
as a new
e being

an over-
elligent
of agents

ic. This
h qual-

e of the
compo-
els and

tself in
oftware
of soft-
[4] and
xtend the

ers con-
ons are

g com-
(ii) the
e. Fur-
build

ey con-

rs find the

utono-

roblem
—they
tors; (iii)
control
n pur-
in their
Agent-Oriented Software Engineering

Nicholas R. Jennings

Dept. Electronic Engineering, Queen Mary & Westfield College,
University of London, London E1 4NS, UK.

n.r.jennings@qmw.ac.uk

1 Introduction
Increasingly many computer systems are being viewed in terms of autonomous agents. Agents are being espoused
theoretical model of computation that more closely reflects current computing reality than Turing Machines. Agents ar
advocated as the next generation model for engineering complex distributed systems. Agents are also being used as
arching framework for bringing together the component AI sub-disciplines that are necessary to design and build int
entities. Despite this intense interest, however, a number of fundamental questions about the nature and the use
remain unanswered. In particular:

• what is the essence of agent-based computing?
• what makes agents an appealing and powerful conceptual model?
• what are the drawbacks of adopting an agent-oriented approach?
• what are the wider implications for AI of agent-based computing?

These questions can be tackled from many different perspectives; ranging from the philosophical to the pragmat
paper proceeds from the standpoint of using agent-based software to solve complex, real-world problems. Building hig
ity software for complex real-world applications is difficult. Indeed, it has been argued that such developments are on
most complex construction tasks humans undertake (both in terms of the number and the flexibility of the constituent
nents and in the complex way in which they are interconnected). Moreover, this statement is true no matter what mod
techniques are applied: it is a consequence of the “essential complexity of software” [2]. Such complexity manifests i
the fact that software has a large number of parts that have many interactions [8]. Given this state of affairs, the role of s
engineering is to provide models and techniques that make it easier to handle this complexity. To this end, a wide range
ware engineering paradigms have been devised (e.g. object-orientation [1] [7], component-ware [9], design patterns
software architectures [3]). Each successive development either claims to make the engineering process easier or to e
complexity of applications that can feasibly be built. Although evidence is emerging to support these claims, research
tinue to strive for more efficient and powerful techniques, especially as solutions for ever more demanding applicati
sought.

In this article, it is argued that although current methods are a step in the right direction, when it comes to developin
plex, distributed systems they fall short in one of three main ways: (i) the basic building blocks are too fine grained;
interactions are too rigidly defined; or (iii) they posses insufficient mechanisms for dealing with organisational structur
thermore, it will be argued that:agent-oriented approaches can significantly enhance our ability to model, design and
complex (distributed) software systems.

2 The Essence of Agent-Based Computing
The first step in arguing for an agent-oriented approach to software engineering is to precisely identify and define the k
cepts of agent-oriented computing. Here the key definitional problem relates to the term “agent”. At present, there is much
debate, and little consensus, about exactly what constitutes agenthood. However, an increasing number of researche
following characterisation useful [10]:

an agent is an encapsulated computer system that is situated in some environment, and that is capable of flexible, a
mous action in that environment in order to meet its design objectives

There are a number of points about this definition that require further explanation. Agents are: (i) clearly identifiable p
solving entities with well-defined boundaries and interfaces; (ii) situated (embedded) in a particular environment
receive inputs related to the state of their environment through sensors and they act on the environment through effec
designed to fulfill a specific purpose—they have particular objectives (goals) to achieve; (iv) autonomous—they have
both over their internal state and over their own behaviour; (v) capable of exhibiting flexible problem solving behaviour i
suit of their design objectives—they need to be both reactive (able to respond in a timely fashion to changes that occur
environment) and proactive (able to opportunistically adopt new goals) [11].

e multi-
, or the
tives or
m simple
negotia-
ints that

ent-ori-
are con-
ethod
perating
milarly
ature and

problem
defines
e may be
sent the
s evolve
deliver

ed proto-
t together

ould be
nt-based
litative in

hniques
n the

e by exam-

. Booch

eable

perties,

nents.

