A Methodology for Agent-Oriented Analysis and Design

Michael Wooldridge*, Nicholas R. Jennings*, and David Kinny'

*Department of Electronic Engineering "Department of Computer Science

Queen Mary & Westfield College

London E1 4NS, UK

{M.J.Wooldridge, N.R.Jennings}@qgmw.ac.uk

Abstract

This paper presents a methodology for agent-oriented analysis and
design. The methodology is general, in that it is applicable to
a wide range of multi-agent systems, and comprehensive, in that
it deals with both the macro-level (societal) and the micro-level
(agent) aspects of systems. The methodology is founded on the
view of a system as a computational organisation consisting of var-
ious interacting roles. We illustrate the methodology through a case
study (an agent-based business process management system).

1 Introduction

Progress in software engineering over the past two decades has pri-
marily been made through the development of increasingly power-
ful and natural abstractions with which to model and develop com-
plex systems. Procedural abstraction, abstract data types, and, most
recently, objects, are all examples of such abstractions. It is our
belief that agents represent a similar advance in abstraction: they
may be used by software developers to more naturally understand,
model, and develop an important class of complex distributed sys-
tems.

If agents are to realise their potential as a software engineer-
ing paradigm, then it is necessary to develop software engineering
techniques that are specifically tailored to them. Existing software
development techniques (for example, object-oriented analysis and
design [1, 5]) will simply be unsuitable for this task. There is a fun-
damental mismatch between the concepts used by object-oriented
developers (and indeed, by other mainstream software engineer-
ing paradigms) and the agent-oriented view [20, 22]. In particular,
extant approaches fail to adequately capture an agent’s flexible, au-
tonomous problem-solving behaviour, the richness of an agent’s in-
teractions, and the complexity of an agent system’s organisational
structures. For these reasons, this paper outlines a methodology
that has been specifically tailored to the analysis and design of
agent-based systems.

The remainder of this paper is structured as follows. We begin,
in the following sub-section, by discussing the characteristics of
applications for which we believe our analysis and design method-
ology is appropriate. Section 2 gives an overview of the main con-
cepts used by the methodology. Agent-based analysis is discussed

University of Melbourne
Parkville 3052, Australia

dnk@cs.mu.oz.au

in section 3, and design in section 4. The methodology is demon-
strated by means of a case study in section 5, where we show how
it was applied to the design of a real-world agent-based system for
business process management [13]. Related work is discussed in
section 6, and some conclusions are presented in section 7.

Domain Characteristics

Before proceeding, it is worth commenting on the scope of our
work, and in particular, on the characteristics of domains for which
we believe the methodology is appropriate. It is intended that the
methodology be appropriate for the development of systems such
as ADEPT [13] and ARCHON [12]. These are large-scale real-world
applications, with the following main characteristics:

e Agents are coarse-grained computational systems, each mak-
ing use of significant computational resources (think of each
agent as having the resources of a UNIX process.)

e It is assumed that the goal is to obtain a system that max-
imises some global quality measure, but which may be sub-
optimal from the point of view of the system components.
Our methodology is not intended for systems that admit the
possibility of true conflict.

e Agents are heterogeneous, in that different agents may be im-
plemented using different programming languages and tech-
niques. We make no assumptions about the delivery plat-
form.

e The overall system contains a comparatively small number
of agents (less than 100).

The methodology we propose is comprehensive, in that it deals
with both the macro (societal) level and the micro (agent) level
aspects of design. It represents an advance over previous agent-
oriented methodologies in that it is neutral with respect to both the
target domain and the agent architecture (see section 6 for a more
detailed comparison).

2 A Conceptual Framework

Our methodology is intended to allow an analyst to go systemat-
ically from a statement of requirements to a design that is suffi-
ciently detailed that it can be implemented directly. In applying
the methodology, the analyst moves from abstract to increasingly
concrete concepts. Each successive move introduces greater imple-
mentation bias, and shrinks the space of possible systems that could
be implemented to satisty the original requirements statement.

system

roles

responsibilities

safety liveness
properties properties

Figure 1: Analysis Concepts

The methodology borrows some terminology and notation from
object-oriented analysis and design, (specifically, FUSION [5]). How-
ever, it is not simply a naive attempt to apply such methods to
agent-oriented development. Rather, our methodology provides an
agent-specific set of concepts through which a software engineer
can understand and model a complex system. In particular, the
methodology encourages a developer to think of building agent-
based systems as a process of organisational design.

The main concepts can be divided into two categories: abstract
and concrete. Abstract entities are those used during analysis to
conceptualise the system, but which do not necessarily have any
direct realisation within the system. Concrete entities, in contrast,
are used within the design process, and will typically have direct
counterparts in the run-time system.

