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Abstract

The concept of an agent has recently become important in Artificial Intelligence (AI), and its
relatively youthful subfield, Distributed AI (DAI). Our aim in this paper is to point the reader at what
we perceive to be the most important theoretical and practical issues associated with the design and
construction of intelligent agents. For convenience, we divide the area into three themes (though
as the reader will see, these divisions are at times somewhat arbitrary). Agent theory is concerned
with the question of what an agent is, and the use of mathematical formalisms for representing
and reasoning about the properties of agents. Agent architectures can be thought of as software
engineering models of agents; researchers in this area are primarily concerned with the problem
of constructing software or hardware systems that will satisfy the properties specified by agent
theorists. Finally, agent languages are software systems for programming and experimenting with
agents; these languages typically embody principles proposed by theorists. The paper is not intended
to serve as a tutorial introduction to all the issues mentioned; we hope instead simply to identify the
key issues, and point to work that elaborates on them. The paper closes with a detailed bibliography,
and some bibliographical remarks.

1 Introduction

One way of defining AI is by saying that it is the subfield of computer science which aims to construct
agents that exhibit aspects of intelligent behaviour. One view, which would nowadays be regarded as
extreme by many AI researchers, is that these agents will recreate intelligent human behaviour in all
respects; a perhaps more widely held view is that even if human intelligence is out of the question, (at
least for the time being), it would nevertheless be useful to be able to build agents that can exhibit some
aspects of intelligent human behaviour. The notion of an agent is thus central to AI. It is perhaps sur-
prising, therefore, that until the mid to late 1980s, researchers from mainstream AI gave relatively little
consideration to the issues surrounding agent synthesis. Since then, however, there has been a marked
flowering of interest in the subject, and the concept of an ‘agent’ has been adopted by a variety of sub-
disciplines of AI and mainstream computer science. One now hears of ‘agents’ in software engineering,
data communications and concurrent systems research, as well as robotics, AI, and distributed AI. A
recent article in a British national daily paper made the following prediction:

‘Agent-based computing (ABC) is likely to be the next significant breakthrough in software
development’1.

1‘Back to school for a brand new ABC’. The Guardian, March 12th, 1992, page 28. See [55] for a (somewhat inaccurate)
overview of ‘agent based computing’ from the popular science press.
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A whole programming paradigm has even been christened ‘agent-oriented programming’ [121]. Our
aim in this paper is to survey what we perceive to be the most important issues in the design and
construction of agents, from the standpoint of (D)AI. For convenience, we identify three key issues,
and structure our survey around these (cf. [117, p1]):

Agent theories: What exactly are agents? What properties should they have, and how are we to form-
ally represent and reason about these properties?

Agent architectures: How are we to construct agents that satisfy the properties we expect of them?
What software and/or hardware structures are appropriate?

Agent languages: How are we to program agents? What are the right primitives for this task? How
are we to effectively compile or execute agent programs?

We begin, in the following section, with the issue of agent theories, and a consideration of the question
of how to define agency; in section 3, we discuss architectures, and in section 4, we discuss languages
for programming agents. Some concluding remarks appear in section 5.

2 Agent Theories

As we observed above, there are many different usages of the term agent in AI and computer science,
and each yet each of these usages appeals to a subtly different notion of agency. An obvious point of
departure for our study is therefore a consideration of the question: what is an agent?

A dictionary defines an agent as: ‘one who, or that which, exerts power or produces an effect’2.
While this definition is not terribly helpful, it does at least indicate that action is somehow involved,
and indeed it does seem at first sight that the notion of action is inextricably bound to that of agency:

‘Agents do things, they act: that is why they are called agents’. [118]

A tacit assumption is that agents take an active role, originating actions that affect their environment,
rather than passively allowing their environment to affect them. Two terms often used to describe
agentive action are autonomy and rationality. Autonomy generally means that an agent operates without
direct human (or other) intervention or guidance. Rationality is not so easily tied down, but is often
used in the pseudo-game-theoretic sense of an agent maximizing its performance with respect to some
‘valuation function’ (see [48, pp49–54] for a discussion of rationality and agency).

Unfortunately, autonomous rational action, so defined, is a weak criterion for agenthood, as it admits
a very wide class of objects as agents. For example, it is perfectly consistent to describe a transistor —
essentially the simplest form of electronic switch — as an autonomous rational agent by this definition.

Perhaps more troubling for an action-based analysis of agency is that the very notion of action is
a slippery one. For example, almost any action can be described in a number of different ways, each
seemingly valid. A classic example, due to the philosopher Searle, is that of Gavrilo Princip in 1914:
did he pull a trigger, fire a gun, kill Archduke Ferdinand, or start World War I? Each of these seem to
be equally valid descriptions of the same action or event. Trying to describe actions in terms of causal
links does not help, as it introduces a seemingly infinite regress. For example, in waving to a friend,
I lift my arm, which was caused by muscles contracting, which was caused by some neurons firing,
which was caused by… and so on. There is no easy way of halting this regress without appealing to a
notion of primitive action, which is philosophically suspect3.

2The Concise Oxford Dictionary of Current English (7th edn), Oxford University Press, 1988
3See [4] for a classic AI attempt to deal with the notion of action, and [118] for an analysis of the relationship between

action and agency.



An action-based analysis of agency does not look like it is going to work. What other properties
of agency might one consider? Shoham has suggested that the term ‘agent’ in AI is often used to
denote ‘high-level’ systems, that employ symbolic representations, and perhaps enjoy some ‘cognitive-
like’ function, (such as explicit logical reasoning) [121]. This ‘high-level’ condition excludes systems
such as transistors and thermostats, the neuron-like entities of connectionism, and the objects of object-
oriented programming. It implies that agents possess significant computational resources (though these
resources will, of course, be finite). However, the ‘high-level’ property is a contentious one: a number
of researchers vigorously argue that ‘high-level’ agents are not the best way to go about AI. The chief
protagonist in this debate is Brooks, who has built a number of robotic agents which are certainly not
‘high-level’ by Shoham’s definition, and yet are able to perform tasks that are impressive by AI standards
(see the discussion in section 4). So a ‘high-level’ condition does not seem to be useful for classifying
agents, as it discriminates against systems that do not employ explicit cognitive-like functions.

Perhaps the most widely held view is that an agent is an entity ‘which appears to be the subject
of beliefs, desires, etc.’ [117, p1]. The philosopher Dennett has coined the term intentional system to
denote such systems.

2.1 Agents as Intentional Systems

When explaining human activity, it is often useful to make statements such as the following:

Janine took her umbrella because she believed it was going to rain.
Michael worked hard because he wanted to possess a PhD.

These statements makes use of a folk psychology, by which human behaviour is predicted and explained
through the attribution of attitudes, such as believing and wanting (as in the above examples), hoping,
fearing, and so on. This folk psychology is well established: most people reading the above statements
would say they found their meaning entirely clear, and would not give them a second glance.

The attitudes employed in such folk psychological descriptions are called the intentional notions.
The philosopher Daniel Dennett has coined the term intentional system to describe entities ‘whose
behaviour can be predicted by the method of attributing belief, desires and rational acumen’ [35, p49].
Dennett identifies different ‘grades’ of intentional system:

‘A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires
about beliefs and desires. […] A second-order intentional system is more sophisticated; it
has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and
other intentional states) — both those of others and its own’. [35, p243]

One can carry on this hierarchy of intentionality as far as required.
An obvious question is whether it is legitimate or useful to attribute beliefs, desires, and so on, to

artificial agents. Isn’t this just anthropomorphism? McCarthy, among others, has argued that there are
occasions when the intentional stance is appropriate:

‘To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine
is legitimate when such an ascription expresses the same information about the machine
that it expresses about a person. It is useful when the ascription helps us understand the
structure of the machine, its past or future behaviour, or how to repair or improve it. It is
perhaps never logically required even for humans, but expressing reasonably briefly what
is actually known about the state of the machine in a particular situation may require mental
qualities or qualities isomorphic to them. Theories of belief, knowledge and wanting can be
constructed for machines in a simpler setting than for humans, and later applied to humans.
Ascription of mental qualities is most straightforward for machines of known structure such
as thermostats and computer operating systems, but is most useful when applied to entities
whose structure is incompletely known’. [93], (quoted in [121])



What objects can be described by the intentional stance? As it turns out, more or less anything can.
In his doctoral thesis, Seel showed that even very simple, automata-like objects can be consistently
ascribed intentional descriptions [117]; similar work by Rosenschein and Kaelbling, (albeit with a dif-
ferent motivation), arrived at a similar conclusion [111]. For example, consider a light switch:

‘It is perfectly coherent to treat a light switch as a (very cooperative) agent with the cap-
ability of transmitting current at will, who invariably transmits current when it believes
that we want it transmitted and not otherwise; flicking the switch is simply our way of
communicating our desires’. [121, p6]

And yet most adults would find such a description absurd — perhaps even infantile. Why is this? The
answer seems to be that while the intentional stance description is perfectly consistent with the observed
behaviour of a light switch, and is internally consistent,

‘… it does not buy us anything, since we essentially understand the mechanism sufficiently
to have a simpler, mechanistic description of its behaviour’. [121, p6]

Put crudely, the more we know about a system, the less we need to rely on animistic, intentional ex-
planations of its behaviour. However, with very complex systems, even if a complete, accurate picture
of the system’s architecture and working is available, a mechanistic, design stance explanation of its
behaviour may not be practicable. Consider a computer. Although we might have a complete technical
description of a computer available, it is hardly practicable to appeal to such a description when ex-
plaining why a menu appears when we click a mouse on an icon. In such situations, it may be more
appropriate to adopt an intentional stance description, if that description is consistent, and simpler than
the alternatives. The intentional notions are thus abstraction tools, which provide us with a convenient
and familiar way of describing, explaining, and predicting the behaviour of complex systems.