s, each
ture of
ver, peer,

s aims

ystems

is gives
When adopting an agent-oriented view of the world, it soon becomes apparent that most problems require or involv
ple agents: to represent the decentralised nature of the problem, the multiple loci of control, the multiple perspectives
competing interests. Moreover, the agents will need to interact with one another: either to achieve their individual objec
to manage the dependencies that ensue from being situated in a common environment. These interactions can vary fro
information interchanges, to requests for particular actions to be performed and on to cooperation, coordination and
tion in order to arrange inter-dependent activities. Whatever the nature of the social process, however, there are two po
qualitatively differentiate agent interactions from those that occur in other software engineering paradigms. Firstly, ag
ented interactions occur through a high-level (declarative) agent communication language. Consequently, interactions
ducted at the knowledge-level [6]: in terms of which goals should be followed, at what time, and by whom (cf. m
invocation or function calls that operate at a purely syntactic level). Secondly, as agents are flexible problem solvers, o
in an environment over which they have only partial control and observability, interactions need to be handled in a si
flexible manner. Thus, agents need the computational apparatus to make context-dependent decisions about the n
scope of their interactions and to initiate (and respond to) interactions that were not foreseen at design time.

In most cases, agents act to achieve objectives either on behalf of individuals/companies or as part of some wider
solving initiative. Thus, when agents interact there is typically some underpinning organisational context. This context
the nature of the relationship between the agents. For example, they may be peers working together in a team or on
the boss of the others. In any case, this context influences an agent’s behaviour. Thus it is important to explicitly repre
relationship. In many cases, relationships are subject to ongoing change: social interaction means existing relationship
and new relations are created. The temporal extent of relationships can also vary significantly: from just long enough to
a particular service once, to a permanent bond. To cope with this variety and dynamic, agent researchers have: devis
cols that enable organisational groupings to be formed and disbanded, specified mechanisms to ensure groupings ac
in a coherent fashion, and developed structures to characterise the macro behaviour of collectives [5] [11].

3 Agent-Oriented Software Engineering
The most compelling argument that could be made for adopting an agent-oriented approach to software development w
to have a range of quantitative data that showed, on a standard set of software metrics, the superiority of the age
approach over a range of other techniques. However such data simply does not exist. Hence arguments must be qua
nature.

The structure of the argument that will be used here is as follows. On one hand, there are a number of well-known tec
for tackling complexity in software. Also the nature of complex software systems is (reasonably) well understood. O
other hand, the key characteristics of the agent-based paradigm have been elucidated. Thus an argument can be mad
ining the degree of match between these two perspectives.

Before this argument can be made, however, the techniques for tackling complexity in software need to be introduced
identifies three such tools [1]:

• Decomposition:The most basic technique for tackling any large problem is to divide it into smaller, more manag
chunks each of which can then be dealt with in relative isolation.

• Abstraction:The process of defining a simplified model of the system that emphasises some of the details or pro
while suppressing others.

• Organisation1: The process of identifying and managing interrelationships between various problem solving compo

Next, the characteristics of complex systems need to be enumerated [8]:
• Complexity frequently takes the form of a hierarchy. That is, a system that is composed of inter-related sub-system

of which is in turn hierarchic in structure, until the lowest level of elementary sub-system is reached. The precise na
these organisational relationships varies between sub-systems, however some generic forms (such as client-ser
team, etc.) can be identified. These relationships are not static: they often vary over time.

• The choice of which components in the system are primitive is relatively arbitrary and is defined by the observer’
and objectives.

• Hierarchic systems evolve more quickly than non-hierarchic ones of comparable size. In other words, complex s
will evolve from simple systems more rapidly if there arestable intermediate forms, than if there are not.

• It is possible to distinguish between the interactionsamongsub-systems and the interactionswithin sub-systems. The lat-
ter are both more frequent (typically at least an order of magnitude more) and more predictable than the former. Th

1 Booch actually uses the term “hierarchy” for this final point [1]. However, the more neutral term “organisation” is used here.

nd-
se inter-

positions
ent-ori-
dealing

sub-sys-
compo-
orking

plex sys-
ving
s should
actions

ct with
ans it is
ons,
n-time.

ractions
anner.
tems in
m in a
an spon-
e enacted
syntac-

relation-
educed.
h inter-
ribed at

acting,
rocess of

ltiple
ractions
problem
onsists of

t act and

erms of
orate

based upon
rise to the view that complex systems arenearly decomposable: sub-systems can be treated almost as if they are indepe
ent of one another, but not quite since there are some interactions between them. Moreover, although many of the
actions can be predicted at design time, some cannot.

