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Abstract

To be successful in open, multi-agent environments, au-
tonomous agents must be capable of adapting their negotia-
tion strategies and tactics to their prevailing circumstances.
To this end, we present an empirical study showing the rela-
tive success of different strategies against different types of
opponent in different environments. In particular, we adopt
an evolutionary approach in which strategies and tactics
correspond to the genetic material in a genetic algorithm.
We conduct a series of experiments to determine the most
successful strategies and to see how and when these strate-
gies evolve depending on the context and negotiation stance
of the agent’s opponent.

1. Introduction

Negotiation is a central component of many multi-agent
systems. Agents negotiate to coordinate their activities and
to come to mutually acceptable agreements about the di-
vision of labour and resources. In many cases, the agents
involved are required to exhibit a range of different be-
haviours in a variety of different settings. Thus, an agent
negotiating with a competitor needs to behave differently
to one negotiating with a member of its own organisation,
and an agent with limited time to reach an agreement needs
to behave differently to one which has no time pressure.
Moreover, to be usable in practical situations the agents
need to exhibit such flexible behaviour in settings in which:
individuals’ preferences are private information, individu-
als are bound in terms of the amount of communication
and computation they can perform, and the complete set
of agreements cannot be a priori enumerated. Given such
constraints, experience indicates that a heuristic approach
to modelling negotiation is often the most appropriate [9].

In line with this view, we have developed a model of
negotiation which relies on strategies and tactics to define
an agent’s behaviour [5, 13]. This model was devised for
a real-world business process management system [8] in
which the agents need to agree who should perform a partic-
ular service and under what terms and conditions. We term
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such negotiation service-oriented. Since our model has to
operate in a wide range of environments and has a large
number of parameters, it was decided that the best means of
determining its performance characteristics is through em-
pirical evaluation. To this end, we have already reported ini-
tial results about which types of tactic are suitable for which
types of environment [5]. Our aim in this paper, therefore,
is to extend this analysis by considering how the agents’
negotiation strategies evolve. The technique we adopt for
evolving strategies is Genetic Algorithms (GAs) [6].

The long term goal of this research is to study the dy-
namics of agent populations — how the relative presence of
strategies changes as populations co-evolve, whether pop-
ulations have stable equilibrium points, and how changes
in an agent, or group of agents, alter the equilibria. The
work described herein represents a step towards these aims
in two ways. Firstly, it performs a systematic evaluation of
a range of negotiation strategies. It indicates, for the first
time, the relative success of the various strategies and how
these strategies evolve over time to better fit their environ-
ment. Secondly, it extends the range and sophistication of
interactions studied in the field of artificial social systems
[2] (see section 5 for more details).

The remainder of the paper is structured in the following
manner. Section 2 summarises our service-oriented negoti-
ation model. Section 3 describes the encoding and opera-
tion of the GA and how populations were evolved. Section
4 presents our experimental results and discusses their im-
plications. Section 5 places our work in context. Section 6
outlines the avenues of further research.

2. The service-oriented negotiation model

Our multi-lateral negotiation model is based on a set of
mutually influencing two parties, many issues negotiations
[5, 13]. Such negotiations involve two roles that are, in prin-
ciple, in conflict: Sellers of services and Buyers of services.

Here we limit ourselves to consider issues for which ne-
gotiation amounts to determining a value between a delim-
ited range (i.e. ; € D; = [min;, maz;]). Each agent has



a scoring function V;* : D} — [0,1] that gives the score
agent a assigns to the value z of issue j in the range of its
acceptable values Dj. For convenience, scores are kept in
the interval [0, 1] and scoring functions are either monoton-
ically increasing or decreasing. When an agent receives an
offer, it rates it using a function that combines the scores of

the different issues in a linear fashion:

Vi(z) = Y wiVi(zs)

1<j<n

where wf is the importance of issue j for agent a. We as-
sume the weights are normalised. If the score of the re-
ceived offer is greater than that of the counter offer the
agent would send at this point, then the offer is accepted.
If the pre-established deadline (¢%,,..) by when the negoti-
ation must have completed is reached, the offer is rejected.

