without the direct
intervention of humans or other agents, and they have control over their own actions and their
own internal state.

• Social ability: agents interact, when they deem appropriate, with other artificial agents and
humans in order to complete their problem solving and to help others with their activities. This
requires that agents have, as a minimum, a means by which they can communicate their
requirements to others and an internal mechanism for deciding what and when social interac-
tions are appropriate (both in terms of generating requests and judging incoming requests).

• Responsiveness: agents perceive their environment and respond in a timely fashion to
changes which occur in it.

• Proactiveness: agents do not simply act in response to their environment, they exhibit oppor-
tunistic, goal-directed behaviour and take the initiative where appropriate.

The choice of agents as a solution technology was motivated by the following observations:
(i) the domain involves an inherent distribution of data, problem solving capabilities, and respon-
sibilities (conforms to the basic model of distributed, encapsulated, problem solving compo-
nents); (ii) the integrity of the existing organisational structure and the autonomy of its sub-parts
needs to be maintained (appeals to the autonomous nature of the agents); (iii) interactions are
fairly sophisticated, including negotiation, information sharing, and coordination (requires the
complex social skills with which agents are endowed); and (iv) the problem solution cannot be
entirely prescribed from start to finish (the problem solvers need to be responsive to changes in
the environment and to unpredictability in the business process and proactively take opportunities
when they arise). When taken together, this set of requirements leaves agents as the strongest
solution candidate—(distributed) object systems have the encapsulation but not the sophisticated
reasoning required for social interaction or proactiveness, and distributed processing systems deal
with the distributed aspect of the domain but not with the autonomous nature of the components.

The remainder of this paper describes the work undertaken to conceptualise business process
management as a collection of intelligent agents. Section two describes the key concepts of agents
which offer services to one another. Section three details the application of ADEPT agents in BT’s
customer quote business process. Section four discusses issues related to the visualisation of
agents and of business processes. Finally, section five describes the ongoing work and the open
issues which still need to be addressed.

2. THE BUSINESS PROCESS AS NEGOTIATING AGENTS

Each agent is able to perform one or more services (figure 1). A service corresponds to some unit
of problem solving activity (section 2.2). The simplest service (called a task) represents an atomic
unit of problem solving endeavour in the ADEPT system. These atomic units can be combined to
form complex services by adding ordering constraints (e.g. two tasks can run in parallel, must run
in parallel, or must run in sequence) and conditional control. The nesting of services can be arbi-
trarily complex and at the topmost level the entire business process can be viewed as a service.

FIGURE 1. An ADEPT Environment

Services are associated with one or more agents which are responsible for managing and exe-
cuting them. Each service is managed by one agent, although it may involve execution of sub-
services by a number of other agents. Since agents are autonomous there are no control dependen-
cies between them; therefore, if an agent requires a service which is managed by another agent it
cannot simply instruct it to start the service. (This is one of the major features which distinguishes
multi-agent systems from more traditional forms of distributed processing (16)). Rather, the
agents must come to a mutually acceptable agreement about the terms and conditions under which
the desired service will be performed (such contracts are called service level agreements
(SLAs)—see section 2.3). The mechanism for making SLAs is negotiation—a joint decision mak-
ing process in which the parties verbalise their (possibly contradictory) demands and then move
towards agreement by a process of concession or search for new alternatives (11).

To negotiate with one another, agents need a protocol which specifies the role of the current
message interchange—e.g. whether the agent is making a proposal or responding with a counter-
proposal, or whether it is accepting or rejecting a proposal. Additionally, agents need a means of
describing and referring to the domain terms involved in the negotiation—for example, both
agents need to be sure they are describing the same service even though they may both have a dif-
ferent (local) name for it and represent it in a different manner. This heterogeneity is inherent in
most organisations because each department typically models its own information and resources
in its own way. Thus when agents interact, a number of semantic mappings and transformations
may need to be performed to create a mutually comprehensible information sharing language
(see section 2.4).

Intelligent

Information
Sharing

DesignMarketing

Legal Sales

Team

Department

Negotiation
Agent

Team

Team

Services

Protocol
Service
Level
Agreements

2.1 The ADEPT Agent Architecture

All ADEPT agents have the same basic architecture (figure 2). This involves an agent head which
is responsible for managing the agent’s activities and interacting with peers and an agency which
represents the agent’s domain problem solving resources. The head has a number of functional
components responsible for each of it’s main activities—communication, service execution, situa-
tion assessment, and interaction management (see description below for more details). This inter-
nal architecture is broadly based on the GRATE (6, 8) and ARCHON (7) agent models. The
domain resources can either be atomic tasks or other agents. The latter case allows a nested (hier-
archical) agent system to be constructed in which higher-level agents realise their functionality
through lower level agents (the lower level agents have the same structure as the higher level ones
and can, therefore, have sub-agents as well as tasks in their agency). For example, the higher level
agent may represent a legal department whose work is carried out by a number of lawyers (the
lower level agents!). This structure enables flat, hierarchical, and hybrid organisations to be mod-
elled in a single framework. This modelling ability is important because commercial environ-
ments are founded on organisational models where an enterprise is logically divided into a
collection of services. The agent-agency concept draws upon this principle to group services and
tasks where it makes pragmatic sense. The differences between an agent in an agency and a peer
agent relate to the levels of autonomy and helpfulness. In both cases the agents negotiate to reach
agreements—however in the former case: (i) the agent cannot reject the proposal outright
(although it can counter-propose until an acceptable agreement is reached); and (ii) the agent must
negotiate in a cooperative (rather than a competitive) manner (since there is some degree of com-
monality of purpose). In summary, there is a tight coupling between an agent and it’s agency and
a loose coupling between an agent and it’s peers (17).