With these two characterisations in place, the form of the argument can be expressed: (i) show agent-oriented decom
are an effective way of partitioning the problem space of a complex system; (ii) show that the key abstractions of the ag
ented mindset are a natural means of modelling complex systems; and (iii) show the agent-oriented philosophy for
with organisational relationships is appropriate for complex systems.

3.1 Merits of Agent-Oriented Decomposition
Complex systems consist of a number of related sub-systems organised in a hierarchical fashion. At any given level,
tems work together to achieve the functionality of their parent system. Moreover, within a sub-system, the constituent
nents work together to deliver the overall functionality. Thus, the same basic model of interacting components, w
together to achieve particular objectives occurs throughout the system.

Given this fact, it is entirely natural to modularise the components in terms of the objectives they achieve2. In other words,
each component can be thought of as achieving one or more objectives. A second important observation is that com
tems have multiple loci of control: “real systems have no top” [7] pg 47. Applying this philosophy to objective-achie
decompositions means that the individual components should localise and encapsulate their own control. Thus, entitie
have their own thread of control (i.e. they should be active) and they should have control over their own choices and
(i.e. they should be autonomous).

For the active and autonomous components to fulfil both their individual and collective objectives, they need to intera
one another (recall complex systems are only nearly decomposable). However the system’s inherent complexity me
impossible to knowa priori about all potential links: interactions will occur at unpredictable times, for unpredictable reas
between unpredictable components. For this reason, it is futile to try and predict or analyse all the possibilities at desig
It is more realistic to endow the components with the ability to make decisions about the nature and scope of their inte
at run-time. From this, it follows that components need the ability to initiate (and respond to) interactions in a flexible m

The policy of deferring to run-time decisions about component interactions facilitates the engineering of complex sys
two ways. Firstly, problems associated with the coupling of components are significantly reduced (by dealing with the
flexible and declarative manner). Components are specifically designed to deal with unanticipated requests and they c
taneously generate requests for assistance if they find themselves in difficulty. Moreover because these interactions ar
through a high-level agent communication language, coupling becomes a knowledge-level issue. This, in turn, removes
tic concerns from the types of errors caused by unexpected interactions. Secondly, the problem of managing control
ships between the software components (a task that bedevils traditional functional decompositions) is significantly r
All agents are continuously active and any coordination or synchronisation that is required is handled bottom-up throug
agent interaction. Thus, the ordering of the system’s top-level goals is no longer something that has to be rigidly presc
design time. Rather, it becomes something that is handled in a context-sensitive manner at run-time.

From this discussion, it is apparent that a natural way to modularise a complex system is in terms of multiple, inter
autonomous components that have particular objectives to achieve. In short, agent-oriented decompositions aid the p
developing complex systems.

3.2 Appropriateness of Agent-Oriented Abstractions
A significant part of the design process is finding the right models for viewing the problem. In general, there will be mu
candidates and the difficult task is picking the most appropriate one. When designing software, the most powerful abst
are those that minimise the semantic gap between the units of analysis that are intuitively used to conceptualise the
and the constructs present in the solution paradigm. In the case of complex systems, the problem to be characterised c
sub-systems, sub-system components, interactions and organisational relationships. Taking each in turn:

• Sub-systems naturally correspond to agent organisations. They involve a number of constituent components tha
interact according to their role within the larger enterprise.

• The appropriateness of viewing sub-system components as agents has been made above.
• The interplay between the sub-systems and between their constituent components is most naturally viewed in t

high-level social interactions: “at any given level of abstraction, we find meaningful collections of entities that collab

2 Indeed the view that decompositions based upon functions/actions/processes are more intuitive and easier to produce than those
data/objects is even acknowledged within the object-oriented community [7] pg 44.

terac-
achieve

llections
ain the
repre-
anding
tion to

e goal.

onal rela-
ly form-

ploit two
eeds of
of agents
rovide a
s. Their

ded into

f meta-
wever if
ollowing
arly ana-
umber and
need to

ringer

eview
to achieve some higher level view” [1] pg 34. This view accords precisely with the knowledge-level treatment of in
tion afforded by the agent-oriented approach. Agent systems are invariably described in terms of “cooperating to
common objectives”, “coordinating their actions” or “negotiating to resolve conflicts”.