Otherwise, a counter offer is submitted.

Let z!_,, represent the vector of values proposed by
agent a to agent b at time ¢, and 2! _,,[j] be the value for
issue j. A Negotiation Thread between agents a and b, at
time t,, noted Xéj_w, is any finite sequence of length n
of the form (z'*,,, x>, 2%, ...) with t;,t2-++ < tp,
where:

1. t;41 > t;, the sequence is ordered over time,

2. For each issue j, z_,,[j] € DY, it i) € DY with
1 = 1,3,5,..., and optionally the last element of the se-

quence being one of the particles {accept, reject }.

last(X!~,,) is a function returning the last element in a

sequence.

Offers and counter-offers are generated by linear com-
binations of functions called tactics. A tactic generates a
value for a single negotiation issue based upon a single cri-
terion: time remaining (section 2.1), resources remaining
(section 2.2) or the opponent’s behaviour (section 2.3). If
multiple criteria are important in determining the value of a
negotiation issue, then multiple tactics can be applied to the
issue. In this case, the tactics are assigned a weight to indi-
cate their relative importance. As the negotiation proceeds,
new criteria may become relevant and the relative impor-
tance of existing criteria may vary. To reflect this fact, an
agent has a strategy which varies the weights of the differ-
ent tactics over time in response to various environmental
and negotiation cues (section 2.4).

2.1. Time-dependent tactics

These tactics model the fact that the agent is likely
to concede more rapidly as the negotiation deadline ap-
proaches. All the tactics in this family put forward their
minimum reservation value at £ ..., but what differentiates
them is the shape of their concession curve. We model the

offer of agent a to agent b for issue j at time ¢ < ¢ . bya

. a . .
function o depending on time.

2t []]: {min;’—&- af(t)(maz§ — minf) If V is decreasing

a—b mini+ (1 — af(t))(mazj — minj) If V" is increasing

A wide range of functions can be defined simply by varying
the way in which af (t) is computed. Here we use a family
of polynomial functions parameterised by a value 3; € Rt
that determines the convexity of the curve:
arpy — (M thaa) | 3
(1) = ()
This expression represents an infinite number of possible
tactics, one for each value of 3;. However to better un-
derstand their behaviour, we classify them into two sets
which show clearly different patterns of behaviour: Boul-
ware (don’t start conceding until the deadline is nearly up)
with 3; < 1, and Conceder (start giving ground fairly
quickly) with 3; > 1.

2.2. Resource-dependent tactics

These tactics generate offers depending on how a partic-
ular resource is being consumed; they become progressively
more conciliatory as the quantity of resource diminishes:

1

al(t) =e ies

Here we use a measure of resource which includes both the
time 41§ agent a considers reasonable to spend negotiating
for each issue j and the number of messages involved in the
negotiation thread.

2.3. Behaviour-dependent tactics

These tactics base their actions on the behaviour of their
negotiation opponent [1]. They differ in which aspect of the
opponent’s behaviour they imitate and to what degree. By
default, if the duration of the negotiation does not permit
a tactic to be applied (i.e. t < 29), the agent employs a
Conceder tactic with 8 = 2 (in line with Axelrod’s recom-
mendation [1]).

Relative Tit-For-Tat (Relative-TFT)
Reproduce, in percentage terms, the behaviour that its op-
ponent exhibited §; > 1 steps ago:

tn_25;
¢ . . x Tl . .
S = mm(max(#ﬁzl Jon 7], ming ), max§)
Tpsa [J]

Random Absolute Tit-For-Tat (Random-TFT)
Same as Relative TFT, except that the behaviour is imitated
in absolute terms:

t, . . [ tn—25; .. tn 25,42 .
2,3y ] =min(maz(z," 5y [1] + (2,5, "] — 25, 7 )

+ (=1)% R(Mj), minj), mazy)



where s; = 0(1) if V" is decreasing (increasing) and
R(Mj) is a function that generates a random integer in the
interval [0, Mj;].