Communication Module: Routes messages: (i) between an agent and its agency (i.e. between
the SEM and the tasks within the agency and between the SEM and agents within the agency dur-
ing service execution, and between the IMM and agents within the agency during negotiation);
and (ii) between peer agents (i.e. between the SEM and peer agents during service execution and
between the IMM and peer agents during negotiation). Communication between the SEM and
tasks within the agency relates to task management activities (e.g. activate, suspend, or resume a
task), whereas communication between either agents within that agency or peer agents relates to
service execution management (e.g. an instruction to start service, service finished, service
results). The IMM’s communication both with agency agents and peer agents relates to service
negotiation.

Interaction Management Module: Provisions services through negotiation. The SAM
invokes the IMM to begin negotiation for services the agent needs. The IMM’s decision making
capabilities are supported by three types of information: scheduler constraints emanating from the
SAM; knowledge an agent has about itself and it’s own domain (represented in the SM); and
knowledge the agent holds about peer agents (represented in the AM). Based on these sources of
knowledge and the negotiation model (section 2.3), the IMM generates initial proposals, evaluates
incoming proposals, produces counterproposals, and, finally, accepts or rejects proposals. If a pro-
posal is accepted then the IMM creates a new SLA to represent the agreement.

Situation Assessment Module: Responsible for assessing and monitoring the agent’s ability
to meet the SLAs it has already agreed and the potential SLAs which it may agree in the future.
This involves two main roles: scheduling and exception handling. The former involves maintain-
ing a record of the availability of the agent’s resources which can then be used to determine
whether SLAs can be met or whether new SLAs can be accepted. The exception handler receives
exception reports from the SEM during service execution (e.g. “service may fail”, “service has

failed”, or “no SLA in place”) and decides upon the appropriate response. For example, if a serv-
ice is delayed then the SAM may decide to locally reschedule it, to renegotiate it’s SLA, or to ter-
minate it altogether.

FIGURE 2. The ADEPT Agent Architecture

Service Execution Module: Responsible for managing services throughout their execution.
Involves three main roles: service execution management (start executing services as specified by
the agent’s SLAs), information management (routing information between tasks, services and
other agents during execution), and exception handling (monitor the execution of tasks and serv-
ices for unexpected events and then react appropriately).

Acquaintance Models: Maintain and provide access to: the SLAs agreed with other agents
and a list of peers which can provide services of interest.

Self Model: Primary storage site for: SLAs to which the agent is committed; descriptions of
the services the agent can provide; run time application/service specific information (e.g. the serv-
ices which are currently active and the current number of invocations of each active service); and
generic domain information (e.g. the upper limit the agent will pay for a service and the maximum
permissible number of concurrent invocations of each service).

Communication

Service
Execution
Module

Situation
Assessment

Module

Interaction
Management

Module

Se
lf

 a
nd

 a
cq

ua
in

ta
nc

e
m

od
el

s
(A

M
 a

nd
 S

M
)

(SAM)

(SEM)

(IMM)

(CM)

Module

AGENT HEAD

AGENCY

Peer AgentPeer Agent

Communication
and negotiation

TASKS
Agents

Peer AgentPeer Agent

2.2 The Service Lifecycle

There are three distinct phases to the service lifecycle (figure 3). Firstly, the agent programmer
has to describe the service and how it is realised. This is carried out using ADEPT’s service
description language (SDL). As an illustration, figure 4 shows a service description from the cus-
tomer quote business process (section 3). A service is described by a name, its inputs, its outputs,
and its body. The name uniquely identifies the service provided by that agent. The input field
specifies what information is needed by the service, who is to provide it, and whether it is manda-
tory (must be provided before the service can start) or optional (if available it will be used, but if it
is unavailable the service can still proceed). In the example shown, the service must have both of
its inputs available: cr_profile of type Bt_CrProfile1 from the client agent and
cust_details of type Bt_CustomerDetails from the server agent. The output field
specifies the information produced by the service (in this case it is network_design which is
of type Bt_NetworkDesign and detailed_reqs which is of type Bt_CustomerReqs).
The body specifies the way the service is realised (i.e. which services and tasks need to be per-
formed, their partial order, and the information shared between them) and the conditions which
prevail if it is successful (the construct specifying this is the completion expression)1. In the exam-
ple shown, the mainblock of the service consists of three sub-services
(task_analyse_reqs, subblock and task_design_network) which need to be exe-
cuted in sequence. Associated with mainblock is a completion expression, (and
task_analyse_reqs subblock task_design_network), which specifies that each of
the sub-services must successfully complete if the whole service is to succeed.