Being an intentional system seems to be a necessary condition for agenthood, but is it a sufficient
condition? In his recent Master’s thesis, Shardlow trawled through the literature of cognitive science and
its component disciplines in an attempt to find a unifying concept that underlies the notion of agenthood.
He was forced to the following conclusion:

‘Perhaps there is something more to an agent than its capacity for beliefs and desires, but
whatever that thing is, it admits no unified account within cognitive science’. [118]

So, an agent is a system that is most conveniently described by the intentional stance; one whose simplest
consistent description requires the intentional stance. Before proceeding, it is worth considering exactly
which attitudes are appropriate for representing agents. For the purposes of this survey, the two most
important categories are information attitudes and pro-attitudes:

information attitudes

�
belief
knowledge

pro-attitudes

���������
��������

desire
intention
obligation
commitment
choice
…

Thus information attitudes are related to the information that an agent has about the world it occupies,
whereas pro-attitudes are those that in some way guide the agent’s actions. Precisely which combination
of attitudes is most appropriate to characterise an agent is, as we shall see later, an issue of some
debate. However, it seems reasonable to suggest that an agent must be represented in terms of at least



one information attitude, and at least one pro-attitude. Note that pro- and information attitudes are
closely linked, as a rational agent will make make choices and form intentions, etc., on the basis of the
information it has about the world. Much work in agent theory is concerned with sorting out exactly
what the relationship between the different attitudes is.

The next step is to investigate methods for representing and reasoning about these intentional no-
tions.

2.2 Representing Intentional Notions

Suppose one wishes to reason about intentional notions in a logical framework. Consider the following
statement (after [50, pp210–211]):

Janine believes Cronos is the father of Zeus. (1)

A naive attempt to translate (1) into first-order logic might result in the following:

Bel(Janine, Father(Zeus,Cronos)) (2)

Unfortunately, this naive translation does not work, for at least two reasons. The first is syntactic: the
second argument to the Bel predicate is a formula of first-order logic, and is not, therefore, a term. So (2)
is not a well-formed formula of classical first-order logic. The second problem is semantic, and is more
serious. The constants Zeus and Jupiter, by any reasonable interpretation, denote the same individual:
the supreme deity of the classical world. It is therefore acceptable to write, in first-order logic:

(Zeus = Jupiter). (3)

Given (2) and (3), the standard rules of first-order logic would allow the derivation of the following:

Bel(Janine, Father(Jupiter,Cronos)) (4)

But intuition rejects this derivation as invalid: believing that the father of Zeus is Cronos is not the same
as believing that the father of Jupiter is Cronos. So what is the problem? Why does first-order logic
fail here? The problem is that the intentional notions — such as belief and desire — are referentially
opaque, in that they set up opaque contexts, in which the standard substitution rules of first-order logic
do not apply. In classical (propositional or first-order) logic, the denotation, or semantic value, of an
expression is dependent solely on the denotations of its sub-expressions. For example, the denotation
of the propositional logic formula p ∧ q is a function of the truth-values of p and q. The operators of
classical logic are thus said to be truth functional. In contrast, intentional notions such as belief are not
truth functional. It is surely not the case that the truth value of the sentence:

Janine believes p (5)

is dependent solely on the truth-value of p4. So substituting equivalents into opaque contexts is not
going to preserve meaning. This is what is meant by referential opacity. The existence of referentially
opaque contexts has been known since the time of Frege. He suggested a distinction between sense
and reference. In ordinary formulae, the ‘reference’ of a term/formula (i.e., its denotation) is needed,
whereas in opaque contexts, the ‘sense’ of a formula is needed (see also [117, p3]).

Clearly, classical logics are not suitable in their standard form for reasoning about intentional no-
tions: alternative formalisms are required.

The field of formal methods for reasoning about intentional notions is widely reckoned to have
begun with the publication, in 1962, of Hintikka’s book Knowledge and Belief [71]. At that time, the

4Note, however, that the sentence (5) is itself a proposition, in that its denotation is the value true or false.



subject was of interest to comparatively few researchers in logic and the philosophyof mind. Since then,
however, it has become an important research area in its own right, with contributions from researchers
in AI, formal philosophy, linguistics and economics. Despite the diversity of interests and applications,
the number of basic techniques in use is quite small. Recall, from the discussion above, that there are
two problems to be addressed in developing a logical formalism for intentional notions: a syntactic one,
and a semantic one. It follows that any formalism can be characterized in terms of two independent
attributes: its language of formulation, and semantic model [80, p83].

There are two fundamental approaches to the syntactic problem. The first is to use a modal language,
which contains non-truth-functional modal operators, which are applied to formulae. An alternative
approach involves the use of a meta-language: a many-sorted first-order language containing terms that
denote formulae of some other object-language. Intentional notions can be represented using a meta-
language predicate, and given whatever axiomatization is deemed appropriate. Both of these approaches
have their advantages and disadvantages, and will be discussed in the sequel.

As with the syntactic problem, there are two basic approaches to the semantic problem. The first,
best known, and probably most widely used approach is to adopt a possible worlds semantics, where
an agent’s beliefs, knowledge, goals, etc. are characterized as a set of so-called possible worlds, with
an accessibility relation holding between them. Possible worlds semantics have an associated corres-
pondence theory which makes them an attractive mathematical tool to work with [26]. However, they
also have many associated difficulties, notably the well-known logical omniscience problem, which im-
plies that agents are perfect reasoners. A number of variations on the possible-worlds theme have been
proposed, in an attempt to retain the correspondence theory, but without logical omniscience. The com-
monest alternative to the possible worlds model for belief is to use a sentential, or interpreted symbolic
structures approach. In this scheme, beliefs are viewed as symbolic formulae explicitly represented in
a data structure associated with an agent. An agent then believes ϕ if ϕ is present in its belief data
structure. Despite its simplicity, the sentential model works well under certain circumstances [80].

In the subsections that follow, we discuss various approaches in some more detail. We begin with a
close look at the basic possible worlds model for logics of knowledge (epistemic logics) and logics of
belief (doxastic logics).

Possible Worlds Semantics

The possible worlds model for logics of knowledge and belief was originally proposed by Hintikka [71],
and is now most commonly formulated in a normal modal logic using the techniques developed by
Kripke [84]5. Hintikka’s insight was to see that an agent’s beliefs could be characterized in terms of a
set of possible worlds, in the following way. Consider an agent playing a card game such as poker6.
In this game, the more one knows about the cards possessed by one’s opponents, the better one is able
to play. And yet complete knowledge of an opponent’s cards is generally impossible, (if one excludes
cheating). The ability to play poker well thus depends, at least in part, on the ability to deduce what cards
are held by an opponent, given the limited information available. Now suppose our agent possessed the
ace of spades. Assuming the agent’s sensory equipment was functioning normally, it would be rational
of her to believe that she possessed this card. Now suppose she were to try to deduce what cards were
held by her opponents. This could be done by first calculating all the various different ways that the cards
in the pack could possibly have been distributed among the various players. (This is not being proposed
as an actual card playing strategy, but for illustration!) For argument’s sake, suppose that each possible
configuration is described on a separate piece of paper. Once the process was complete, our agent can
then begin to systematically eliminate from this large pile of paper all those configurations which are
not possible, given what she knows. For example, any configuration in which she did not possess the

5In Hintikka’s original work, he used a technique based on ‘model sets’, which is equivalent to Kripke’s formalism, though
less elegant. See [72, pp351–352] for a comparison and discussion of the two techniques.