Averaged Tit-For-Tat (Average-TFT).
Uses the average of the percentage change in a window of
size A; > 1 of its opponent’s history:

tn—2x;
t . . i TG tn_ays .
oty il = mm(max(% ass L], ming), max$)
—a

2.4. Strategies

When agent a receives an offer from agent b, it becomes
the last element in the current negotiation thread between
the agents. If a deems the offer unsatisfactory, it gener-
ates a counter offer. In generating this response, a may use
different weighted combinations of tactics for each negotia-
tion issue. However for a given issue, the agent can employ
at most one tactic from each of the aforementioned fami-
lies. Thus, an agent can use at most six tactics to gener-
ate a counter offer for any one issue. Given a negotiation
thread between agents a and b at time ¢,,, X ZQ‘_}b, over do-
main D = Dy X --- x D), with last(Xéj_)b) = xi"_m, and
a finite set of m tactics' T* = {r;|7; : MSa = D}icpt,m]»
where M S, is the set of all possible mental states for agent
a at time t (M SY). A weighted counter proposal, xta’jg,
is a linear combination of the tactics given by a matrix of

weights:

Yir Y12 .- Vim

Ft"“ _ Y21 Y22 ... V2m
a—b — . . . .

’Ypl ’)/pg e 'Ypm

defined in the following way:

bogar - tn .
Ty Splil = Ty = T (M S +))[i, j]

With (T(MSy™*))li,j] = (ni(MSa"))[i), i €
[0,1] and for all issues j, > v;; = 1. The weighted
counter proposal extends the current negotiation thread by
appending z'"*! onto X' .

Given a set of tactics, different types of negotiation be-
haviour can be obtained by weighting the tactics in different
ways. That is, by changing the matrix I" particular to each
negotiation thread. Thus a Negotiation Strategy for agent a
is any function f which, given a’s mental state at time ¢,
M Sfl", and a matrix of weights at time ¢, Ftagb, generates
a new matrix of weights for time ¢,,1:

Doty = f(Th,,, MSt)

a—b a—b?

LThis definition uses the natural extension of tactics to the multi-
dimensional space of issues’ values.

3. Co-evolving the negotiation strategies

GAs generate a sequence of ever improving (fitter) pop-
ulations as the outcome of a search method modelled by a
selection mechanism, crossover (recombining existing ge-
netic material in new ways) and mutation (introducing new
genetic material by random modifications) [6]. In our case,
the individuals of the population are negotiating agents,
and their genetic material is the parameters of the negoti-
ation tactics and their relative importance weightings. Co-
evolution refers to the fact that both the buyer and seller
populations are simultaneously evolving and that the fitness
of an individual in one population is based on direct com-
petition with individuals from the other population [12].

To find strategies which are optimally adapted for partic-
ular negotiation situations, we need to indicate: how strate-
gies are encoded as genes (3.1), how the fitness of the strate-
gies is computed (3.2), and how the search algorithm oper-
ates in detail (3.3).

3.1. Encoding strategies as genes

Each agent is represented as a string of fixed length. The
bits of the string (the gene) represent the parameters of the
agent’s negotiation strategy?:

o 1% .. ' real. Maximum time the agent has to negotiate.

o Issue-related genes:

- D} = [min}, max}]. Interval of acceptable val-

ues for issue j.
- Type V}* : {inc, dec}. Scoring function type:
monotonically increasing or decreasing.

e Tactic-related genes.

— Time Dependent. (;: real. Broutware; <K 1,
ﬁconceder]- > 1L

— Resource Dependent. pj: integer. Time consid-
ered reasonable to spend negotiating for issue j.
— Imitative Tactics.

* Relative TFT. d;: integer. Number of steps
into the past considered.

* Random TFT. §;: integer. Number of steps
into the past considered. M;: integer. Max-
imum amount by which agent can vary its
imitative behaviour.

* Averaged TFT. \;: integer. Size of window
over which average is computed.