FIGURE 3. The Service Lifecycle

1. The various types of information are defined in the agent’s information model. Creating an agent involves deter-
mining the information model to be used as well as specifying the service details. However this aspect of agent crea-
tion is not elaborated upon here.
1. A procedural language is not used because such languages typically require a rigorously specified flow of control.
Since the body is executed by an autonomous agent in an unpredictable environment, it is felt that such control deci-
sions are best left to the agent to determine at runtime (rather than being dictated by the designer at compile time).
Thus, in the ADEPT SDL, the body specifies a partial flow of control with some restrictions on the order and the
degree of concurrency of the execution and the completion expression supplies the agent with the completion logic of
the block (in terms of success, fail, and unknown). It is then up to the agent to complete the service by the most
appropriate means given its current circumstances.

ADEPT - Manual ADEPT - Automatic

“negotiate” “deliver”

CREATION PROVISIONING MANAGEMENT

Service Definition Service Instance

SLA Template SLA Instance

Ensure constituent SLAs in place
Check inputs available
Services scheduled
Services executed
Services monitored

Renegotiate

(service
name Bt_DesignNetwork
inputs (Bt_CrProfile cr_profile client mandatory

Bt_CustomerDetails cust_details server mandatory)

outputs (Bt_NetworkDesign network_design
Bt_CustomerReqs detailed_reqs)

body (
sequence: mainblock {

task_analyse_reqs(cr_profile ?detailed_reqs ?SurveyReqd),

sequence: subblock { cond:cond1(SurveyReqd = True),
task_survey_CPE (cr_profile cust_details

?cpe_spec)
} -> (or (not cond1)

(and cond1 task_survey_CPE)),

task_design_network (cr_profile cust_details detailed_reqs

!cpe_spec ?network_design)

} -> (and task_analyse_reqs
subblock
task_design_network)))

FIGURE 4. Sample SDL Description

The first sub-service to be executed is task_analyse_reqs which takes cr_profile
as its input and produces as its output detailed_reqs and SurveyReqd. When this sub-
service finishes, the completion expression within which it was invoked is evaluated. If
task_analyse_reqs fails (i.e. the requirements cannot be analysed) then the whole network
design service is terminated since the completion expression (a conjunction) will necessarily fail.
In this case, the remaining sub-services are not executed. If task_analyse_reqs succeeds,
then the overall completion expression is still evaluated. However, in this case it’s value is
unknown since although task_analyse_reqs is true the values of the other two services in
the conjunction are unknown at this point (the conjunction of the truth values true and unknown is
unknown).

Assuming the requirements are successfully analysed, the next sub-service is executed.
Subblock is a composite construct involving two sequential actions. The first component is a
conditional statement which must evaluate to true before the second component
(task_survey_CPE) is performed. The conditional tests whether a survey is required. If a sur-
vey is not needed (i.e. the conditional is false) then the completion expression in the subblock
is satisfied since (not cond1) is true (the completion expression is a disjunction). Control then
switches to task_design_network. Alternatively, if a survey is needed then cond1 is true
and hence the completion expression’s first disjunct is false. Since the second disjunct remains
unknown, subblock does not fail at this point. Subblock’s second sub-service,
task_survey_CPE, is then executed. This service takes two inputs—cr_profile and
cust_details—and produces cpe_spec. If task_survey_CPE is successful, the second
disjunct in subblock’s completion expression is satisfied which means that subblock suc-
ceeds.

If subblock succeeds, task_design_network is executed. This takes as its input
cr_profile, cust_details, detailed_reqs and cpe_spec (optional input) and pro-

duces as it’s output network_design. If this sub-service completes then mainblock com-
pletes since the conjunction of the three sub-services is now true.

Once a service has been created and placed within an agent it becomes accessible to the other
agents in the system. To activate a service, the client and the server agents negotiate until they
come to a mutually acceptable SLA—no service can be executed without a concomitant SLA
being in place. An important facet of this negotiation is the manner in which the service is provi-
sioned. ADEPT supports three different provisioning modes depending on the client agent’s
intended pattern of usage and the server agent’s scheduling capabilities: (i) One-Off: the service is
provisioned each and every time it is needed and the agreement covers precisely one invocation;
(ii) Regular: the service is required a number of times, but it is known in advance when it is
needed; and (iii) On-Demand: the service can be invoked by the client on an as needed basis
within a given time frame (subject to some maximum volume measurement specified in the SLA).
If the provisioning phase is successful, a specific instance of the service is created for execution
within the context of an associated SLA instance. At some point the agent needs to execute the
service, this requires it to ensure: that appropriate SLAs are in place for constituent sub-services,
that the required input information is available, that the service is scheduled so that any con-
straints specified in the SLA are met, and, ultimately, that the appropriate services and tasks are
executed (either within the local agency or by the chosen peer agent). Since the agent is situated in
a dynamic and unpredictable environment, it must keep track of its context—thus new services
may be agreed which require the agent to reschedule its resources or currently scheduled services
may fail and require the agent to replan its execution strategy. In the extreme case, the agent may
even need to return to the provisioning phase to renegotiate a SLA which cannot be satisfied in the
current situation.