The most abstract entity in our concept hierarchy is the system
— see Figure 1. Although the term “system” is used in its stan-
dard sense, it also has a related meaning when talking about an
agent-based system, to mean “society” or “organisation”. That is,
we think of an agent-based system as an artificial society or organ-
isation.

The idea of a system as a society is useful when thinking about
the next level in the concept hierarchy: roles. It may seem strange
to think of a computer system as being defined by a set of roles, but
the idea is quite natural when adopting an organisational view of the
world. Consider a human organisation such as a typical company.
The company has roles such as “president”, “vice president”, and
so on. Note that in a concrete realisation of a company, these roles
will be instantiated with actual individuals: there will be an indi-
vidual who takes on the role of president, an individual who takes
on the role of vice president, and so on. However, the instantiation
is not necessarily static. Throughout the company’s lifetime, many
individuals may take on the role of company president, for exam-
ple. Also, there is not necessarily a one-to-one mapping between
roles and individuals. It is not unusual (particularly in small or in-
formally defined organisations) for one individual to take on many
roles. For example, a single individual might take on the role of
“tea maker”, “mail fetcher”, and so on. Conversely, there may be
many individuals that take on a single role, e.g., “salesman”.

A role is defined by three attributes: responsibilities, permis-
sions, and protocols. Responsibilities determine functionality and,
as such, are perhaps the key attribute associated with a role. An ex-
ample responsibility associated with the role of company president
might be calling the shareholders meeting every year. Responsi-
bilities are divided into two types: liveness properties and safety
properties [18]. Liveness properties intuitively state that “some-
thing good happens”. They describe those states of affairs that an

requirements

statement

RN

interactions

roles model

analysis

model

. acquaintance .
services model q design

model

agent model ‘

Figure 2: Relationships between the methodology’s models

agent must bring about, given certain environmental conditions. In
contrast, safety properties are invariants. Intuitively, a safety prop-
erty states that “nothing bad happens” (i.e., that an acceptable state
of affairs is maintained across all states of execution). An exam-
ple might be “ensure the reactor temperature always remains in the
range 0-100”.

In order to realise responsibilities, a role is usually associated
with a set of permissions. Permissions are the “rights” associated
with a role. The permissions of a role thus identify the resources
that are available to that role in order to realise its responsibilities.
In the kinds of system that we have typically modelled, permissions
tend to be information resources. For example, a role might have
associated with it the ability to read a particular item of informa-
tion, or to modify another piece of information. A role can also
have the ability to generate information.

Finally, a role is also identified with a number of protocols,
which define the way that it can interact with other roles. For ex-
ample, a “seller” role might have the protocols “Dutch auction” and
“English auction” associated with it.

In summary, analysis and design can be thought of as a process
of developing increasingly detailed models of the system to be con-
structed. The main models used in our approach are summarised in
Figure 2, and elaborated in sections 3 and 4.

3 Analysis

The objective of the analysis stage is to develop an understanding
of the system and its structure (without reference to any implemen-
tation detail). In our case, this understanding is captured in the
system’s organisation. In more detail, we view an organisation as
a collection of roles, that stand in certain relationships to one an-
other, and that take part in systematic, institutionalised patterns of
interactions with other roles. To define an organisation, it therefore
suffices to define the roles in the organisation, how these roles re-
late to one another, and how a role can interact with other roles.
The aim of the analysis stage is, therefore, to model the system as
a multi-agent organisation in precisely this way. Thus, the organi-
sation model is comprised of two further models: the roles model
(section 3.1) and the interaction model (section 3.2).

3.1 The Roles Model

The roles model identifies the key roles in the system. Here a role
can be viewed as an abstract description of an entity’s expected
function. In other terms, a role is more or less identical to the notion

LLINT3

of an office in the sense that “prime minister”, “attorney general

of the United States”, or “secretary of state for Education” are all
offices. Such roles (or offices) are characterised by two types of
attribute:

o The permissions/rights associated with the role.

A role will have associated with it certain permissions, relat-
ing to the type and the amount of resources that can be ex-
ploited when carrying out the role. In our case, these aspects
are captured in an attribute known as the role’s permissions.

o The responsibilities of the role.

A role is created in order to do something. That is, a role has
a certain functionality. This functionality is represented by
an attribute known as the role’s responsibilities.

Permissions

The permissions associated with a role have two aspects:

o they identify the resources that can legitimately be used to
carry out the role — intuitively, they say what can be spent
while carrying out the role;

o they state the resource limits within which the role execu-
tor must operate — intuitively, they say what can’t be spent
while carrying out the role.

In general, permissions can relate to any kind of resource. In a hu-
man organisation, for example, a role might be given a monetary
budget, a certain amount of person effort, and so on. However, in
our methodology, we think of resources as relating only to the in-
formation or knowledge the agent has. That is, in order to carry out
arole, an agent will typically be able to access certain information.
Some roles might generate information; others may need to access
a piece of information but not modify it, while yet others may need
to modify the information. We recognise that a richer model of
resources is required for the future, although for the moment, we
restrict our attention simply to information.