6This example was adapted from [64].



ace of spades could be rejected immediately as impossible. Call each piece of paper remaining after this
process a world. Each world represents one state of affairs considered possible, given what she knows.
Hintikka coined the term epistemic alternatives to describe the worlds possible given one’s beliefs.
Something true in all our agent’s epistemic alternatives could be said to be believed by the agent. For
example, it will be true in all our agent’s epistemic alternatives that she has the ace of spades.

On a first reading, this seems a peculiarly roundabout way of characterizing belief, but it has two
advantages. First, it remains neutral on the subject of the cognitive structure of agents. It certainly
doesn’t posit any internalized collection of possible worlds. It is just a convenient way of character-
izing belief. Second, the mathematical theory associated with the formalization of possible worlds is
extremely appealing (see below).

The next step is to show how possible worlds may be incorporated into the semantic framework of
a logic. Epistemic logics are usually formulated as normal modal logics using the semantics developed
by Kripke [84]. Before moving on to explicitly epistemic logics, we consider a simple normal modal
logic. This logic is essentially classical propositional logic, extended by the addition of two operators:
‘ ’ (necessarily), and ‘�’ (possibly). Let Prop = fp, q, …g be a countable set of atomic propositions.
Then the syntax of the logic is defined by the following rules: (i) if p ∈ Prop then p is a formula; (ii) if
ϕ,ψ are formulae, then so are ¬ϕ and ϕ ∨ ψ ; and (iii) if ϕ is a formula then so are ϕ and �ϕ.

The operators ‘¬’ (not) and ‘∨’ (or) have their standard meanings. The remaining connectives of
classical propositional logic can be defined as abbreviations in the usual way. The formula ϕ is read:
‘necessarily ϕ’, and the formula �ϕ is read: ‘possibly ϕ’. Now to the semantics of the language.

Normal modal logics are concerned with truth at worlds; models for such logics therefore contain a
set of worlds, W, and a binary relation, R, on W, saying which worlds are considered possible relative
to other worlds. Additionally, a valuation function π is required, saying what propositions are true at
each world. Formally, a model is a triple hW, R,πi, where W is a non-empty set of worlds, R ⊆ W ×W,
and π : W → powerset Prop is a valuation function, which says for each world w ∈ W which atomic
propositions are true in w. An alternative, equivalent technique would have been to define π as π :
W × Prop → fT,Fg.

The semantics of the language are given via the satisfaction relation, ‘|=’, which holds between pairs
of the form hM, wi, (where M is a model, and w is a reference world), and formulae of the language.
The semantic rules defining this relation are given below.

hM,wi |= p where p ∈ Prop, iff p ∈ π(w)
hM,wi |= ¬ϕ iff hM,wi ⁄|= ϕ
hM,wi |= ϕ ∨ ψ iff hM,wi |= ϕ or hM, wi |= ψ
hM,wi |= ϕ iff ∀w′ ∈ W, if (w, w′) ∈ R then hM, w′i |= ϕ
hM,wi |= �ϕ iff ∃w′ ∈ W, (w, w′) ∈ R and hM, w′i |= ϕ

The definition of satisfaction for atomic propositions thus captures the idea of truth in the ‘current’
world, (which appears on the left of ‘|=’). The semantic rules for ‘¬’ and ‘∨’ are standard. The rule for
‘ ’ captures the idea of truth in all accessible worlds, and the rule for ‘�’ captures the idea of truth in
at least one possible world. Note that the two modal operators are duals of each other, in the sense that
the universal and existential quantifiers of first-order logic are duals:

ϕ ⇔ ¬�¬ϕ �ϕ ⇔ ¬ ¬ϕ.

It would thus have been possible to take either one as primitive, and introduce the other as a derived
operator.

Correspondence Theory

To understand the extraordinary properties of this simple logic, it is first necessary to introduce validity
and satisfiability. A formula is satisfiable if it is satisfied for some model/world pair, and unsatisfiable



otherwise. A formula is true in a model if it is satisfied for every world in the model, and valid in a
class of models if it true in every model in the class. Finally, a formula is valid simpliciter if it is true
in the class of all models. If ϕ is valid, we write |= ϕ.

The two basic properties of this logic are as follows. First, the following axiom schema is valid.

|= (ϕ ⇒ ψ) ⇒ ( ϕ ⇒ ψ)

This axiom is called K, in honour of Kripke. The second property is as follows.

If |= ϕ then |= ϕ

Proofs of these properties are left as an exercise for the reader. Now, since K is valid, it will be a theorem
of any complete axiomatization of normal modal logic. Similarly, the second property will appear as a
rule of inference in any axiomatization of normal modal logic; it is generally called the necessitation
rule. These two properties turn out to be the most problematic features of normal modal logics when
they are used as logics of knowledge/belief (this point will be examined later).

The most intriguing properties of normal modal logics follow from the properties of the accessibility
relation, R, in models. To illustrate these properties, consider the following axiom schema.

ϕ ⇒ ϕ

It turns out that this axiom is characteristic of the class of models with a reflexive accessibility relation.
(By characteristic, we mean that it is true in all and only those models in the class.) There are a host of
axioms which correspond to certain properties of R: the study of the way that properties of R correspond
to axioms is called correspondence theory. For our present purposes, we identify just four axioms: the
axiom called T, (which corresponds to a reflexive accessibility relation); D (serial accessibility relation);
4 (transitive accessibility relation); and 5 (euclidean accessibility relation):

T ϕ ⇒ ϕ
D ϕ ⇒ �ϕ
4 ϕ ⇒ ϕ
5 �ϕ ⇒ �ϕ.

The results of correspondence theory make it straightforward to derive completeness results for a range
of simple normal modal logics. These results provide a useful point of comparison for normal modal
logics, and account in a large part for the popularity of this style of semantics. A system of logic can be
thought of as a set of formulae valid in some class of models; a member of the set is called a theorem
of the logic (if ϕ is a theorem, this is usually denoted by � ϕ). The notation KΣ1 …Σn is often used
to denote the smallest normal modal logic containing axioms Σ1, … ,Σn (recall that any normal modal
logic will contain the K axiom [58, p25]).

For the axioms T, D, 4, and 5, it would seem that there ought to be sixteen distinct systems of logic
(since 24 = 16). However, some of these systems turn out to be equivalent (in that they contain the
same theorems), and as a result there are only eleven distinct systems: K, K4, K5, KD, KT (= KDT),
K45, KD5, KD4, KT4 (=KDT4), KD45, and KT5 (= KT45, KDT5, KDT45); see [80, p99], and [26,
p132]. Because some modal systems are so widely used, they have been given names:

KT is known as T KT4 is known as S4
KD45 is known as weak-S5 KT5 is known as S5.
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Normal Modal Logics of Knowledge and Belief
To use the logic developed above as an epistemic logic, the formula ϕ is read as: ‘it is known

that ϕ’. The worlds in the model are interpreted as epistemic alternatives, the accessibility relation
defines what the alternatives are from any given world. The logic deals with the knowledge of a single
agent. To deal with multi-agent knowledge, one adds to a model structure an indexed set of accessibility
relations, one for each agent. A model is then a structure hW,R1, … , Rn, πi where Ri is the knowledge
accessibility relation of agent i. The simple language defined above is extended by replacing the single
modal operator ‘ ’ by an indexed set of unary modal operators fKig, where i ∈ f1, … , ng. The formula
Kiϕ is read: ‘i knows that ϕ’. The semantic rule for ‘ ’ is replaced by the following rule:

hM,wi |= Kiϕ iff ∀w′ ∈ W, if (w, w′) ∈ Ri then hM, w′i |= ϕ

Each operator Ki thus has exactly the same properties as ‘ ’. Corresponding to each of the modal
systems Σ, above, a corresponding system Σn is defined, for the multi-agent logic. Thus Kn is the
smallest multi-agent epistemic logic and S5n is the largest.

The next step is to consider how well normal modal logic serves as a logic of knowledge/belief.
Consider first the necessitation rule and axiom K, since any normal modal system is committed to these.
The necessitation rule tells us that an agent knows all valid formulae. Amongst other things, this means
an agent knows all propositional tautologies. Since there are an infinite number of these, an agent
will have an infinite number of items of knowledge: immediately, one is faced with a counter-intuitive
property of the knowledge operator.