2.3 The Negotiation Model

There are three components of the ADEPT negotiation model—the protocol, the service level
agreements, and the reasoning model. The protocol itself is relatively standard and is based on
speech-act performatives (2, 15). It covers the process of finding out the services an agent can per-
form (agent sends out a CAN-DO primitive and respondents return a I-CAN primitive), the provi-
sioning phase of coming to an agreement (PROPOSE, COUNTER-PROPOSE, ACCEPT, and
REJECT), and the management phase of actually invoking the agreement (ACTIVATE-SERV-
ICE, SUSPEND-SERVICE, RESUME-SERVICE, SERVICE-FAILED, SERVICE-COM-
PLETED)—see (1) for more details of this work. The novel aspects of negotiation in the ADEPT
system relate to the types of agreements which agents can make and the models they use to guide
their negotiation behaviour. The requirements of the business process domain mean that agree-
ments need to be more encompassing and the reasoning more elaborate than those found in most
extant multi-agent systems.

The nature and scope of the SLAs are derived almost exactly from the types of legal contract
which are often used to regulate current business transactions (figure 5). SERVICE_NAME is the
service to which the agreement refers and SLA_ID is the SLA’s unique identifier (covering the
case where there are multiple agreements for the same service). SERVER_AGENT and
CLIENT_AGENT represent the agents who are party to the agreement. DELIVERY_TYPE identi-
fies the way in which the service is to be provisioned (section 2.2). The SLA’s scheduling infor-
mation is used by the SAM and the SEM for service execution and management—DURATION
represents the maximum time the server can take to finish the service, and START_TIME and
END_TIME represent the time during which the agreement is valid. In this case, the agreement
specifies that agent CSD (i.e. customer service department) can invoke agent DD (i.e. design

department) to cost and design a customer network whenever it is required between 09:00 and
18:00 and each service execution should take no more than 320 minutes. The agreement also con-
tains meta-service information such as the volume of invocations permissible between the start
and end times, the price paid per invocation, and the penalty the server incurs for every violation.
CLIENT_INFO specifies the information the client must provide to the server at service invoca-
tion (in this case CSD must provide the customer profile) and REPORTING_POLICY specifies
the information the server returns upon completion.

FIGURE 5. Exemplar Service Level Agreement

The reasoning model also represents a novel contribution of this work. Existing work on
negotiation can be divided into two distinct camps. The theoretical work (e.g. (12, 13, 14)) pro-
vides important insights into how agents should negotiate to produce optimal solutions. However,
a number of unrealistic assumptions are common in these negotiation models; typical assump-
tions include the availability of complete action descriptions, a utility function that can order all
alternatives in all contexts, and that agents exhibit perfect rationality when selecting actions. In
contrast, the practical work typically adopts a very superficial approach to negotiation. In the
much vaunted contract net protocol (16), for instance, a manager sends out a request to a number
of potential contractors to provide a given service to a given degree of quality. The potential con-
tractors return a bid if they are capable of fulfilling all the requirements. The manager then selects
the best bid. This model fails to capture many intuitive and important aspects of the negotiation
process. For example, bidders cannot counter-propose better options, they cannot modify any of
the service agreement parameters, and the emphasis in devising a complete specification is placed
solely with the task manager.

The approach within ADEPT is to develop a deep and explicit model of the process of nego-
tiation (this terminology is analogous to its use in the context of reasoning models for second gen-
eration expert systems (3, 4, 9)). Such a model is needed to capture the richness of the interactions

Slot Name Instantiated Values

SERVICE_NAME: cost_&_design_customer_network

SLA_ID: a1001

SERVER_AGENT: DD

CLIENT_AGENT: CSD

SLA_DELIVERY_TYPE: on-demand

DURATION: (minutes) 320

START_TIME: 9:00

END_TIME: 18:00

VOLUME: 35

PRICE: (per costing): 35

PENALTY: 30

CLIENT_INFO: cr_profile

REPORTING_POLICY: customer_quote

which take place when setting up agreements in this domain. The model covers the whole process
of generating initial offers, evaluating offers, and counter proposing if offers are unacceptable.

The model has two component knowledge bases: a declarative one and a procedural one. The
former, represented as a causal network, explicitly models what is being negotiated for and why
the negotiation is taking place (i.e. it sets the negotiation context). For example, negotiation over
the price of a service is a meta-service conflict that can be caused by an agent believing it is being
over charged. Similarly, an agent may need to negotiate over a service’s start time if the client’s
proposal conflicts with it’s existing commitments. The procedural knowledge base, represented as
a set of strategies and mechanisms for selecting between them, specifies which actions should be
taken given the declarative knowledge. For example, given that the agent needs to negotiate over
price, the knowledge base may indicate that Boulware1 is a good strategy to adopt if the agent has
a long time to reach an agreement or if there are many potential suppliers of the service. In such
cases, the agent generates a price offer and continues to counter-propose that initial offer through-
out the negotiation. Alternatively, if the agent wants to reach an agreement for a scarce service or
if it is negotiating with an agent in it’s agency, then it may adopt the more cooperative tit-for-tat
strategy—making concessions when the agent concedes and standing firm when the other agent is
uncompromising.

2.4 Information Sharing

Agent negotiation requires a reliable means of communication. Such communication can be
viewed on two levels: (i) actually transporting the messages; and (ii) conveying the desired mean-
ing of the message. The former is handled transparently by the agent’s underlying infrastructure.
The latter is more problematic and requires conceptual design. Because of the characteristics of
the business process domain (section 1), it is impractical to insist that all agents conform to a com-
mon model of information. For example, a surveyor may find it necessary to represent location
information in terms of grid references on a particular map, but within the customer service
department a location may be described in terms of an address. If autonomous agents representing
these two departments are to communicate such information, they must be aware of the differ-
ences in their models of information.