We use a formal notation for expressing permissions that is
based on the FUSION notation for operation schemata [5, pp26-31].
We illustrate this notation below.

Responsibilities

The functionality of a role is defined by its responsibilities. These
responsibilities can be divided into two categories: [liveness and
safety responsibilities.

Liveness responsibilities are those that, intuitively, state that
“something good happens”. Liveness responsibilities are so called
because they tend to say that “something will be done”, and hence
that the agent carrying out the role is still alive. Liveness responsi-
bilities tend to follow certain patterns. For example, the guaranteed
response type of achievement goal has the form “a request is always
followed by a response”. The infinite repetition achievement goal
has the form “x will happen infinitely often”. Note that these types
of requirements have been widely studied in the software engineer-
ing literature, where they have proven to be necessary for capturing
properties of reactive systems [18].

In order to illustrate the various concepts associated with roles,
we will use a simple running example of a “coffee filler” role —
the purpose of this role is to ensure that a coffee pot is kept full of
coffee for a group of workers. Examples of liveness responsibilities
for a CoffeeFiller role might be:

e whenever the coffee is empty, fill it up;

o whenever fresh coffee is brewed, make sure the workers know
about it.

Xy x followed by y x|y xoryoccurs

Xk x occurs O or more times ~ x+ x occurs 1 or more times
x® x occurs infinitely often [x] x is optional

x||y xandy interleaved

Table 1: Operators for liveness expressions

In our model, an agent’s liveness properties are specified via a live-
ness expression, which defines the “life-cycle” of the role. Liveness
expressions are similar to the life-cycle expression of FUSION [5],
which are in turn essentially regular expressions. Our liveness
properties have an additional operator, “w”, for infinite repetition
(see Table 1 for more details). They thus resemble w-regular ex-
pressions, which are known to be suitable for representing the prop-
erties of infinite computations [20].

Liveness expressions define the potential execution trajectories
through the various activities and interactions (i.e., over the pro-
tocols) associated with the role. The general form of a liveness
expression is:

RoleName = expression

where RoleName is the name of the role whose liveness properties
are being defined, and expression is the liveness expression defining
the liveness properties of RoleName. The atomic components of a
liveness expression are protocols — we define protocols below.

To illustrate liveness expressions, consider again the above-
mentioned responsibilities of the CoffeeFiller role:

CoffeeFiller = (Fill.InformWorkers.CheckStock. AwaitEmpty)

This expression says that CoffeeFiller consists of executing the pro-
tocol Fill, followed by the protocol InformWorkers, followed by the
protocols CheckStock and AwaitEmpty. These four protocols are then
repeated infinitely often. For the moment, we shall treat the pro-
tocols simply as labels for interactions and shall not worry about
how they are actually defined (this matter will be returned to in
section 3.2).

Complex liveness expressions can be made easier to read by
structuring them. A simple example illustrates how this is done:

CoffeeFiller = (Al)®
Al = Fill.InformWorkers.CheckStock.AwaitEmpty

In many cases, it is insufficient simply to specify the liveness
responsibilities of a role. This is because an agent, carrying out
a role, will be required to maintain certain invariants while exe-
cuting. For example, we might require that a particular agent tak-
ing part in an electronic commerce application never spends more
money than it has been allocated. These invariants are called safety
conditions, because they usually relate to the absence of some un-
desirable condition arising.

Safety requirements in our methodology are specified by means
of alist of predicates. These predicates are typically expressed over
the variables listed in a role’s permissions attribute. Returning to
our CoffeeFiller role, an agent carrying out this role will generally be
required to ensure that the coffee stock is never empty. We can do
this by means of the following safety expression:

e coffeeStock >0
By convention, we simply list safety expressions as a bulleted list,

each item in the list expressing an individual safety responsibility.
It is implicitly assumed that these responsibilities apply across all

ROLE SCHEMA: name of role
Description short English description of the role
Protocols protocols in which the role plays a part
Permissions “rights” associated with the role
Responsibilities

Liveness liveness responsibilities

Safety safety responsibilities

Figure 3: Template for Role Schemata

states of the system execution. If the role is of infinitely long dura-
tion (as in the CoffeeFiller example), then the invariants must always
be true.

It is now possible to precisely define the roles model. A roles
model is comprised of a set of role schemata, one for each role in
the system. A role schema draws together the various attributes
discussed above into a single place (Figure 3). An exemplar in-
stantiation is given for the CoffeeFiller role in Figure 4. This schema
indicates that CoffeeFiller has permission to read the coffeeMaker pa-
rameter (that indicates which coffee machine the role is intended to
keep filled), and the coffeeStatus (that indicates whether the ma-
chine is full or empty). In addition, the role has permission to
change the value coffeeStock.