Now consider the axiom K, which says that an agent’s knowledge is closed under implication.
Suppose ϕ is a logical consequence of the set Φ = fϕ1, … ,ϕng, then in every world where all of Φ are
true, ϕ must also be true, and hence the formula ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn ⇒ ϕ must be valid. By necessitation,
this formula will also be believed. Since an agent’s beliefs are closed under implication, whenever
it believes each of Φ, it must also believe ϕ. Hence an agent’s knowledge is closed under logical
consequence. This also seems counter intuitive. For example, suppose, like every good logician, our
agent knows Peano’s axioms. Now Fermat’s last theorem follows from Peano’s axioms — but it took
the combined efforts of some of the best minds over the past century to prove it. Yet if our agent’s beliefs
are closed under logical consequence, then our agent must know it. So consequential closure, implied
by necessitation and the K axiom, seems an overstrong property for resource bounded reasoners.

These two problems — that of knowing all valid formulae, and that of knowledge/belief being closed
under logical consequence — together constitute the famous logical omniscience problem. It has been
widely argued that this problem makes the possible worlds model unsuitable for representing resource
bounded believers — and any real system is resource bounded.

Axioms for Knowledge and Belief

We now consider the appropriateness of the axioms Dn, Tn, 4n, and 5n for logics of knowledge/belief.
The axiom Dn says that an agent’s beliefs are non-contradictory; it can be re-written in the following
form:

Kiϕ ⇒ ¬Ki¬ϕ

which is read: ‘if i knows ϕ, then i doesn’t know ¬ϕ’. This axiom seems a reasonable property of
knowledge/belief.

The axiom Tn is often called the knowledge axiom, since it says that what is known is true. It is
usually accepted as the axiom that distinguishes knowledge from belief: it seems reasonable that one
could believe something that is false, but one would hesitate to say that one could know something false.



Knowledge is thus often defined as true belief: i knows ϕ if i believes ϕ and ϕ is true. So defined,
knowledge satisfies Tn.

Axiom 4n is called the positive introspection axiom. Introspection is the process of examining one’s
own beliefs, and is discussed in detail in [80, Chapter 5]. The positive introspection axiom says that an
agent knows what it knows. Similarly, axiom 5n is the negative introspection axiom, which says that
an agent is aware of what it doesn’t know. Positive and negative introspection together imply an agent
has perfect knowledge about what it does and doesn’t know (cf. [80, Equation (5.11), p79]). Whether
or not the two types of introspection are appropriate properties for knowledge/belief is the subject of
some debate. However, it is generally accepted that positive introspection is a less demanding property
than negative introspection, and is thus a more reasonable property for resource bounded reasoners.

Given the comments above, the modal system S5n is often chosen as a logic of (idealised) knowledge,
and weak-S5n is often chosen as a logic of (idealised) belief.

Alternatives to the Possible Worlds Model

As a result of the difficulties with logical omniscience, many researchers have attempted to develop
alternative formalisms for representing belief. Some of these are attempts to adapt the basic possible
worlds model; others represent significant departures from it. In the subsections that follow, we examine
some of these attempts.

Levesque — belief and awareness

In a 1984 paper, Levesque proposed a solution to the logical omniscience problem that involves making
a distinction between explicit and implicit belief [87]. Crudely, the idea is that an agent has a relatively
small set of explicit beliefs, and a very much larger (infinite) set of implicit beliefs, which include the
logical consequences of the explicit beliefs. To formalise this idea, Levesque developed a logic with
two operators; one each for implicit and explicit belief. The semantics of the explicit belief operator
were given in terms of a weakened possible worlds semantics, by borrowing some ideas from situation
semantics [10, 37]. The semantics of the implicit belief operator were given in terms of a standard
possible worlds approach. A number of objections have been raised to Levesque’s model [109, p135]:
first, it does not allow quantification — this drawback has been rectified by Lakemeyer [85]; second, it
does not seem to allow for nested beliefs; third, the notion of a situation, which underlies Levesque’s
logic is, if anything, more mysterious than the notion of a world in possible worlds; and fourth, under
certain circumstances, Levesque’s proposal still makes unrealistic predictions about agent’s reasoning
capabilities.

In an effort to recover from this last negative result, Fagin and Halpern have developed a ‘logic of
general awareness’, based on a similar idea to Levesque’s but with a very much simpler semantics [40].
However, this proposal has itself been criticised by some [81].

Konolige — the deduction model

A more radical approach to modelling resource bounded believers was proposed by Konolige [80]. His
deduction model of belief is, in essence, a direct attempt to model the ‘beliefs’ of symbolic AI systems.
Konolige observed that a typical knowledge-based system has two key components: a database of
symbolically represented ‘beliefs’, (which may take the form of rules, frames, semantic nets, or, more
generally, formulae in some logical language), and some logically incomplete inference mechanism.
Konolige modelled such systems in terms of deduction structures. A deduction structure is a pair
d = (Δ, ρ), where Δ is a base set of formula in some logical language, and ρ is a set of inference rules,
(which may be logically incomplete), representing the agent’s reasoning mechanism. To simplify the
formalism, Konolige assumed that an agent would apply its inference rules wherever possible, in order



to generate the deductive closure of its base beliefs under its deduction rules. We model deductive
closure in a function close:

close((Δ, ρ)) def
= fϕ | Δ �ρ ϕg

where Δ �ρ ϕ means that ϕ can be proved from Δ using only the rules in ρ. A belief logic can then be
defined, with the semantics to a modal belief connective [i], where i is an agent, given in terms of the
deduction structure di modelling i’s belief system:

[i]ϕ iff ϕ ∈ close(di).

Konolige went on to examine the properties of the deduction model at some length, and developed a
variety of proof methods for his logics, including resolution and tableau systems [49]. The deduction
model is undoubtedly simple; some might even argue that it is naive. However, as a direct model of the
belief systems of AI agents, it has much to commend it.

Meta-languages and syntactic modalities

A meta-language is one in which it is possible to represent the properties of another language. A
first-order meta-language is a first-order logic, with the standard predicates, quantifiers, terms, and
so on, whose domain contains formulae of some other language, called the object language. Using
a meta-language, it is possible to represent a relationship between a meta-language term denoting an
agent, and an object language term denoting some formula. For example, the meta-language formula
Bel(Janine,d Father(Zeus,Cronos)e) might be used to represent the example (1) the we saw earlier.
The quote marks, d …e, are used to indicate that their contents are a meta-language term denoting the
corresponding object-language formula.

Unfortunately, meta-language formalisms have their own package of problems, not the least of
which is that they tend to fall prey to inconsistency [95, 132]. However, there have been some fairly
successful meta-language formalisms, including those by Konolige [79], Haas [61], Morgenstern [97],
and Davies [32]. Some results on retrieving consistency appeared in the late 1980s [101, 102, 36, 133].

2.3 Towards a Theory of Agency

All of the formalisms considered so far have focussed on just one aspect of intelligent agency: either
knowledge or belief. However, it is to be expected that any realistic agent theory will be represented in
a much richer logical framework. First, neither agents nor the world they inhabit are static. In addition
to the information and pro-attitudes we mentioned earlier, an agent logic must therefore be capable
of representing the time-varying aspects of agents and their world. Moreover, although we suggested
earlier that action was a somewhat slippery concept, we shall ultimately expect our agents to do things;
some representation of action is therefore desirable.

A complete agent theory, expressed in a logic with these properties, must show how these attributes
are related. For example, it will need to explain how an agent’s information and pro-attitudes are related;
how an agent’s cognitive state changes over time; how the environment affects an agent’s cognitive state;
and how an agent’s information and pro-attitudes lead it to perform actions. Giving a good account of
these relationships is perhaps the most significant problem faced by agent theorists.

Such an all-embracing agent theory is some time off, and yet significant steps have been taken
towards it. In the following subsections, we briefly review some of this work.

Moore — knowledge and action

Moore was in many ways a pioneer of the use of logics for capturing aspects of agency [96]. His main
concern was the study of knowledge pre-conditions for actions — the question of what an agent needs to



know in order to be able to perform some action. He formalised a model of ability in a logic containing
a modality for knowledge, and a dynamic logic-like apparatus for modelling action (cf. [67]). This
formalism allowed for the possibility of an agent having incomplete information about how to achieve
some goal, and performing actions in order to find out how to achieve it. Critiques of the formalism
(and attempts to improve on it) may be found in [97, 86].

Cohen & Levesque — intention

Probably the best-known and most influential contribution to the area of agent theory is due to Cohen
and Levesque [28]. Their formalism was originally used to develop a theory of intention (as in ‘I intend
to…’), which the authors required as a pre-requisite for a theory of speech acts [29]. However, the logic
has subsequently proved to be so useful for reasoning about agents that it has been used in an analysis
of conflict and cooperation in multi-agent dialogue [48, 47], as well as several studies in the theoretical
foundations of cooperative problem solving [88, 73, 21, 22]. Here, we shall review its use in developing
a theory of intention.