2To ensure there is no interference between negotiation issues during
the evaluation of the GA’s results, different tactics are used for each issue.
Thus if there are p issues and ¢ € [1, 6] tactic families we define ¢ concrete
tactics (by fixing the parameters in the family expressions) per issue. So
the total number of concrete tactics an agent employs in a particular thread
is m = p X ¢. This means there are (p — 1)q zeros in each row of T.
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Figure 1. Encoding of a strategy which uses a combination of 6 tactic families for 2 issues.

o Strategy-related genes: Values of -;; for the g tactics
used for each issue. The genetic code contains only the
values for the non-zero gammas (i.e. those tactics not
used to determine a value for a particular issue are not
represented.)

By means of an illustration, figure 1 represents an en-
coding of an agent negotiating over two issues using six
families of tactics. The first row indicates that the maxi-
mum time available for negotiation is 5, that issue 1 can
take a value between 10 and 100 and that issue 2 can vary
between 2 and 6. The next genes contain the weights of
each tactic —i.e. for issue 1, the relative weight for the
Boulware tactic is 0.5 and the remaining five tactics have
weight 0.1 (meaning that for this issue the agent behaves in
a generally boulwarish fashion). For issue 2, the weight for
the Boulware tactic is 0.2, 0.6 for the Conceder, and 0.05
for the other four. The remaining genes contain the val-
ues of the parameters of the 12 tactics used —thus <y; ; has
ﬁboulwarel = 0.02, 71,2 has ﬁconcederl = 20, and so on.

3.2. Measuring a strategy’s fitness

An agent’s fitness value indicates how well it performs
in comparison to others in the same population. Following
basic evolutionary ideas, fitness also determines the agent’s
chance of surviving to the next population generation. The
greater the fitness, the more likely the agent is to reproduce.
To compute an agent’s fitness we play a round-robin tourna-
ment in which each buyer negotiates with each seller. Then,
we score each agent with a value that measures how well it
performed. This score becomes its fitness.

Determining the score to attribute to an agent is a non-
trivial task. The most obvious start point is the agent’s
utility function which provides its preference rating over
deals. However, adopting this would mean that the fitness
rating is subjective and varies between agents. Moreover,
the utility function takes an end-result perspective meaning
the resources consumed in reaching the deal are not consid-
ered. To counter the subjectivity problem, we define a fit-
ness function that compares the utility associated to the deal
with that associated to the Nash equilibrium point (the point
at which the sellers’ and the buyers’ scoring functions are
equal [3]). The more positive the difference, the more suc-
cessful the agent’s behaviour. The cost involved in attaining

a deal is taken into consideration by associating a charge
with each message interchange —the more messages ex-
changed in coming to a deal, the higher the associated cost.
With these two components in place, a non-subjective, cost-
adjusted fitness function f can now be defined:

f(Xt" )_ Ve(zldeal)— ve(aN)— r(Xin) iflast(Xim )= accept
¢ /T —ve(el) - r(X!n) otherwise

where il is the final deal, and ¥ represents the deal
that would be made at the Nash equilibrium point. Commu-
nication cost is modelled as: 7(X%») = k x | X!»| where k
is a constant. Varying k allows the relative importance of
communication cost to be changed in the fitness computa-
tion.

3.3. Algorithm steps

The details of the GA used are as follows (recall there
are two families of agents: sellers S and buyers B):

Randomly create initial seller (P9) and buyer (P3) populations;
While not (Stopping Criterion) do

- Make a tournament and calculate the fitness of all the

individuals in P& and P%;

- M Ps = Tournament_Selection(P%);

- M Py = Tournament_Selection(P});

- Bestypg = Best_Individual(M Ps);

- Bestypg = Best_Individual(M Pg);

- Rs = Crossover& Mutation(M Ps — Bestnpg);

- Rg = Crossover& Mutation(M Pg — Bestypg);

- PL*" = Bestypg + Rs and P5t' = Bestyp, + Rp
end while

1. Generation of the First Population. This represents
the search’s starting point and is created by randomly gen-
erating genes from the range of specified values.