3.2 The Interaction Model

There are inevitably dependencies and relationships between the
various roles in a multi-agent organisation. Indeed, such interplay
is central to the way in which the system functions. Given this
fact, interactions obviously need to be captured and represented in
the analysis phase. In our case, such links between roles are repre-
sented in the interaction model. This model consists of a set of pro-
tocol definitions, one for each type of inter-role interaction. Here a
protocol can be viewed as an institutionalised pattern of interaction.
That is, a pattern of interaction that has been formally defined and
abstracted away from any particular sequence of execution steps.
Viewing interactions in this way means that attention is focused on
the essential nature and purpose of the interaction, rather than on
the precise ordering of particular message exchanges (cf. the inter-
action diagrams of OBJECTORY [5, pp198-203] or the scenarios of
FUSION [5]).

Our approach means that a single protocol definition will typi-
cally give rise to a number of message interchanges in the run time
system. For example, consider an English auction protocol. This
involves multiple roles (sellers and bidders) and many potential pat-
terns of interchange (specific price announcements and correspond-
ing bids). However at the analysis stage, such precise instantiation
details are unnecessary, and too premature.

In more detail, protocol definitions consist of the following set
of attributes:

purpose: brief description of the nature of the interaction

9

(e.g. “information request”, “schedule activity” and “assign
task™);

initiator: the role(s) responsible for starting the interaction;

responder: the role(s) with which the initiator interacts;

inputs: information used by the role initiator while enacting
the protocol;

outputs: information supplied by/to the protocol responder
during the course of the interaction;

Fil

Coffegiler | CoffeeMaching uopled ofeliaer

Fill cofiee machine

| coffeeStock

Figure 5: The Fill Protocol Definition

e processing: brief description of any processing the protocol
initiator performs during the course of the interaction;

By means of an illustration, consider the Fill protocol, which forms
part of the CoffeeFiller role (Figure 5). This states that the pro-
tocol Fill is initiated by the role CoffeeFiller and involves the role
CoffeeMachine. The protocol involves CoffeeFiller putting coffee in
the machine named coffeeMaker, and results in CoffeeMachine be-
ing informed about the value of coffeeStock. We will see further
examples of protocols in section 5.

3.3 The Analysis Process

The analysis stage of the methodology can now be summarised:

1. Identify the roles in the system.

Output: A prototypical roles model — a list of the key roles
that occur in the system, each with an informal, unelaborated
description.

2. For each role, identify and document the associated proto-
cols. Protocols are the patterns of interaction that occur in
the system between the various roles.

Output: An interaction model, which captures the recurring
patterns of inter-role interaction.

3. Using the protocol model as a basis, elaborate the roles model.

Output: A fully elaborated roles model, which documents
the key roles occurring in the system, their permissions and
responsibilities, and the protocols in which they take part.

4. Iterate stages (1)—(3).

4 Design

The aim of a “classical” design process is to transform the ab-
stract models derived during the analysis stage into models at a
sufficiently low level of abstraction that they can be easily imple-
mented. This is not the case with agent-oriented design, however.
Rather, our aim is to transform the analysis models into a suffi-
ciently low level of abstraction that traditional design techniques
(including object-oriented techniques) may be applied. To put it
another way, the agent-oriented analysis and design process is con-
cerned with how a society of agents cooperate to realise the system-
level goals, and what is required of each individual agent in order
to do this. Actually how an agent realises its services is beyond
the scope of the methodology, and will depend on the particular
application domain.

The design process involves generating three models (see Fig-
ure 2). The agent model identifies the agent types that will make up
the system, and the agent instances that will be instantiated from
these types. The services model identifies the main services that
will be associated with each agent type. Finally, the acquaintance
model documents the acquaintances for each agent type.

ROLE SCHEMA: CoffeeFiller

o coffeeStock >0

DESCRIPTION:
This role involves ensuring that coffee is kept filled, and informing the workers when fresh coffee has been brewed.
PROTOCOLS:
Fill, InformWorkers, CheckStock, AwaitEmpty
PERMISSIONS:
reads supplied coffeeMaker // name of coffee maker
coffeeStatus /1 full or empty
changes coffeeStock /1 stock level of coffee
RESPONSIBILITIES
LIVENESS:
CoffeeFiller = (Fill.InformWorkers.CheckStock.AwaitEmpty)®
SAFETY:

Figure 4: Schema for role CoffeeFiller

4.1 The Agent Model

The purpose of the agent model is to document the various agent
types that will be used in the system under development, and the
agent instances that will realise these agent types at run-time.