When building intelligent agents — particularly agents that must interact with humans — it is
important that a rational balance is achieved between the beliefs and goals of the agents:

‘For example, the following are desirable properties of intention: An autonomous agent
should act on its intentions, not in spite of them; adopt intentions it believes are feasible
and forgo those believed to be infeasible; keep (or commit to) intentions, but not forever;
discharge those intentions believed to have been satisfied; alter intentions when relevant
beliefs change; and adopt subsidiary intentions during plan formation’. [28, p214]

Following Bratman, [14, 15], Cohen and Levesque identify seven properties that must be satisfied by a
reasonable theory of intention:

1. Intentions pose problems for agents, who need to determine ways of achieving them.

2. Intentions provide a ‘filter’ for adopting other intentions, which must not conflict.

3. Agents track the success of their intentions, and are inclined to try again if their attempts fail.

4. Agents believe their intentions are possible.

5. Agents do not believe they will not bring about their intentions.

6. Under certain circumstances, agents believe they will bring about their intentions.

7. Agents need not intend all the expected side effects of their intentions.

Given these criteria, Cohen and Levesque adopt a two-tiered approach to the problem of formalizing
a theory of intention. First, they construct a logic of rational agency, ‘being careful to sort out the
relationships among the basic modal operators’ [28, p221]. On top of this framework, they introduce a
number of derived constructs, which constitute a ‘partial theory of rational action’ [28, p221]; intention
is one of these constructs. Syntactically, the logic is a many-sorted, quantified, multi-modal logic with
equality, containing four primary modalities:

(BEL x ϕ) Agent x believes ϕ (GOAL x ϕ) Agent x has goal of ϕ
(HAPPENS α) Action α will happen next (DONE α) Action α has just happened



The semantics of BEL and GOAL are given via possible worlds, in the usual way: each agent is assigned
a belief accessibility relation, and a goal accessibility relation. The belief accessibility relation is euc-
lidean, transitive, and serial, giving a belief logic of KD45. The goal relation is serial, giving a conative
logic KD. It is assumed that each agent’s goal relation is a subset of its belief relation, implying that
an agent will not have a goal of something it believes will not happen. Worlds in the formalism are a
discrete sequence of events, stretching infinitely into past and future.

The two basic temporal operators, HAPPENS and DONE, are augmented by some operators for
describing the structure of event sequences, in the style of dynamic logic [67]. The two most important
of these constructors are ‘;’ and ‘?’:

α ;α′ denotes α followed by α′
α? denotes a ‘test action’ α

The standard future time operators of temporal logic, ‘ ’ (always), and ‘�’ (sometime) can be defined
as abbreviations, along with a ‘strict’ sometime operator, LATER:

�α def
= ∃x ⋅ (HAPPENS x;α?) α def

= ¬�¬α (LATER p) def
= ¬p ∧�p

A temporal precedence operator, (BEFORE p q) can also be derived, and holds if p holds before q. An
important assumption is that all goals are eventually dropped: �¬(GOAL x (LATER p)).

The first major derived construct is a persistent goal.

(P-GOAL x p) def
= (GOAL x (LATER p)) ∧ (BEL x ¬p) ∧�

�� BEFORE
((BEL x p) ∨ (BEL x ¬p))
¬(GOAL x (LATER p))

	

�

So, an agent has a persistent goal of p if:

1. It has a goal that p eventually becomes true, and believes that p is not currently true.

2. Before it drops the goal, one of the following conditionsmust hold: (i) the agent believes the goal
has been satisfied; or (ii) the agent believes the goal will never be satisfied.

It is a small step from persistent goals to a first definition of intention, as in ‘intending to act’. Note that
‘intending that something becomes true’ is similar, but requires a slightly different definition; see [28].

(INTEND x α) def
= (P-GOAL x [DONE x (BEL x (HAPPENS α))?;α])

Cohen and Levesque go on to show how such a definition meets many of Bratman’s criteria for a theory
of intention (outlined above). A critique of Cohen and Levesque’s theory of intention may be found
in [126]; space restrictions prevent a discussion here.

Rao & Georgeff — belief, desire, intention architectures

As we observed earlier, there is no clear consensus in either the AI or philosophy communities about
precisely which combination of information and pro-attitudes are best suited to characterising rational
agents. In the work of Cohen and Levesque, described above, just two basic attitudes were used: beliefs
and goals. Further attitudes, such as intention, were defined in terms of these. In related work, Rao
and Georgeff have developed a logical framework for agent theory based on three primitive modalities:
beliefs, desires, and intentions [105, 104, 107]. Their formalism is based on a branching model of
time, (cf. [39]), in which belief-, desire- and intention-accessible worlds are themselves branching time
structures. They are particularly concerned with the notion of realism — the question of how an agent’s
beliefs about the future affect its desires and intentions. In other work, they also consider the potential
for adding (social) plans to their formalism [106, 77].



Singh

A quite different approach to modelling agents was taken by Singh, who has developed an interesting
family of logics for representing intentions, beliefs, knowledge, know-how, and communication in a
branching-time framework [123, 124, 127, 125]. The model of intentions and beliefs is based on Asher-
Kamp Discourse Representation Theory. Singh’s formalism is extremely rich, and considerable effort
has been devoted to establishing its properties. However, its complexity prevents a detailed discussion
here.

Werner

In an extensive sequence of papers, Werner has laid the foundations of a general model of agency,
which draws upon work in economics, game theory, situated automata theory, situation semantics, and
philosophy [136, 137, 138, 139]. At the time of writing, however, the properties of this model have not
been investigated in depth.

Wooldridge — modelling multi-agent systems

For his 1992 doctoral thesis, Wooldridge developed a family of logics for representing the properties
of multi-agent systems [143, 145]. Unlike the approaches cited above, Wooldridge’s aim was not to
develop a general framework for agent theory. Rather, he hoped to construct formalisms that might be
used in the specification and verification of realistic multi-agent systems. To this end, he developed a
simple, and in some sense general, model of multi-agent systems, and showed how the histories traced
out in the execution of such a system could be used as the semantic foundation for a family of both
linear and branching time temporal belief logics. He then gave examples of how these logics could be
used in the specification and verification of moderately realistic protocols for cooperative action.

2.4 Further Reading

For a detailed discussion of intentionality and the intentional stance, see [34, 35]. A number of papers
on AI treatments of agency may be found in [5]. For an introduction to modal logic, see [26]; a slightly
older, though more wide ranging introduction, may be found in [72]. As for the use of modal logics
to model belief, see [65], which includes complexity results and proof procedures. Related work on
modelling knowledge has been done by the distributed systems community, who give the worlds in
possible worlds semantics a precise interpretation; for an introduction and further references, see [64,
41]. Overviews of formalisms for modelling belief and knowledge may be found in [63, 80, 108, 143].
A variant on the possible worlds framework, called the recursive modelling method, is described in [57];
a deep theory of belief may be found in [89]. Situation semantics, developed in the early 1980s and
recently the subject of renewed interest, represent a fundamentally new approach to modelling the world
and cognitive systems [10, 37]. However, situation semantics are not (yet) in the mainstream of (D)AI,
and it is not obvious what impact the paradigm will ultimately have.

Logics which integrate time with mental states are discussed in [83, 66, 146]; the last of these
presents a tableau-based proof method for a temporal belief logic. Two other important references for
temporal aspects are [119, 120]. Thomas has developed some logics for representing agent theories
as part of her framework for agent programming languages; see [131, 130] and section 4. For an
introduction to the temporal logics and related topics, see [58, 38]. A non-formal discussion of intention
may be found in [14], or more briefly [15]. Further work on modelling intention may be found in [60,
114, 59, 82]. Related work, focussing less on single-agent attitudes, and more on social aspects, is [74,
144, 147].



3 Agent Architectures

Until now, this article has been concerned with agent theory — the construction of formalisms for reas-
oning about agents, and the properties of agents expressed in such formalisms. Our aim in this section
is to shift the emphasis from theory to practice. We consider the issues surrounding the construction of
computer systems that satisfy the properties specified by agent theorists. We begin by looking at the
symbolic AI paradigm, and the assumptions that underpin it.

3.1 Classical Approaches: Deliberative Architectures

The foundation upon which the symbolic AI paradigm rests is the physical-symbol system hypothesis,
formulated by Newell and Simon [99]7. A physical symbol system is defined to be a physically realizable
set of physical entities (symbols) that can be combined to form structures, and which is capable of
running processes which operate on those symbols according to symbolically coded sets of instructions.
The physical-symbol system hypothesis then says that such a system is capable of general intelligent
action.