2. Selection Process. All GAs use some form of mech-
anism to chose which individuals from the current popu-
lation should go into the mating pool (MP) that forms the
basis of the next population generation. To be effective, the
selection mechanism should ensure that as diverse a range
of fit agents make it into the MP as possible (especially in
the early stages). A selection mechanism known to work
well in such circumstances is Tournament Selection [4]. For
this reason, it is the mechanism we employ to select from
Pt and P, those individuals that will reproduce. Tourna-
ment selection works in the following way: k individuals



are randomly chosen from the population. The individual
with the highest fitness among the selected k is placed in the
MP. This process is repeated N times, where NV is the size
of the population. k is called the tournament size (which
in our case is 2) and it determines the degree to which
the best individuals are favoured [10]. Once the seller and
buyer MPs have been created, the individual with the high-
est fitness in each pool is selected (respectively, Bestarpg
and Bestyrp,). These agents will definitely form part of
the new population. The remainder of the individuals in
the next population, Rg and Rp, are created by applying
crossover and mutation to the rest of the agents in the MP.
Thus, the next generation of sellers and buyers (Pé+1 and
P]g“) are composed of the best of the individuals of the old
population plus a number of newly created strategies.

3. Crossover Process. This mechanism exchanges ge-
netic material between individuals. We randomly select two
individuals from the population. ¢ crossover points are then
randomly chosen and sorted in ascending order. Then the
genes between successive crossover points are alternately
exchanged between the individuals, with a probability P,.
In our experiments, P. is 0.5 and the value of c is 6.

4. Mutation Process. Mutation is the other technique
for creating individuals in new generations. It works by ran-
domly selecting some of the genes present in the population
in order to mutate. If a mutation occurs, a random value
is chosen from the domain of the gene. This aims to avoid
successive generations leading to local minima by introduc-
ing entirely new genetic structures. To provide a means of
comparison between different populations, mutation is in-
hibited for some parameters (genes), specifically ¢ .. and
the issue-related genes. This is because they effectively de-
termine the negotiation context and, therefore, they set the
conditions in which a particular hypothesis is to be tested.
The remaining genes are given a chance P,,, = 0.002 of
undergoing mutation.

5. Stopping Criterion. The simulations stop when the
population is stable (95% of the individuals have the same
fitness) or the number of iterations is bigger than a pre-
determined maximum (100 in our case).

4. Experiments and Results

The aim of these experiments is to analyse the evolution
of negotiation strategies for buying and selling agents. In
particular, we want to determine which strategies are ap-
propriate in which situations (given that there is no uni-
versal best strategy). Our preliminary evaluation of the
service-oriented model indicates that negotiation behaviour
is strongly influenced by the time available [5]. Thus, our
evolutionary experiments are split into two groups: those
in which there is a short time available (t%,,. € [2,5]) and
those in which time is plentiful (¢%,,.. € [10, 20]). For both

max
cases, we consider the following types of agent population:

E;: All buying (selling) agents employ a tactic from the

same family (subsection 4.1). This tactic family is used
by the agent for all the issues under negotiation, although
the specific family member employed varies for each issue.
E.g. all buyers employ a Boulware tactic and all sellers em-
ploy a relative TFT tactic.
Type of analysis. Determine, on a per tactic family basis,
how the tactic parameters vary against a given type of op-
ponent tactic. E.g., if all buyers employ Conceder tactics
and all sellers employ relative TFT tactics, how do the re-
spective values of Bconceder and 6; evolve.

E>: Same as E; except: (i) a given agent can employ a
weighted combination of tactics (in E; the I' matrix con-
tains only ones and zeros) and (ii) an agent can use tactics
from different families for the different issues in a given ne-
gotiation (subsection 4.2).

Type of analysis. Determine for a mixed population which
weighted combinations of tactics are successful.

The following parameters, which are fixed for all ex-
periments, complete the environment setting specification:
|Ps| = |Pg| = 100; k& (communication cost) = 0.1; and
number of negotiation issues = 3.

4.1. Homogeneous strategies

These experiments provide an indication of the relative
merits of the different tactic families when they compete
against one another and for a given tactic family they deter-
mine how negotiation behaviour evolves over time to better
fit the environment and the type of opponent.