The information contained within a message must be understood by both sender and recipi-
ent. For this reason, agents within an ADEPT environment must transform information repre-
sented in their local form into a common communication language. This language is still under
development, but will consist of a number of semantically grounded speech acts (2, 15) which
will specify the intention of the message, and a KIF-like (5) syntax (i.e. an extended first-order
predicate calculus) which will express the content of the message. Furthermore, the recipient must
be able to understand the meaning of the symbols contained in the message. Suppose that the
agent sending the message uses model A and the recipient uses model B, then the information
contained in the message must be translated between these models for the agents to understand
each other. For example, an address must be translated into an appropriate grid reference for an
agent representing the customer service department to communicate location information to an
agent representing a surveyor.

1. Boulwarism is the strategy in which the negotiator makes a reasonable initial offer and then sticks firm throughout
the negotiation (13).

3. BT’s CUSTOMER QUOTE BUSINESS PROCESS

This scenario is based on BT’s business process of providing a quotation for designing a network
to provide particular services to a customer (figure 6)1. The process receives a customer service
request as its input and generates as its output a quote specifying how much it would cost to build
a network to realise that service. It involves up to six parties: the sales department, the customer
service division, the legal department, the design division, the surveyor department, and the pro-
vider of an out-sourced service for vetting customers.

FIGURE 6. The Provide Customer Quote Service

The process is initiated by a customer contacting the customer service division. The cus-
tomer’s details are captured and whilst the customer is being vetted (in terms of its credit worthi-
ness, false ID, etc.) their requirements are ellicted. If the customer fails the vetting procedure, then
the quote process terminates. Assuming the customer is satisfactory, their requirements are
recorded and mapped against the service portfolio. If the requirements can be met by a standard
off-the-shelf portfolio item then an immediate quote can be offered based on previous examples.

1. The scenario has been simplified for the purposes of explanation and demonstration. The real business process for
this service contains 38 tasks and 9 choice points. Despite this simplification, the key aspects of the process are still
present. Each activity requires resourcing and has a start/end point whereby progress can be measured. Choice points
indicate which sequences of activities require provisioning. There are a number of concurrent activities which require
coordination.

Capture
Customer
Details

Capture
Customer
Requirements

Identify
Service Reqt.
Profile

Vet
Customer

ID. Service

Analyse
Requirements

Legal
Review

Design
Network

Survey
CPE

Provide
Quote

END

Customer

TERMINATE

Portfolio
Item

Customer
Okay

Survey
Reqd

Yes

No

Yes

No

Legal?
Require more info

Yes

No
PROCESS

TERMINATE
PROCESS

Yes

No

GOTO

A

A

Request
Further

Information

In the case of bespoke services, however, the process is more complex and involves a bid man-
ager. The bid manager further analyses the customer’s requirements and whilst this is occurring
the legal department checks the legality of the proposed service (e.g. it is illegal to send unauthor-
ised encrypted messages across France). If the desired service is illegal, then the entire quote
process terminates and the customer is informed. If there is any uncertainty about the service’s
legality, then the business process is suspended while further information is obtained from the
customer. If the requested service is definitely legal then the design phase can start. To prepare a
network design it is usually necessary to have a detailed plan of the existing equipment at the cus-
tomer’s premises (CPE)—the exception to this is when the desired service is sufficiently simple
that a survey is not warranted. Sometimes such plans might not exist and sometimes they may be
out of date. In either case, the bid manager determines whether the customer site(s) should be sur-
veyed. On completion of the network design and costing, the customer is informed of the service
quote and the business process terminates.

From the business process description, the following agent system was designed (figure 7).
The agents (denoted by the circles) were chosen to represent distinct departments or enterprises
involved in the customer quote business process. The VC (i.e. vet customer) agents represent the
concerns of external enterprises as this activity is outsourced. Agent SD (i.e. surveyor department)
is within DD’s agency because the design division has overall management responsibility for the
surveyor department (i.e. all requests for site surveys must be channelled through the design
department).

FIGURE 7. Agent System for the Provide Customer Quote Business Process

The process is triggered when the sales agent sends a request to the CSD agent to provide a
customer quote1. The CSD agent identifies the SLA associated with the request—in this case it

capture_customer_details

capture_customer_req id_service_req_profile

Provide_Customer_Quote
Sales

Cost_&_Design_Customer_Network

Legal_Advice

provide_legal_advice

analyse_reqs

design_network
Survey_Customer_Site

survey_customer_siteprovide_quote

Task
Agent

On-Demand Service

Agency
One-Off Service
Regular Service

Vet_Customer
vet_customer

provide_quote

identify_service
Customer
Service
Division

Vet customer
organisations

Design
Division

Surveyor Department

Legal Department

SD

LDDD

VCi

CSD

relates to the Provide_Customer_Quote service. The SDL body of
Provide_Customer_Quote is parsed to create a tree of possible routes that the SEM can
take. A depth first path is selected and the tasks and services in that path are scheduled and
resourced (by the SAM). The SEM begins executing the constituent sub-services and tasks. One
of the first sub-services it encounters is to vet the customer (this occurs in parallel with the
capture_customer_req task and after capture_customer_details). When the
SEM comes to execute this service it realises (by checking it’s SM) there is no associated SLA
and so it reports an exception to the SAM1. The SAM determines that the service cannot be real-
ised locally (by referring to its SM) and so it must be bought in from an external agent. It also
decides that the service should be provisioned in an on-demand manner because it is an activity
which is needed on each invocation of the business process. As such, it is preferable to negotiate
for a longer term SLA covering multiple invocations rather than negotiating for one each time the
business process is invoked. In addition to identifying the service name and the desired provision-
ing mode, the SAM indicates any scheduler information which influences the service’s provision-
ing (e.g. the service’s earliest start and latest end times).