It is a short step from the notion of a physical symbol system to McCarthy’s dream of a sentential pro-
cessing automaton, or deliberate agent (the term ‘deliberate agent’ was introduced by Genesereth, [50,
pp325–327], but is here used in a slightly more general sense). A deliberate agent is one which contains
an explicitly represented, symbolic model of the world, and in which decisions (for example about what
actions to perform) are made via logical (or at least pseudo-logical) reasoning:

‘Supporters of classical AI have, in general, accepted the physical symbol system hypo-
thesis … [C]omplacent acceptance of this hypothesis, or some variant of it, led researchers
to believe that the appropriate way to design an agent capable of finding its way round and
acting in the physical world would be to equip it with some formal, logic-based represent-
ation of that world and get it to do a bit of theorem proving’. [118, §3.2]

If one aims to build such an agent, then there are at least two important problems to be solved:

1. The transduction problem: that of translating the real world into an accurate, adequate symbolic
description, in time for that description to be useful.

2. The representation/reasoning problem: that of how to symbolically represent information about
complex real-world entities and processes, and how to get agents to reason with this information
in time for the results to be useful.

The former problem has led to work on vision, speech understanding, learning, etc. The latter has
led to work on knowledge representation, automated reasoning, automated planning, etc. Despite the
immense volume of work that the problems have generated, most researchers would accept that neither
problem is anywhere near solved. Even seemingly trivial problems, such as commonsense reasoning,
have turned out to be extremely difficult. It is because of these problems that some researchers have
looked to alternative techniques; such alternatives are discussed in section 3.2. First, however, we
consider efforts made within the symbolic AI community to construct agents.

Planning agents

Since the early 1970s, the AI planning community has been closely concerned with the design of artifi-
cial agents; in fact, it seems reasonable to claim that most innovations in agent design have come from
this community. Planning is essentially automatic programming: the design of a detailed course of ac-
tion which, when executed, will result in the achievement of some desired goal. Within the symbolic AI

7See [118] for a detailed discussion of the way that this hypothesis has affected thinking in symbolic AI.



community, it has long been assumed that some form of AI planning system will be a central component
of any artificial agent. Perhaps the best know early planning system was STRIPS [44]. This system
takes a symbolic descripion of both the world and a desired goal state, and a set of action descriptions,
which characterise the pre- and post-conditions associated with various actions. It then attempts to find
a sequence of actions that will achieve the goal, by using a simple means-ends analysis, which essen-
tially involves matching the post-conditions of actions against the desired goal. The STRIPS planning
algorithm was very simple, and proved to be ineffective on problems of even moderate complexity.
Much effort was subsequently devoted to developing more effective automatic planning techniques.
Two major innovations were hierarchical and non-linear planning [113, 112]. However, in the mid
1980s, Chapman established some theoretical results which indicate that even such refined techniques
will ultimately turn out to be unusable in any time-constrained system [24]. These results have had a
profound influence on subsequent AI planning research; perhaps more than any other results, they have
caused some researchers to question the whole symbolic AI paradigm, and have thus led to the work
on alternative approaches that we discuss in section 3.2.

In spite of these difficulties, various attempts have been made to construct agents whose primary
component is a planner. For example: the Integrated Planning, Execution and Monitoring (IPEM)
system is based on a sophisticated non-linear planner [7]; Wood’s AUTODRIVE system has planning
agents operating in a highly dynamic environment (a traffic simulation) [142].

Bratman, Israel & Pollack — IRMA

In section 2, we saw that some researchers have considered frameworks for agent theory based on beliefs,
desires, and intentions [105]. Some researchers have also developed agent architectures based on these
attitudes. One example is the Intelligent Resource-bounded Machine Architecture (IRMA) [16]. This
architecture has four key symbolic data structures: a plan library, and explicit representations of beliefs,
desires, and intentions. Additionally, the architecture has: a reasoner, for reasoning about the world;
a means-ends analyser, for determining which plans might be used to achieve the agent’s intentions;
an opportunity analyser, which monitors the environment in order to determine further options for the
agent; a filteringprocess; and a deliberation process. The filtering process is responsible for determining
the subset of the agent’s potential courses of action that have the property of being consistent with the
agent’s current intentions. A final choice between options is made by the deliberation process. The
IRMA architecture has been evaluated in an experimental scenario known as the Tileworld [103].

Vere & Bickmore — Homer

An interesting experiment in the design of intelligent agents was conducted by Vere and Bickmore [134].
They argued that the enabling technologies for intelligent agents are sufficiently developed to be able
to construct a prototype autonomous agent, with linguistic ability, planning and acting capabilities,
and so on. They developed such an agent, and christened it Homer. This agent is a simulated robot
submarine, which exists in a two-dimensional ‘Seaworld’, about which it has only partial knowledge.
Homer takes instructions from a user in a limited subset of English with about an 800 word vocabulary;
instructions can contain moderately sophisticated temporal references. Homer can plan how to achieve
its instructions, (which typically relate to collecting and moving items around the Seaworld), and can
then execute its plans, modifying them as required during execution. The agent has a limited episodic
memory, and using this, is able to answer questions about its past experiences.

3.2 Alternative Approaches: Reactive Architectures

As we observed above, there are many unsolved (some would say intractable) problems associated with
symbolicAI. These problems have lead some researchers to question the viability of the whole paradigm,
and to the development of what are generally know as reactive architectures. For our purposes, we shall



define a reactive architecture to be one which does not include any kind of central symbolic world
model, and does not use complex symbolic reasoning.

Brooks — behaviour languages

Probably the most vocal critic of the symbolic AI notion of agency has been Rodney Brooks, a re-
searcher at MIT who apparently became frustrated by AI approaches to building control mechanisms
for autonomous mobile robots. In a 1985 paper, he outlined an alternative architecture for building
agents, the so called subsumption architecture [17]. The analysis of alternative approaches begins with
Brooks’ work.

In recent papers, [20, 19, 18], Brooks has propounded three key theses:

1. Intelligent behaviour can be generated without explicit representations of the kind that symbolic
AI proposes.

2. Intelligent behaviour can be generated without explicit abstract reasoning of the kind that symbolic
AI proposes.

3. Intelligence is an emergent property of certain complex systems.

Brooks identifies two key ideas that have informed his research:

1. Situatedness and embodiment: ‘Real’ intelligence is situated in the world, not in disembodied
systems such as theorem provers or expert systems.

2. Intelligence and emergence: ‘Intelligent’ behaviour arises as a result of an agent’s interaction
with its environment. Also, intelligence is ‘in the eye of the beholder’; it is not an innate, isolated
property.

If Brooks was just a Dreyfus-style critic of AI, his ideas might not have gained much currency.
However, to demonstrate the validity of his claims, he has built a number of robots, based on the sub-
sumption architecture. A subsumption architecture is a hierarchy of task-accomplishing behaviours.
Each behaviour ‘competes’ with the others to exercise control over the robot. Lower layers represent
more primitive kinds of behaviour, (such as avoiding obstacles), and have precedence over layers fur-
ther up the hierarchy. It should be stressed that the resulting systems are, in terms of the amount of
computation they need to do, extremely simple, with no explicit reasoning, or even pattern matching,
of the kind found in symbolic AI systems. But despite this simplicity, Brooks has demonstrated the ro-
bots doing tasks that would be impressive if they were accomplished by symbolic AI systems. Similar
work has been reported by Steels, who described simulations of ‘Mars explorer’ systems, containing a
large number of subsumption-architecture agents, that can achieve near-optimal performance in certain
tasks [129].

Agre & Chapman — Pengi

At about the same time as Brooks was describing his first results with the subsumption architecture,
Chapman was completing his Master’s thesis, in which he reported the theoretical difficulties with
planning described above, and was coming to similar conclusions about the inadequacies of the symbolic
AI model himself. Together with his co-worker Agre, he began to explore alternatives to the AI planning
paradigm [25].

Agre observed that most everyday activity is ‘routine’ in the sense that it requires little — if any
— new abstract reasoning. Most tasks, once learned, can be accomplished in a routine way, with little
variation. Agre proposed that an efficient agent architecture could be based on the idea of ‘running



arguments’. Crudely, the idea is that as most decisions are ‘routine’, they can be encoded into a low-
level structure (such as a digital circuit), which only needs periodic updating, perhaps to handle new
kinds of problems. His approach was illustrated with the celebrated Pengi system [3]. Pengi is a
simulated video game, with the central character controlled using a scheme such as that outlined above.