4.1.1 Rankings of tactic families (short ¢? )

max

Figure 2 shows the pairwise rankings for all buyer and seller
population combinations when there is a short time avail-
able for negotiation. Each matrix cell contains the average
fitness for the buyers and sellers in the final population. In

cell Fj; =| ® b

age fitness for buyer b using tactic ¢, and the average fitness
for seller a using tactic j. Thus, for instance, we can see
that when buyers using Boulware tactics negotiate against
sellers using Conceder tactics, the sellers fair worse (-0.53
vs. -0.19).

Considering just the average performance of the tactic
families, we observe that Resource are the best and Boul-
ware the worst. Resource tactics do well because they
stick firm and extract concessions from opponents when
the resource (time) allows them to do so, but they give
ground when necessary for the sake of making a deal. Boul-
ware tactics are particularly bad because by sticking firm
they make comparatively few deals (although the deals they
make give them high utility).

the two numbers correspond to the aver-




Seller Boulware Conceder Resource Relative Random Average Mean
Buyer TFT TFT TFT
-0.37 -0.53 -0.18 -0.51 -0.52 -0.46

Boulware -0.47 -0.19 -0.53 -0.25 -0.24 -029 | -0.33
-0.28 -0.06 0.18 0.03 0.07 -0.12

Conceder -0.3 -0.16 -0.4 -0.23 -0.24 -0.26 | -0.26
-0.52 -0.51 -0.13 -0.42 -0.41 -0.54

Resource -0.19 0.14 -0.16 0.01 0.04 -0.13 | -0.05
Relative -0.38 -0.24 0.01 -0.17 -0.12 -0.33

TFT -0.32 -0.1 -0.53 -0.27 -0.12 -0.24 | -0.26
Random -0.38 -0.23 -0.03 -0.19 -0.17 -0.27

TFT -0.29 -0.03 -0.46 -0.18 -0.26 -0.17 | -0.23
Average -0.37 -0.24 -0.02 -0.19 -0.1 -0.26

TFT -0.42 -0.08 -0.55 -0.22 -0.21 -0.25 | -0.29
Mean -0.38 -0.3 -0.03 -0.24 -0.21 -0.33

Figure 2. Matrix F—Mean fitness of individuals in final buyer and seller populations with short ¢*

Examination of the pairwise tactic family interactions re-
veals a number of significant points. Firstly, the tactic which
wins the highest percentage of the time is Resource, fol-
lowed by Random TFT, Relative TFT and Boulware. The
success of the imitative tactics is explained by the fact that
they are exploited only by the Boulware and Resource fam-
ilies, that they are able to exploit Conceders, and that they
have a similar behaviour negotiating with agents of their
own family. However, the fact that Boulware is so success-
ful is surprising (given its overall ranking). It occurs be-
cause opponents occasionally concede to their tough negoti-
ation stance. But since they make comparatively few deals,
they pull down the average fitness values for themselves and
for their opponents. Secondly, agents using Resource tactics
negotiating with agents using Conceder or Imitative tactics
can get a better deal than the theoretical Nash equilibrium
point. The reason for this is that Resource tactics have the
exploitative power of the Boulwares, but also the flexibility
to give ground (when time is running out) for the sake of
making a deal. Thirdly, agents using Imitative tactics nego-
tiating with Conceder opponents can get a better deal than
the Nash equilibrium point. When the thread is so short
that the imitative behaviour cannot be applied (¢ is bigger
than the steps in the thread) the default behaviour is tougher
than that of the Conceder (resulting in a certain degree of
exploitation). Fourthly, Imitative tactics are exploited by
agents using Boulware and Resource tactics because they
give ground in the first round of negotiation and, given that

e . 1 small, this forms a significant part of the interaction.

4.1.2 Evolution of tactic families (short ¢% )

Here we analyse how strategies evolve through populations,
rather than just focusing on the end point.