An agent type is best thought of as a set of agent roles. There
may in fact be a one-to-one correspondence between roles (as iden-
tified in the roles model — see section 3.1) and agent types. How-
ever, this need not be the case. A designer can choose to package
a number of closely related roles in the same agent type for the
purposes of convenience. Efficiency will also be a major concern
at this stage: a designer will almost certainly want to optimise the
design, and one way of doing this is to aggregate a number of agent
roles into a single type. An example of where such a decision may
be necessary is where the “footprint” of an agent (i.e., its run-time
requirements in terms of processor power or memory space) is so
large that it is more efficient to deliver a number of roles in a single
agent than to deliver a number of agents each performing a single
role. There is obviously a trade-off between the coherence of an
agent type (how easily its functionality can be understood) and the
efficiency considerations that come into play when designing agent
types. The agent model is defined using a simple agent type tree,
in which root nodes correspond to roles, (as defined in the roles
model), and other nodes correspond to agent types. If an agent type
t1 has children # and #3, then this means that #; is composed of the
roles that make up #, and #3.

We document the agent instances that will appear in a system
by annotating agent types in the agent model (cf. the qualifiers from
FUSION [5]). An annotation n means that there will be exactly
n agents of this type in the run-time system. An annotation m..n
means that there will be no less than m and no more than » instances
of this type in a run-time system (m < n). An annotation * means
that there will be zero or more instances at run-time, and + means
that there will be one or more instances at run-time.

Note that inheritance plays no part in our agent models. Our
view is that agents are coarse grained computational systems, and
an agent system will typically contain only a small number of roles
and types, with often a one-to-one mapping between them. For
this reason, we believe that inheritance has no useful part to play
in the design of agent types. (However, when it comes to actually
implementing agents, inheritance may be used in the normal OO
fashion.)

4.2 The Services Model

As its name suggests, the aim of the services model is to identify
the services associated with each agent role, and to specify the main
properties of these services. By a service, we mean a function of

the agent. In OO terms, a service would correspond to a method;
however, we do not mean that services are available for other agents
in the same way that an object’s methods are available for another
object to invoke. Rather, a service is simply a single, coherent block
of activity that an agent will engage in.

For each service that may be performed by an agent, it is nec-
essary to document its properties. Specifically, we must identify
the inputs, outputs, pre-conditions, and post-conditions of each ser-
vice. Inputs and outputs to services will be derived in an obvious
way from the protocols model. Pre- and post-conditions represent
constraints on services. These are derived from the safety proper-
ties of a role. Note that by definition, each role will be associated
with at least one service.

The services that an agent will perform are derived from the
list of protocols and responsibilities associated with a role, and in
particular, from the liveness definition of a role. For example, re-
turning to the coffee example, there are four protocols associated
with this role: Fill, InformWorkers, CheckStock, and AwaitEmpty. There
will be at least one service associated with each protocol. In the
case of CheckStock, the service (which may have the same name),
will take as input the stock level and some threshold value, and will
simply compare the two. The pre- and post-conditions will both
state that the coffee stock level is greater than O — this condition is
one of the safety conditions of the CoffeeFiller.

The services model does not prescribe an implementation for
the services it documents. The developer is free to realise the ser-
vices in any implementation framework deemed appropriate. For
example, it may be decided to implement services directly as meth-
ods in an object-oriented language. Alternatively, a service may be
decomposed into a number of methods.

4.3 The Acquaintance Model

The final design model is probably the simplest: the acquaintance
model. Acquaintance models simply define the communication
links that exist between agent types. They do not define what mes-
sages are sent or when messages are sent — they simply indicate
that communication pathways exist. In particular, the purpose of
an acquaintance model is to identify any potential communication
bottlenecks, which may cause problems at run-time (see section 5
for an example). It is generally regarded as good practice to en-
sure that systems are loosely coupled, and the acquaintance model
can help in doing this. On the basis of the acquaintance model, it
may be found necessary to revisit the analysis stage and rework the
system design to remove such problems.

An agent acquaintance model is simply a graph, with nodes
in the graph corresponding to agent types and arcs in the graph

corresponding to communication pathways. Agent acquaintance
models are directed graphs, and so an arc a — b indicates that a will
send messages to b, but not necessarily that b will send messages
to a. An acquaintance model may be derived in a straightforward
way from the roles, protocols, and agent models.

4.4 The Design Process

The design stage of the methodology can now be summarised:

1. Create an agent model:

e aggregate roles into agent types, and refine to form an
agent type hierarchy;

e document the instances of each agent type using in-
stance annotations.

2. Develop a services model, by examining protocols and safety
and liveness properties of roles.

3. Develop an acquaintance model from the interaction model
and agent model.

5 A Case Study: Business Process Management

This section briefly illustrates how the methodology can be applied,
through a case study of the analysis and design of an agent-based
system for managing a British Telecom business process (see [13]
for more details). For reasons of brevity, we omit some details, and
aim instead to give a general flavour of the analysis and design.