Vet customer service provisioning begins with the CSD’s IMM sending CAN-DOs to all the
agents it can identify (using its AM) as being potentially able to provide this service (in this sce-
nario there are three such agents—VC1, VC2 and VC3). Negotiation proper begins when the CSD
agent concurrently sends out initial proposals (in the form of instantiated SLAs) to all the vet cus-
tomer agents which responded with I-CAN. This initial proposal may be acceptable to one of the
VC agents in which case an agreement is made and the negotiation is terminated. However, in
most cases the VC agents find some part of the proposal unsatisfactory and so return a revised
counter-proposal to CSD. The CSD and VC agents then engage in several concurrent rounds of
exchanging SLA messages until either the CSD comes to an agreement with one of the VC agents
or all the VC agents reject all the offers and break off negotiation. If the CSD agent receives more
than one acceptable offer, it selects the one closest to it’s specified optimum1. The chosen agent is
informed of its success and an SLA for the Vet_Customer service comes into force. The
CSD’s IMM then informs its SAM which, in turn, reinvokes the SEM’s execution of
Provide_Customer_Quote with the freshly agreed Vet_Customer SLA stored in its SM.
Since the agreement is for on-demand provisioning—the CSD can ask the chosen VC to vet cus-
tomers as and when new customers are presented to it from the sales department. The CSD’s SEM
sends a SERVICE-ACTIVATE request to the SEM of the selected VC within the time frame
specified in the SLA. When the customer has been vetted, the client VC agent informs the CSD’s
SEM of the result (as specified by the SLA’s reporting policy). If the customer fails the vetting
procedure then Provide_Customer_Quote fails and the sales department is informed. If the
customer is successfully vetted, the CSD’s SEM starts executing the next sub-service.

The next sub-service checks whether the customer’s request is for a portfolio item—achieved
by executing the id_service_req_profile task. If it is a portfolio item then the service is
identified (identify_service) and a quote is looked up (provide_quote) and returned

1. The scenario assumes an SLA between the CSD and the sales department has already been negotiated.
1. In future versions of the system, agents will pre-parse the SDL body to see which SLAs need to be set up before it
comes to their actual execution. This will allow the agents to proactively negotiate SLAs. In this case, agents need to
strike a balance between expending resources provisioning services which may not be used and only provisioning
services when they are actually needed (which may delay their execution).
1. If the negotiation fails to find any agents willing to vet customers, the CSD’s SAM is informed and that particular
invocation of Provide_Customer_Quote fails. In this case, service failure is reported back to the sales depart-
ment. For the future, we are investigating techniques for dynamically revising the business process in such situations.

to the sales department (as specified in the SLA between the CSD and the sales department). Exe-
cution of Provide_Customer_Quote then terminates.

If the desired service is bespoke—id_service_req_profile fails—then the next sub-
service to be executed is Cost_&_Design_Customer_Network. Again the SEM informs
the SAM that there is no associated SLA in place. The SAM decides the service must be bought in
(after examining its SM) and that it should be provisioned in an on-demand manner because it is
required every time a customer requests a bespoke service. (A one-off SLA may be justified if a
significant majority of the customer service requests were for portfolio items.) It then asks the
IMM to obtain an appropriate agreement. The IMM notes from its AM that the only agent offer-
ing this service is DD and so it starts negotiating with it. Assuming the two agents reach an agree-
ment, the CSD’s IMM informs it’s SAM which informs it’s SEM that an appropriate SLA is now
in place (see figure 5). When the CSD’s SEM indicates that the
Cost_&_Design_Customer_Network service should be invoked, the DD agent starts exe-
cuting it under the newly agreed SLA. This service involves executing the
Bt_DesignNetwork sub-service (figure 4) to produce the network design, ensuring the neces-
sary legal checks are performed, and executing the provide_quote task to cost the design.
When the customer’s requirements have been analysed in more detail (i.e. detailed_reqs are
available from Bt_DesignNetwork), the legality of the customer’s request is checked1. The
DD agent realises (by checking its AM) this service can only be provided by the LD (i.e. legal
department) agent and so it starts to negotiate with it. The service is provisioned in a one-off man-
ner because it too expensive to have waiting idle when there are no designs to check. When the
agreed legal service is invoked, the requirements are checked and the appropriate course of action
is taken depending on the outcome of this review.