Rosenschein & Kaelbling — situated automata

Another sophisticated approach is that of Rosenschein and Kaelbling [110, 111, 76]. In their situ-
ated automata paradigm, an agent is specified in terms of a logic of knowledge. This specification is
then compiled down to a low-level digital machine, which satisfies the intentional specification. The
technique depends upon the possibility of giving the worlds in possible worlds semantics a concrete
interpretation in terms of the states of an automaton:

‘[An agent] … x is said to carry the information that p in world state s, written s |= K(x, p),
if for all world states in which x has the same value as it does in s, the proposition p is
true.’ [76, p36]

The authors have developed several software tools to assist in the construction of agents: the Ruler
program is used to specify the perception component of an agent; the Gapps program is used to specify
the action component. Both of these languages are implemented over a third, LISP-like language, called
Rex, which is used to specify simple digital machines. The situated automata paradigm has attracted
much interest. However, at the time of writing, the theoretical limitations of the approach are not well
understood.

Connah & Wavish — ABLE

A group of researchers at Philips research labs in the UK have developed an Agent Behaviour Language,
(ABLE), in which agents are programmed in terms of simple, rule-like licences [31, 135]. Licences may
include some representation of time (though the language is not based on any kind of temporal logic):
they loosely resemble behaviours in the subsumption architecture (see above). ABLE can be compiled
down to a simple digital machine, realised in the ‘C’ programming language. The idea is similar to
situated automata, though there appears to be no equivalent theoretical foundation. The result of the
compilation process is a very fast implementation, which has been reportedly used to control an Compact
Disk-Interactive (CD-I) application.

3.3 Hybrid Architectures

Many researchers have suggested that neither a completely deliberative nor completely reactive ap-
proach is suitable for building agents. They have argued the case for hybrid systems, which attempt to
marry classical and alternative approaches. In this section, we review these approaches.

Georgeff & Lansky — PRS

One of the best known agent architectures is the Procedural Reasoning System (PRS), developed by
Georgeff and Lansky [54]. Like IRMA, (see above), the PRS is a belief-desire-intention architecture,
which includes a plan library, as well as explicit symbolic representations of beliefs, desires, and inten-
tions. Beliefs are facts, either about the external world or the system’s internal state, and are expressed in
classical first-order logic. Desires are represented as system behaviours (rather than as static represent-
ations of goal states). A PRS plan library contains a set of partially-elaborated plans, called knowledge
areas (KAs), each of which is associated with an invocation condition. This condition determines when
the KA is to be activated. KAs may be activated in a goal-driven or data driven fashion; KAs may also
be reactive, allowing the PRS to respond rapidly to changes in its environment. The set of currently



active KAs in a system represent its intentions. These various data structures are manipulated by a
system interpreter, which is responsible for updating beliefs, invoking KAs, and executing actions. The
PRS has been evaluated in a simulation of maintenance procedures for the space shuttle, as well as other
domains [52].

Ferguson — TouringMachines

For his 1992 Doctoral thesis, Ferguson developed the TouringMachines hybrid agent architecture [43,
42]8. The architecture consists of perception and action subsystems, which interface directly with
the agent’s environment, and three control layers, embedded in a control framework, which mediates
between the layers. Each layer is an independent, activity-producing, concurrently executing process.

The reactive layer generates potential courses of action in response to events that happen too quickly
for the other layers to deal with. It is implemented as a set of situation-action rules, in the style of Brooks’
subsumption architecture (see above).

The planning layer constructs plans and selects actions to execute in order to achieve the agent’s
goals. This layer consists of two components: a planner, and a focus of attention mechanism. The
planner integrates plan generation and execution, and uses a library of partially elaborated plans, together
with a topological world map, in order to construct plans that will accomplish the agent’s main goal.
The purpose of the focus of attention mechanism is to limit the amount of information that the planner
must deal with, and so improve its efficiency. It does this by filtering out irrelevant information from
the environment.

The modelling layer contains symbolic representations of the cognitive state of other entities in the
agent’s environment. These models are manipulated in order to identify and resolve goal conflicts —
situations where an agent can no longer achieve its goals, as a result of unexpected interference.

The three layers are able to communicate with each other (via message passing), and are embedded in
a control framework. The purpose of this framework is to mediate between the layers, and in particular,
to deal with conflicting action proposals from the different layers. The control framework does this by
using control rules.

3.4 Further Reading

Most introductory textbooks on AI discuss the physical symbol system hypothesis; a good recent ex-
ample of such a text is [56]. There are many objections to the symbolic AI paradigm, in addition to
those we have outlined above. Again, introductory textbooks provide the stock criticisms and replies.

There is a wealth of material on planning and planning agents. See [51] for an overview of the state
of the art in planning (as it was in 1987), [5] for a thorough collection of papers on planning, (many of the
papers cited above are included), and [140] for a detailed description of SIPE, a sophisticated planning
system used in a real-world application (the control of a brewery!) Another important collection of
planning papers is [53]. The books by Dean & Wellman and Allen et al. contain much useful related
material [33, 6]. There is now a regular international conference on planning; the proceedings of the
first were published as [68].

The collection of papers edited by Maes [90] contains many interesting papers on alternatives to the
symbolic AI paradigm. Kaelbling [75] presents a clear discussion of the issues associated with devel-
oping resource-bounded rational agents, and proposes an agent architecture somewhat similar to that
developed by Brooks. A proposal by Nilsson for teleo reactive programs — goal directed programs that
nevertheless respond to their environment — is described in [100]. The proposal draws heavily on the
situated automata paradigm; other work based on this paradigm is described in [121, 78]. Schoppers has

8It is worth noting that Ferguson’s thesis gives an excellent overview of the problems and issues associated with building
rational, resource-bounded agents. Moreover, the description given of the TouringMachines architecture is itself extremely
clear. We recommend it as a point of departure for further reading.



proposed compiling plans in advance, using traditional planning techniques, in order to develop univer-
sal plans, which are essentially decision trees that can be used to efficiently determine an appropriate
action in any situation [115]. Other proposals for ‘reactive planners’ are reactive action packages [45]
and competence modules [91].

A hybrid architecture specifically developed for multi-agent applications is described in [62].

4 Agent Languages

By an agent language, we mean a system that allows one to program hardware or software computer
systems in terms of some of the concepts developed by agent theorists. At the very least, we expect
such a language include some structure corresponding to an agent. However, we would also expect to
see some other attributes of agency (beliefs, goals, or other mentalistic notions) used to program agents.
As the reader can see, the distinction between an agent language and architecture is somewhat artificial;
many of the architectures mentioned above could be counted as languages by this definition.

Much of the current interest in agent languages is a result of Shoham’s proposal for agent-oriented
programming. We begin our consideration of languages with a survey of Shoham’s work.

Shoham — agent-oriented programming

Yoav Shoham has proposed a ‘new programming paradigm, based on a societal view of computa-
tion’ [121, p4],[122]. The key idea which informs this agent-oriented programming (AOP) paradigm is
that of directly programming agents in terms of the mentalistic, intentional notions that agent theorists
have developed to represent the properties of agents. The motivation behind such a proposal is that, as
we observed in section 2, humans use the intentional stance as an abstraction mechanism for represent-
ing the properties of complex systems. In the same way that we use the intentional stance to describe
humans, it might be useful to use the intentional stance to program machines.

Shoham proposes that a fully developed AOP system will have three components:

• a logical system for defining the mental state of agents;

• an interpreted programming language for programming agents;

• an ‘agentification’ process, for compiling agent programs into low-level executable systems.

At the time of writing, Shoham has only published results on the first two components. (In [121, p12] he
wrote that ‘the third is still somewhat mysterious to me’, though later in the paper he indicated that he was
thinking of something along the lines of Rosenschein & Kaelbling’s situated automata paradigm [111].)
Shoham’s first attempt at an AOP language was the AGENT0 system. The logical component of this
system is a quantified multi-modal logic, allowing direct reference to time. No semantics are given, but
the logic appears to be based on [131]. The logic contains three modalities: belief, commitment and
ability. The following is an acceptable formula of the logic, illustrating it’s key properties:

CAN5
a open(door)8 ⇒ B5

b CAN5
a open(door)8.

This formula is read: ‘if at time 5 agent a can ensure that the door is open at time 8, then at time 5 agent
b believes that at time 5 agent a can ensure that the door is open at time 8’.