The particular application is providing customers with a quote
for installing a network to deliver a particular type of telecommu-
nications service. This activity involves the following departments:
the customer service division (CSD), the design division (DD), the
legal division (LD) and the various organisations who provide the
out-sourced service of vetting customers (VCs). The process is ini-
tiated by a customer contacting the CSD with a set of requirements.
In parallel to capturing the requirements, the CSD gets the cus-
tomer vetted. If the customer fails the vetting procedure, the quote
process terminates. Assuming the customer is satisfactory, their re-
quirements are mapped against the service portfolio. If they can
be met by a standard off-the-shelf item then an immediate quote
can be offered. In the case of bespoke services, however, the pro-
cess is more complex. DD starts to design a solution to satisfy the
customer’s requirements and whilst this is occurring LD checks the
legality of the proposed service. If the desired service is illegal, the
quote process terminates. Assuming the requested service is legal,
the design will eventually be completed and costed. DD then in-
forms CSD of the quote. CSD, in turn, informs the customer. The
business process then terminates.

Moving from this behavioural description of the system’s oper-
ation to an organisational view is comparatively straightforward. In
many cases there is a one to one mapping between departments and
roles. Thus, the VC’s, the LD’s, and the DD’s behaviour are cov-
ered by the roles CustomerVetter, LegalAdvisor, and NetworkDesigner
respectively. CSD’s behaviour falls into two distinct roles: one
acting as an interface to the customer (CustomerHandler), and one
overseeing the process inside the organisation (QuoteManager). The
final role is that of the Customer who requires the quote. Figure 6
defines the role QuoteManager — we omit other role definitions in
the interests of brevity. The definition of the VetCustomer protocol
is given in Figure 7.

Turning to the design stage, an agent model for this application
is given in Figure 8. As this figure illustrates, the implemented sys-
tem contains five agent types, with two roles (CustomerHandler and
QuoteManager) being aggregated into agent type CustomerService-
DivisionAgent. The acquaintance model for this domain is defined
in Figure 9. (We omit the services model in the interests of brevity.)

TenderContract
QM cv
select which CV to

award contract to

vettingRequirements

VettingRequest

QM cv
ask for vetting of

customer .
customerDetails

VettingResponse

customerDetails
cv QM

perform vetting and

customerRatingInfo

return credit rating

creditRating

Figure 7: Definition of Protocol VetCustomer between Roles
QuoteManager (QM) and CustomerVetter (CV)

CustomerA Bl CusywceDvsonA e VetCustomerA em NetvorDesigrerdgent Legalhdvisorhgent
\ T L 715

Costomer~ Cosomertander ~ Qulebenager ~ CostomeVeler—— NebvonDesigner~—~ LegalAdisor

Figure 8: Agent Model for Business Process Management

6 Related Work

As a result of the development and application of robust agent
technologies, there has been a surge of interest in agent-oriented
methodologies and modelling techniques in the last few years. Many
approaches, such as [3, 16] take existing OO modelling techniques
or methodologies as their basis, seeking either to extend and adapt
the models and define a methodology for their use, or to directly ex-
tend the applicability of OO methodologies and techniques, such as
design patterns, to the design of agent systems. Other approaches
build upon and extend methodologies and modelling techniques
from software and knowledge engineering, or provide formal, com-
positional modelling languages [2] suitable for the verification of
system structure and function. A valuable survey can be found
in [10].

These approaches usually do not attempt to unify the analysis
and design of a MAS with its design and implementation within a
particular agent technology. They either regard the output of the
analysis and design process as an abstract specification to which
traditional lower-level design methodologies may be applied (as
proposed in this paper), or else they allow some architectural com-
mitment to be made during analysis or design, but fall short of a
full elaboration of the design within the chosen framework. Of the
approaches mentioned above, only the AOM approach of [16, 15]
makes a strong commitment to a particular agent architecture and
proposes a design elaboration and refinement process that leads to
directly executable agent specifications. Given the proliferation of
available agent technologies, there are clearly advantages to a more

ROLE SCHEMA: QuoteManager (QM)

DESCRIPTION:

Responsible for enacting the quote process. Generates a quote or returns nil if customer inappropriate or service is illegal
PROTOCOLS:

VetCustomer, GetCustomerRequirements, CostStandardService, CheckServiceLegality, CostBespokeService
PERMISSIONS:

reads supplied customerDetails
customerRequirements
creditRating
servicelsLegal

generates quote

/I customer contact information
/! detailed service requirements
/I customer’s credit rating