As part of Bt_DesignNetwork, a survey of the customer’s premises may be needed. If
this is the case, the DD’s SEM informs it’s SAM that no SLA is in place for
task_survey_CPE. The SAM notes (by examining its AM) that an agent (SD) within it’s
agency can provide the service. It decides the service should be provisioned in a one-off manner
(because the service is only occasionally required) and so the DD’s IMM negotiates with SD.
Assuming they reach an agreement, the DD agent invokes the agreement and requests SD to
obtain a survey for the customer’s premises. When the survey is complete or after the service is
declared legal if no survey is required, the network design is carried out and then costed. The serv-
ice’s cost is returned to the CSD agent as specified in the
Cost_&_Design_Customer_Network SLA (figure 5). The
Provide_Customer_Quote service then completes and the quote is returned to the sales
department as specified in the SLA with the sales department.

For subsequent service quote requests, several of the basic agreements for managing the
business process are already in situ. The CSD agent has an on-demand SLA for vetting customers
and it may also have an agreement for costing and designing the customer’s network. This means
there is less of a negotiation overhead on subsequent process invocations. The services which may
generate further negotiations in subsequent quote processes are those which are only occasionally
invoked—legal services and survey customer site.

1. Checking is managed in Cost_&_Design_Customer_Network by having a completion expression which
either stops or suspends the design activity if the customer’s request is not legal or allows it to continue if the request
is legal.

4. AGENT AND BUSINESS PROCESS VISUALISATION

For software developers, debugging a system containing a significant number of agents can be dif-
ficult. Actions are happening in parallel and are dependent upon current state values. Although the
negotiation process and basic capabilities of agents are defined at design time, the way in which
agents interact at run time cannot be predicted in advance, since the various autonomous agents
can combine in a huge number of ways. For example, many agents will connect with external
services (such as databases, or request information from human users), whose availability, and
response times cannot be calculated at the outset. To cope with this complexity and unpredictabil-
ity developers require tools which assist them in understanding the workings of the individual
agents and of their interactions with one another.

Alternative conceptualisations are also required for the end users of the system who need to
know (at an appropriate level) about many aspects of the business process:

• At what stage is the negotiation process?

• Why were certain services rejected?

• What is likely to happen next?

• What is happening at the present moment?

All of this information needs to be organised and placed into context within the business process.

4.1 The Agent Visualiser Tool

In order to solve these problems a visualiser has been constructed. Before execution time the vis-
ualiser is informed by the user (or programmer) of the required visualisations (figure 8). It then
informs appropriate agents that it needs to be appraised of certain actions at certain times. This
approach has the advantage of reducing the visual overload on the user by limiting the visualisa-
tion to what the user has requested to visualise and it reduces unnecessary message traffic. Once
execution begins, the user (in this case almost certainly a programmer) can examine different vis-
ualisations. For example, negotiations between agents can be monitored, the sequence of task
activity can be observed, and current variable values within the different modules (SAM, SEM,
IMM, CM, SM and AM) can be monitored.

FIGURE 8. Agent Visualiser Communication

Agents

Vliser-Info

Vliser-
Instruction

User

User
Interactions

E
T
W
O
R
K

N

Visualiser

The visualiser offers three different views - the negotiation view, the service execution view
and the resource management view (figure 9). The negotiation view shows the negotiation
between two or more agents that is currently taking place. The user defines for the visualiser the
types of negotiation and relevant agents which are of interest. A dialogue box is used to define the
visualisation of interest interactively. All of the negotiation primitives (see section 2.3) can be vis-
ualised. Concurrent negotiation can also be visualised using the tool. The service execution view
identifies communication between the agent and its tasks and the resource management view
shows the tasks which are currently running. All of these visualisations take place in real time.
However the facility to copy activity to log files is also provided. This means visualisations can be
played back at different speeds using single shots if necessary.

FIGURE 9. Visualiser Screen Shots

The visualiser is currently being extended to address the problem of providing information
for business users. When the various levels of visualisation are ready we plan to carry out experi-
ments to quantify the added value of the visualisation process.

5. CONCLUSIONS & FUTURE WORK

This paper has described the key components of the ADEPT system and how they were applied to
BT’s business process of providing a customer quote for network services. This work can be
viewed on three different levels, each of which represents increasing support for the realisation of
business process management software systems:

• ADEPT as a design technology. ADEPT proposes a method of approach for structuring
the design and development of business process management systems. It identifies the key
concepts in this view as autonomous agents, negotiation, service provision, service level
agreements, resource management, and information sharing. This view can be readily
applied to other business process applications without being tied to the details of how they
were realised in ADEPT.

• ADEPT as an implementation technology. As well as identifying a methodology, the
ADEPT system provides algorithms, interfaces, language definitions, and structures for real-
ising the key concepts. These definitions can be re-implemented in other programming envi-
ronments to develop ADEPT-like agent systems for business process management.

• ADEPT as a solution technology. The ADEPT programming environment can be re-used
in other business management applications. In this case, the ADEPT design methodology is
used to structure the application and the ADEPT software is used to implement it.

We have identified several key open issues requiring further investigation. The current sce-
nario considers a realistic but relatively small part of an actual business process. Scalability, there-
fore remains an important open issue. ADEPT type agents do not themselves carry out the totality
of these business processes; much of the work is ultimately carried out by humans or other soft-
ware (often legacy software) that are externally interfaced to ADEPT agents (represented in the
ADEPT framework as tasks). However this does not mean that the internal reasoning of the agents
is entirely domain free. Agents do need meta-knowledge about the domain related tasks. In many
cases, such meta-knowledge can be of a considerable size and complexity. This does not pose an
insurmountable problem as most organisations these days do have such information explicitly
recorded. Indeed it is the main result of process re-engineering that all efficient organisations
carry out from time to time. The main issue is to represent this information in a way that can be
used directly by the agents in their own reasoning mechanisms. This has interesting implications
for the organisations that we will not examine here in any detail.