1. When Conceder agents negotiate with Boulware and
Resource agents, the value of B.onceder reduces over time
(Figure 3). Thus, Conceders react to being exploited by
becoming less conciliatory in nature.

maz*®

Average of Beta for Conceder Sellers

average ——
standard deviation -
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Figure 3. Conceder Sellers against Resource
Buyers

2. Agents employing imitative tactics tend to increase
the value of 0;. This happens because if §; is large in
comparison to ¢, ., then in almost all the cases no actual
imitation takes place and the default Conceder tactic (with
B; = 2) is applied. This default is comparatively tough in
short negotiations and so the agent is able to exploit more
conciliatory agents.

3. Agents using Resource tactics have the best perfor-
mance against all the other tactic families. They tend to in-
crease the value of p1;, thus becoming more Boulware like,
so they can exploit more conciliatory tactics (Figure 4).

4.1.3 Experiments with large ¢

max

We repeated the above set of experiments with a large
time (¢%,,, € [10,20]) to reach an agreement (Figure 5). In
most cases, results are broadly similar to those when ¢% .
is short. Again Resource tactics are the most successful but
for a large t3, .. the Conceder tactics improve their rating.
With more time available for negotiation, Conceder gives
ground more slowly and this forces resource agents to con-

cede more than when ¢$,  is short (because the length of



Seller Boulware Conceder Resource Relative Random Average Mean
Buyer TFT TFT TFT
-1.09 -0.86 -0.86 -0.9 -1.05 -0.99

Boulware -1.04 -0.06 -0.99 -0.68 -0.63 -0.54 | -0.66
-0.12 -0.12 0.04 0.09 0.03 -0.4

Conceder -0.93 -0.04 -0.44 -0.37 -0.37 -0.29 | -041
-1.12 -0.42 -0.44 -0.62 -0.56 -0.82

Resource -0.91 0.14 -0.46 -0.33 -0.33 -0.28 | -0.36
Relative -0.87 -0.36 -0.43 -0.52 -0.4 -0.43

TFT -0.98 0.08 -0.53 -0.4 -0.34 -0.35 | -0.42
Random -0.81 -0.37 -0.37 -0.39 -0.49 -0.43

TFT -0.93 0.14 -0.58 -0.38 -0.44 -0.36 | -0.42
Average -0.75 -0.37 -0.38 -0.44 -0.41 -0.48

TFT -1.01 0.01 -0.52 -0.3 -0.39 -0.36 | -0.43
Mean -0.79 -0.42 -0.41 -0.46 -0.48 -0.59

Figure 5. Mean fitness of individuals in the final buyer and seller populations with large ¢
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Figure 4. Resource Sellers against Average
TFT Buyers

the thread makes the quotient —‘X'f—",)' smaller and hence
the concession is bigger). The majotrz aifference, however, is
that imitative tactics begin to exploit their imitative capabil-
ity. Since negotiations generally involve more interchanges,
the imitators have more opportunities to assess their oppo-

nents’ behaviour and to respond in kind.

4.2. Weighted combinations of tactics

Here we allow agents to employ weighted combinations
of tactics to the different issues (recall that previously the
I' matrix contained only ones and zeros). Again we con-
sider environments in which negotiation time is scarce and
those in which time is plentiful. Analysis of the I' matrix
evolution reveals the following points of interest. Firstly,
equilibrium is always reached with very similar I matrixes
(whose average is shown below). This indicates the matrix
represents a robust solution since it is reached despite wide
variations in the starting weights. Secondly, the values in-
side the matrix (i.e the individual -;;s) at the equilibrium
point are very similar —they have an average of 0.17 and
a standard deviation of 0.02. This means no one strategy
dominates an agent’s negotiation behaviour. Thirdly, we ob-

max

serve that agents who use a weighted combination of tactics
are more robust to varying negotiation situations. For ex-
ample, the average utility for buyers using a weighted com-
bination in a short ¢3, .. is -0.26 and in a long t% .. it is
-0.27. In contrast, for the pure tactic case the average fig-
ures for short and long negotiations can vary significantly

(eg for conceder buyers it varies between -0.26 to -0.41).