/1 boolean for bespoke requests
/] completed quote or nil

RESPONSIBILITIES

LIVENESS:
QuoteManager = QuoteResponse
QuoteResponse = (VetCustomer || GetCustomerRequirements) | (VetCustomer || GetCustomerRequirements).CostService
CostService = CostStandardService | (CheckServiceLegality || CostBespokeService)
SAFETY:
e bad(creditRating) = Quote = nil
o servicelsLegal = false = Quote = nil
Figure 6: Schema for role QuoteManager
Agent classes define various attributes possessed by agents, and
CustomerAgent amongst these are attributes defining the agent’s sets of beliefs,
goals, and plans. The analyst is able to define how these attributes
CustomerServiceDivisionAgent are overridden during inheritance. For example, it is assumed that
by default, inherited plans have lower priority than those in sub-
) _) classes. The analyst may tailor these properties as desired.
VetCustomerAgent NetworkDesignAgent LegalAdvisorAgent The internal models, which represent the beliefs, goals and plans

Figure 9: Acquaintance Model for Business Process Management

general approach, as proposed here. However, a disadvantage may
be a need for iteration of the entire process if the lower-level design
process reveal issues that are best resolved at the agent-oriented
level.

Despite this difference in scope, there are many similarities be-
tween the AOM approach and that proposed here. The former was
developed to fulfill the need for a principled approach to the speci-
fication of complex multi-agent systems based on the belief-desire-
intention (BDI) technology of the Procedural Reasoning System
(PRS) and the Distributed Multi-Agent Reasoning System (DMARS)
[17, 6].

The AOM methodology takes as its starting point object-oriented
modelling techniques, as exemplified by [19, 1], and adapts and ex-
tends them with agent concepts. The methodology itself is aimed
at the construction of a set of models which, when fully elaborated,
define an agent system specification. The main separation in the
models developed is between the external and internal models. The
external models present a system-level view: the main components
visible in these models are agents themselves, and they are primar-
ily concerned with agent relationships and interactions, including
inheritance and aggregation relationships that allow abstraction of
agent structure. In contrast, the internal models which are associ-
ated with each distinct agent class are entirely concerned with the
internals of agents: their beliefs, goals, and plans.

There are two primary external models; the agent model, which
describes agent classes and instances, and the interaction model,
which captures communications and control relationships between
agents. The agent model is further divided into an agent class
model and an agent instance model. These two models define the
agent classes and instances that can appear, and relate these to one
another via inheritance, aggregation, and instantiation relations.

of particular agent classes, are direct extensions of OO object mod-
els (beliefs, goals) and dynamic models (plans). Thus, for exam-
ple, an object model is used to describe the objects about which
an agent will have beliefs, and the properties of those beliefs, such
as whether they have open- or closed-world semantics. Dynamic
models, extended with notions of failure and various other attributes,
are used to directly represent an agent’s plans. These models are
thus quite specific to the BDI architecture employed in DMARS. By
contrast, the external models are applicable to any BDI agent ar-
chitecture. The methodology is aimed at elaborating the models
described above.

A particular feature of the methodology is its emphasis on the
use of abstract agent classes as the means to group roles during
analysis and model refinement, which permits decisions about the
boundaries of concrete agents to be deferred to a late stage of the
design process.

Note that the analysis process will be iterative, as in traditional
methodologies. The outcome will be a model that comprises spec-
ifications in the form required by the DMARS agent architecture.
As a result, the move from end-design to implementation using
DMARS is relatively simple.

It can be seen that there are many similarities between the AOM
external models and the models proposed in this paper. However,
the notion of responsibility used in the AOM models is quite in-
formal: safety and liveness requirements are not made explicit at
an abstract level, and they lack the notion of permissions used to
capture resource usage, which is instead captured implicitly by the
belief structure of individual agents. By contrast, the protocols that
define the permitted interactions between agents may be developed
to a greater degree of detail within the AOM approach, for example
as in [14], whereas here protocols are employed as more generic
descriptions of behaviour that may involve entities not modelled as
agents, such as the coffee machine. Another significant difference
is the use in AOM of inheritance between agent classes which is
not permitted by the methodology proposed here, as it is of limited

value without a specific architectural commitment.

The definition and use of various notions of role, responsibility,
interaction, team and society or organization in particular methods
for agent-oriented analysis and design has also inherited or adapted
much from more general uses of these concepts within multi-agent
systems, including organization-focussed approaches such as [9, 7,
11] and sociological approaches such as [4]. However, it is beyond
the scope of this paper to compare our definition and use of these
concepts with this heritage.

7 Conclusions and Further Work

In this paper, we have described a methodology we have developed
for the analysis and design of agent-based systems. The key con-
cepts in this methodology are roles, which have associated with
them responsibilities, permissions, and protocols. Roles can inter-
act with one another in certain institutionalised ways, which are
defined in the protocols of the respective roles.