It is worth noting that the visualisation of agent activity should not be seen merely as a
debugging tool for monitoring the activity within the business process agent community. The vis-
ualiser is also useful for tracking how the individual tasks are interacting across a set of agents.
Thus it can provide useful information about the workings of the business process. This implies
that the process meta-knowledge is an important reference repository for the visualiser. It there-
fore follows that the visualiser has a part to play in monitoring the whole process and not just the
activity of the agents.

Scalability also leads on to the issue of openness of the agent community. Business processes
of related organisations need to interwork. This points to the need for open standards for agent
system design and guidelines for knowledge representation of process meta-knowledge. The solu-
tion provided by the ADEPT project includes both the methodology and implementation that can
form the basis for agreeing upon a framework for openness. It is worth noting that the need for
openness of agent system design is a key motivator for the recent attempt to establish a standards
body called FIPA (http://drogo.cselt.stet.it/fipa/) to deal with intelligent
agents.

ACKNOWLEDGEMENTS

ADEPT is a collaborative project under the DTI/EPSRC Intelligent Systems Integration Pro-
gramme (ISIP). The project partners are BT Laboratories, ICI Engineering, Loughborough Uni-
versity of Technology, and Queen Mary and Westfield College. This paper is an updated version
of the paper presented at the First International Conference on the Practical Applications of Intel-
ligent Agents and Multi-Agent Systems (PAAM96). The authors would especially like to
acknowledge the contribution of Mark Johnson to the initial coding and design efforts.

REFERENCES

1. ALTY, J. L. , GRIFFITHS, D., JENNINGS, N. R., MAMDANI, E. H., STRUTHERS, A., and
WIEGAND, M. E., “ADEPT - Advanced Decision Environment for Process Tasks: Overview &
Architecture” Proc. BCS Expert Systems 94 Conference (Applications Track), Cambridge, UK,
1994, 359-371.

2. AUSTIN, J. L., How to do Things with Words, 1962, Harvard University Press.

3. CHANDRASEKARAN, B., Generic Tasks in Knowledge Based Reasoning: High Level Build-
ing Blocks for Expert System Design IEEE Expert 1983, 1 (3), 23-30.

4. CLANCY, W. J., Heuristic Classification Artificial Intelligence, 1985, 27 (3), 289-250.

5. GENESERETH, M. R., and FIKES, R. E., (eds.) Knowledge interchange format, version 3 ref-
erence manual, 1992, Computer Science Department, Stanford University, Technical Report
Logic-91-1. (http://www-ksl.stanford.edu/knowledge-sharing/papers/index.html).

6. JENNINGS, N. R., Controlling Cooperative Problem Solving in Industrial Multi-Agent Sys-
tems using Joint Intentions, Artificial Intelligence 1995, 75 (2) 195-240.

7. JENNINGS, N. R., CORERA, J., LARESGOITI, I., MAMDANI, E. H., PERRIOLAT, F.,
SKAREK, P., and VARGA, L. Z., Using ARCHON to develop real-word DAI applications for
electricity transportation management and particle accelerator control IEEE Expert, 1996 Dec.

8. JENNINGS, N. R., MAMDANI, E. H., LARESGOITI, I., PEREZ, J., and CORERA, J.,
GRATE: A General Framework for Cooperative Problem Solving IEE-BCS Journal of Intelligent
Systems Engineering, 1992, 1 (2) 102-114.

9. McDERMOTT, J., A Taxonomy of Problem Solving Methods in Automating Knowledge
Acquisition for Expert Systems (ed. S. Marcus) 1988, Kluwer 225-256.

10. MOWSHOWITZ, A., Social Dimensions of Office Automation, Advances in Computers,
1986, 25, 335-404.

11. MUELLER, H. J., Negotiation Principles, in Foundations of Distributed Artificial Intelligence
(eds. G. M. P. O’Hare and N. R. Jennings) Wiley Interscience, 1996, 211-229.

12. NASH, J. F., The Bargaining Problem, Econometrica, 1950, 28, 155-162.

13. RAIFFA, H., The Art and Science of Negotiation, 1982, Harvard University Press.

14. ROSENSCHEIN, J. S., and ZLOTKIN, G., Rules of Encounter - Designing Conventions for
Automated Negotiation Among Computers, 1994, MIT Press.

15. SEARLE, J. R., Speech Acts: An Essay in the Philosophy of Language, 1969, Cambridge
University Press.

16. SMITH, R. G., and DAVIS, R., Frameworks for cooperation in distributed problem solving
IEEE Trans on Systems, Man and Cybernetics, 1981, 11 (1) 61-70.

17. SRIDHARAN, N. S., 1986 Workshop on Distributed AI AI Magazine, 1987, Fall, 75-85.

18. WOOLDRIDGE M. J., and JENNINGS, N. R., Intelligent Agents: Theory and Practice The
Knowledge Engineering Review 1995, 10 (2) 115-152.