Corresponding to the logic is the AGENT0 programming language. In this language, an agent is
specified in terms of a set of capabilities (things the agent can do), a set of initial beliefs and commit-
ments, and a set of commitment rules. The key component, which determines how the agent acts, is the
commitment rule set. Each commitment rule contains a message condition, a mental condition, and an
action. In order to determine whether such a rule fires, the message condition is matched against the



messages the agent has received; the mental condition is matched against the beliefs of the agent. If the
rule fires, then the agent becomes committed to the action. Actions may be private, corresponding to an
internally executed subroutine, or communicative, i.e., sending messages. Messages are constrained to
be one of three types: ‘requests’ or ‘unrequests’ to perform or refrain from actions, and ‘inform’ mes-
sages, which pass on information — Shoham indicates that he took his inspiration for these message
types from speech act theory [116, 30]. Request and unrequest messages typically result in the agent’s
commitments being modified; inform messages result in a change to the agent’s beliefs.

AGENT0 was only ever intended as a prototype, to illustrate the principles of AOP. A more refined
implementation was developed by Thomas, for her 1993 doctoral thesis [130]. Her Planning Commu-
nicating Agents (PLACA) language was intended to address one severe drawback to AGENT0: the
inability of agents to plan, and communicate requests for action via high-level goals. Agents in PLACA
are programmed in much the same way as in AGENT0, in terms of mental change rules. The logical
component of PLACA is similar to AGENT0’s, but includes operators for planning to do actions and
achieve goals. The semantics of the logic and its properties are examined in detail. However, PLACA
is not at the ‘production’ stage; it is an experimental language.

Fisher — Concurrent METATEM

One drawback with both AGENT0 and PLACA is that the relationship between the logic and interpreted
programming language is only loosely defined: in neither case can the programming language be said
to truly execute the associated logic. The Concurrent METATEM language developed by Fisher can
make a stronger claim in this respect [46]. A Concurrent METATEM system contains a number of
concurrently executing agents, each of which is able to communicate with its peers via asynchronous
broadcast message passing. Each agent is programmed by giving it a temporal logic specification of
the behaviour that it is intended the agent should exhibit. An agent’s specification is executed directly
to generate its behaviour. Execution of the agent program corresponds to iteratively building a logical
model for the temporal agent specification. It is possible to prove that the procedure used to execute an
agent specification is correct, in that if it is possible to satisfy the specification, then the agent will do
so [9].

The logical semantics of Concurrent METATEM are closely related to the semantics of temporal logic
itself. This means that, amongst other things, the specification and verification of Concurrent METATEM
system is a viable proposition. At the time of writing, only prototype implementations of the language
are available; full implementations are expected soon.

4.1 Further Reading

There are many other languages which, while they may not be agent languages in the sense we have
described, are nevertheless of interest. Concurrent object languages are of considerable interest in
software engineering. The notion of a self-contained concurrently executing object, with some internal
state that is not directly accessible to the outside world, responding to messages from other such objects,
is very close to the concept of an agent as we have defined it. The only significant difference is that
our agents are defined in terms of beliefs, goals, and so on. The earliest concurrent object framework
was Hewitt’s Actor model [70, 1]; another well-known example is the ABCL system [148]. A recent
collection of papers on concurrent object systems is [2].

Other languages of interest include Oz [69] and IC PROLOG II [27]. The latter, as its name suggests,
is an extension of PROLOG, which includesmultiple-threads, high-level communication primitives, and
some object-oriented features.



5 Concluding Remarks

In this paper, we hope to have at least mentioned the major research issues and developments associated
with the synthesis of artificial agents from the point of view of AI. In this final section, we point the
reader at some current applications of agent technology in AI and computer science generally.

Distributed AI

As we observed in section 1, there has been a marked flowering of interest in agent technology since
the mid-1980s. This interest is in part due to the renewed interest in Distributed AI. Although DAI
encompasses most of the issues we have discussed in this paper, it should be stressed that the classical
emphasis in DAI has been on macro phenomona (the social level), rather than the micro phenomena
(the agent level) that we have been concerned with in this paper. DAI thus looks at such issues as how a
group of agents can be made to cooperate in order to efficiently solve problems, and how the activities of
such a group can be efficiently coordinated. DAI researchers have applied agent technology in a variety
of areas. Example applications include power systems management [141], air traffic control [128], and
intelligent document retrieval [98]. The classic reference to DAI is [13].

Agents in CSCW

The possible applications of agent technology in computer supported cooperative work (CSCW) are
currently the subject of much interest. CSCW is informally defined by Baecker to be ‘computer assisted
coordinated activity such as problem solving and communication carried out by a group of collaborating
individuals’ [8, p1]. The primary emphasis of CSCW is on the development of (hardware and) software
tools to support collaborative human work — the term groupware has been coined to describe such
tools. Various authors have proposed the use of agent technology in groupware. For example, in his
participant systems proposal, Chang suggests systems in which humans collaborate with not only other
humans, but also with artificial agents [23]. McGregor has imagined prescient agents — intelligent
administrative assistants, that predict our actions, and carry out routine or repetetive administrative
procedures on our behalf [94]. For example, imagine a group of computer agents that scanned email
and prioritised it, junking irrelevant or duplicated mail items9; or imagine a group of agents that scanned
USENET news for you, bringing to your attention conference announcements of interest, perhaps even
using FTP or World Wide Web to cooperate with other agents and obtain papers that look relevant;
imagine how useful (or perhaps annoying) it would be to have an agent remind you of a conference
deadline in time to finish off a half-written paper. While these applications are (mostly) some time off,
their basic principles are, at the time of writing, the subject of serious academic and industrial research.
We refer the interested reader to the collection of papers edited by Baecker for more details [8].

Agents in Virtual Environments

The potential for marrying agent technology with virtual environments is being investigated in the Oz
project10 [11]. The aim of the project is to develop ‘… artistically interesting, highly interactive, simu-
lated worlds… to give users the experience of living in (not merely watching) dramatically rich worlds
that include moderately competent, emotional agents’ [12, p1]. A pre-requisite is the development
of broad agents — systems that include ‘a broad set of capabilities, including goal-directed reactive
behaviour, emotional state and behaviour, and some natural language abilities’ [12, p1].

9Such a system has been prototyped [92].
10Not to be confused with the OZ programming language [69].



Towards Agent-Based Open Systems

While the reviews presented above are by no means exhaustive, they at least indicate that computer
scientists and AI researchers with a range of interests, applications, and backgrounds are taking agent
technology seriously. As computer systems become ever more open and interconnected, we may expect
that this technology will become increasingly common.
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Bibliographical Remarks

There are a number of sources for work on agent theories, architectures, and languages. The most
obvious are the major international and national conferences on AI: the International Joint Conference
on AI (IJCAI), held biannually in odd years, the European Conference on AI (ECAI), held biannually in
even years, and the (American) National Conference on AI, organised by AAAI, which is held annually
in the US except when IJCAI is held on the North American continent. In 1994, the eleventh ECAI
conference will be held in Amsterdam, and the eleventh AAAI in Seattle, WA; in 1995, the fourteenth
IJCAI will be held in Montreal, Canada. A brief look at the references on this paper will confirm
that much of the work cited here appeared in these three conferences. The proceedings of all these
conferences are readily available. Turning to more specialist conferences and workshops, there is the
International Workshop on Distributed AI (IWDAI), which has been held more-or-less annually since
1979; the thirteenth such workshop will be held at Lake Quinalt, WA, in July 1994. Unfortunately, the
proceedings of IWDAI are not published regularly, and can be difficult to get hold of. In Europe, the
workshop on Modelling Autonomous Agents in Multi-Agent Worlds (MAAMAW) is held annually; the
sixth such workshop will be held in Odense, Denmark, in August 1994. The MAAMAW proceedings



are published regularly. Results of interest also appear in other workshops, for example the UK series
on Cooperating Knowledge-Based Systems (CKBS), and the conferences on Cooperative Information
Systems (CoopIS). The first International Conference on Multi-Agent Systems (ICMAS) will be held in
San Francisco in July 1995; further details are not available at the time of writing. Turning specifically
to theory, the fifth conference on Theoretical Aspects of Reasoning about Knowledge (TARK) was
held in 1994. The European Workshop on Logics in AI (JELIA), and the International Conference on
Knowledge Representation and Reasoning (KR&R) are other good sources of theory.

With respect to journals, there is obviouslyArtificial Intelligence; the IEEE Transactions on Systems,
Man and Cybernetics has also had much useful material over the years. The only related specialist
publication we know of is the the International Journal on Intelligent and Cooperative Information
Systems (IJICIS).

The reader may be interested to note that a BIBTEX format database containing more than five-
hundred related references (including all those that appear in this paper) is available on request from
the first author. For convenience, this database comes with a POSTSCRIPT format file listing the citation
keys of all the entries.