There are many issues remaining for future work. Perhaps most
importantly, our methodology does not attempt to deal with truly
open systems, in which agents may not share common goals. This
class of systems represents arguably the most important applica-
tion area for multi-agent systems, and it is therefore essential that
our methodology should be able to deal with it. Another aspect of
agent-based analysis and design that requires more work is the no-
tion of an organisational structure. At the moment, such structures
are only implicitly defined within our methodology — within the
role and interaction models. However, direct, explicit representa-
tions of such structures will be of value for some applications. For
example, if agents are used to model large organisations, then these
organisations will have an explicitly defined structure. Represent-
ing such structures may be the only way of adequately capturing
and understanding the organisation’s communication and control
structures. More generally, the development of organisation design
patterns might be useful for reusing successful multi-agent system
structures (cf. [8]). Finally, we believe that a successful methodol-
ogy is one that is not only of pragmatic value, but one that also has
a well-defined, unambiguous formal semantics. While the typical
developer need never even be aware of the existence of such a se-
mantics, it is nevertheless essential to have a precise understanding
of what the concepts and terms in a methodology mean [21].

References

[1] G. Booch. Object-Oriented Analysis and Design (second edition).
Addison-Wesley: Reading, MA, 1994.

[2] F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Formal
specification of multi-agent systems: a real-world case. In Proceed-
ings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 25-32, San Francisco, CA, June 1995.

Birgit Burmeister. Models and methodologies for agent-oriented anal-
ysis and design. In Klaus Fischer, editor, Working Notes of the KI’96
Workshop on Agent-Oriented Programming and Distributed Systems.
1996. DFKI Document D-96-06.

C. Castelfranchi. Commitments: from individual intentions to groups
and organizations. In Proceedings of the First International Confer-
ence on Multi-Agent Systems (ICMAS-95), pages 41-48, San Fran-
cisco, CA, June 1995.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes,
and P. Jeremaes. Object-Oriented Development: The FUSION Method.
Prentice Hall International: Hemel Hempstead, England, 1994.

[6] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal spec-
ification of AIMARS. In M. P. Singh, A. Rao, and M. J. Wooldridge,
editors, Intelligent Agents IV (LNAI Volume 1365), pages 155-176.
Springer-Verlag: Berlin, Germany, 1997.

[3

—_

[4

=

[5

—_

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

(20]

(21]

[22]

Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In Proceedings of
the Third International Conference on Multi-Agent Systems (ICMAS-
98), pages 128-135, Paris, France, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley: Reading, MA, 1995.

L. Gasser, C. Braganza, and N. Hermann. MACE: A flexible testbed
for distributed Al research. In M. Huhns, editor, Distributed Artificial
Intelligence, pages 119—152. Pitman Publishing: London and Morgan
Kaufmann: San Mateo, CA, 1987.

C. A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-
oriented methodologies. In J. P. Miiller, M. P. Singh, and A. S. Rao,
editors, Intelligent Agents V — Proceedings of the Fifth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-
98), Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidel-
berg, 1999.

Toru Ishida, Les Gasser, and Makoto Yokoo. Organization self design
of production systems. IEEE Transactions on Knowledge and Data
Engineering, 4(2):123-134, April 1992.

N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat,
P. Skarek, and L. Z. Varga. Using ARCHON to develop real-world
DAL applications for electricity transportation management and parti-
cle acceleration control. IEEE Expert, 11(6):60-88, December 1996.

N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien,
and M. E. Wiegand. Agent-based business process management. In-
ternational Journal of Cooperative Information Systems, 5(2-3):105—
130, 1996.

D. Kinny. The AGENTIS agent interaction model. In J. P. Miiller,
M. P. Singh, and A. S. Rao, editors, Intelligent Agents V — Proceed-
ings of the Fifth International Workshop on Agent Theories, Architec-
tures, and Languages (ATAL-98), Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, Heidelberg, 1999.

D. Kinny and M. Georgeff. Modelling and design of multi-agent sys-
tems. In J. P. Miiller, M. Wooldridge, and N. R. Jennings, editors, In-
telligent Agents I1I (LNAI Volume 1193), pages 1-20. Springer-Verlag:
Berlin, Germany, 1997.

D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling
technique for systems of BDI agents. In W. Van de Velde and J. W.
Perram, editors, Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, (LNAI Volume 1038), pages 56-71. Springer-Verlag:
Berlin, Germany, 1996.

David Kinny. The Distributed Multi-Agent Reasoning System Archi-
tecture and Language Specification. Australian Al Institute, Level 6,
171 La Trobe Street, Melbourne, Australia, 1993.

A. Pnueli. Specification and development of reactive systems. In
Information Processing 86. Elsevier Science Publishers B.V.: Ams-
terdam, The Netherlands, 1986.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliifs, NJ, 1991.

M. Wooldridge. Agent-based software engineering. IEE Proceedings
on Software Engineering, 144(1):26-37, February 1997.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115-152, 1995.

M. Wooldridge and N. R. Jennings. Pitfalls of agent-oriented develop-
ment. In Proceedings of the Second International Conference on Au-
tonomous Agents (Agents 98), pages 385-391, Minneapolis/St Paul,
MN, May 1998.