Exp 1 [Boulware | Conceder | Resource [Relative Random|Average|
TFT | TFT | TFT

issuer| 0.12 0.21 0.14 0.19 | 0.19 | 0.13
issues| 0.14 0.21 0.17 017 | 0.15 | 0.16
issues | O.11 0.28 0.14 014 | 0.12 | 0.17

5. Related work

Research in negotiation models has been pursued in
many different fields of enquiry. Each field has concentrated
on different aspects of negotiation, making the assumptions
that are pertinent for the goal of their study. For reasons
which we have outlined elsewhere [5], much of this extant
work is inappropriate for the types of negotiations we en-
countered in the domain of business process management.
Hence we needed to devise a new model to better reflect our
needs. In this paper, however, the main focus is not on the
model per se, but on how we can find the best strategies for
negotiation in this model under various conditions.

Axelrod suggests there are three basic ways of determin-
ing the best interaction strategy in a given context: tourna-
ment, ecological and territorial [1]. The tournament mech-
anism we apply is basically the same as Axelrod’s, but our
agents have to make decisions over a much wider range of
issues and over continuous variables such as price (he re-
stricts himself to the iterated Prisoner’s Dilemma in which
agents can only choose to cooperate or defect). Ito ex-
tends Axelrod’s work by considering more complex tactics,
but, nevertheless, retains the simplicity of the Prisoner’s
Dilemma environment [7]. Our approach also incorporates
Axelrod’s ecological model, but we include mutation and



crossover as operations in the evolution of populations. The
territorial approach is left as future work.

A number of researchers have attempted to use GAs
and evolutionary programming to find optimal interaction
strategies. Oliver considers negotiation strategies [11] and
his work has several similarities to our own (eg each ne-
gotiating agent is a chromosome and the parameters of the
negotiation model are genes in the chromosome). However,
his model is much simpler. (Offers are accepted if they have
a utility over a preset threshold. Also he encodes counter-
offers as part of the genetic material, meaning they have
limited sophistication.) The extra complexity required by
our model means additional work was needed when design-
ing the population evolution mechanism. For example, our
encoding necessarily entails that there are gene interdepen-
dencies which need to be respected during the crossover and
mutation operations (Oliver has no such dependencies).

Rosin [12] considers a competitive, co-evolution in
which fitness is based on direct competition between indi-
viduals selected from two independently evolving popula-
tions of “hosts” and “parasites”. They use: a competitive
fitness sharing function, a shared sampling method to se-
lect a diverse set of parasites, and a “hall of fame” method
to save good individuals from prior generations. Although
there are several similarities, our work differs in that we use
a fitness function based on the sum of the score across all
competitions, we evolve the seller and buyer populations si-
multaneously, and we perform a tournament between all the
sellers and buyers.

6. Discussion and Further Work

This paper presents an empirical evaluation of a range
of negotiation strategies and tactics in a number of different
types of environment. We take an evolutionary approach —
encoding negotiation parameters as genes in a GA. The aim
of the evaluation is to assess the operational benefits and
drawbacks of a number of negotiation strategies. To this
end, we have presented a number of concrete results about
the relative merits of particular tactics and strategies. More-
over, we have shown how, in some cases, successive pop-
ulations of agents following a particular role (buyer, seller)
exploit the population of agents using the dual role. These
successive generations also give an indication about how
strategies can be modified to minimise the opportunity of
exploitation. Finally, we have demonstrated the usefulness
of agents employing a cocktail of tactics —both for differ-
ent negotiation issues and, in combination, for a single is-
sue. Our previous theoretical work [13] indicated such a hy-
brid approach was possible, but had not demonstrated that
it was useful.

Our future work will extend the experimentation in two
directions. Firstly, we want to introduce more reactiveness

into the agents. Here agents have a fixed I and participate
in a single negotiation round with each of their opponents to
determine their fitness. We would like to see how changing
I" within the lifetime of an agent allows it to adapt to re-
peated negotiations with its opponents. Secondly, we wish
to extend our evolutionary approach to cover the territorial
case [1]. Here populations are distributed on a 2-D surface
and agents can only negotiate with their neighbours. De-
pending on the outcome of this negotiation, the agent may
adopt the strategy of its neighbour if it is more successful.
This type of experiment will allow us to observe the changes
in the territorial distribution pattern of the strategies.
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