• Complex systems involve changing webs of relationships between their various components. They also require co
of components to be treated as a single conceptual unit when viewed from a different level of abstraction. Here ag
agent-oriented mindset provides suitable abstractions. A rich set of structures are typically available for explicitly
senting and managing organisational relationships. Interaction protocols exist for forming new groupings and disb
unwanted ones. Finally, structures are available for modelling collectives. The latter point is especially useful in rela
representing sub-systems since they are nothing more than a team of components working to achieve a collectiv

3.3 Need for Flexible Management of Changing Organisational Structures
Organisational constructs are first-class entities in agent systems. Thus explicit representations are made of organisati
tionships and structures. Moreover, agent-based systems have the concomitant computational mechanisms for flexib
ing, maintaining and disbanding organisations. This representational power enables agent-oriented systems to ex
facets of the nature of complex systems. Firstly, the notion of a primitive component can be varied according to the n
the observer. Thus at one level, entire sub-systems can be viewed as a singleton, alternatively teams or collections
can be viewed as primitive components, and so on until the system eventually bottoms out. Secondly, such structures p
variety of stable intermediate forms, that, as already indicated, are essential for rapid development of complex system
availability means that individual agents or organisational groupings can be developed in relative isolation and then ad
the system in an incremental manner. This, in turn, ensures there is a smooth growth in functionality.

4 Conclusions and Future Work
This paper has sought to justify the claim that agent-based computing has the potential to provide a powerful suite o
phors, concepts and techniques for conceptualising, designing and implementing complex (distributed) systems. Ho
this potential is to be fulfilled and agent-based systems are to reach the mainstream of software engineering, then the f
limitations in the current state of the art need to be overcome: a systematic methodology that enables developers to cle
lyse and design their applications as multi-agent systems needs to be devised; there needs to be an increase in the n
sophistication of industrial-strength tools for building multi-agent systems; and more flexible and scalable techniques
be devised for enabling heterogeneous agents to inter-operate in open environments;

References
[1] G. Booch (1994) “Object-oriented analysis and design with applications” Addison Wesley.
[2] F. P. Brooks (1995) “The mythical man-month” Addison Wesley.
[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stahl (1998) “A System of Patterns” Wiley.
[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) “Design Patterns” Addison Wesley.
[5] N. R. Jennings and M. Wooldridge (eds.) (1998) “Agent technology: foundations, applications and markets” Sp

Verlag.
[6] A. Newell, (1982) “The Knowledge Level”Artificial Intelligence18 87-127.
[7] B. Meyer (1988) “Object-oriented software construction” Prentice Hall.
[8] H. A. Simon (1996) “The sciences of the artificial” MIT Press.
[9] C. Szyperski (1998) “Component Software” Addison Wesley.
[10] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc Software Engineering144 26-37.
[11] M. Wooldridge and N. R. Jennings (1995) “Intelligent agents: theory and practice” The Knowledge Engineering R

10 (2) 115-152.
[12] M. J. Wooldridge and N. R. Jennings (1998) “Pitfalls of Agent-Oriented Development”Proc 2nd Int. Conf. on Autono-

mous Agents (Agents-98), Minneapolis, USA, 385-391.

	Agent-Oriented Software Engineering
	Nicholas R. Jennings
	Dept. Electronic Engineering, Queen Mary & Westfield College,
	University of London, London E1 4NS, UK.
	n.r.jennings@qmw.ac.uk
	1 Introduction
	2 The Essence of Agent-Based Computing
	3 Agent-Oriented Software Engineering
	3.1 Merits of Agent-Oriented Decomposition
	3.2 Appropriateness of Agent-Oriented Abstractions
	3.3 Need for Flexible Management of Changing Organisational Structures

	4 Conclusions and Future Work
	[1] G. Booch (1994) “Object-oriented analysis and design with applications” Addison Wesley.
	[2] F. P. Brooks (1995) “The mythical man-month” Addison Wesley.
	[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stahl (1998) “A System of Patterns...
	[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) “Design Patterns” Addison Wesley.
	[5] N. R. Jennings and M. Wooldridge (eds.) (1998) “Agent technology: foundations, applications a...
	[6] A. Newell, (1982) “The Knowledge Level” Artificial Intelligence 18 87-127.
	[7] B. Meyer (1988) “Object-oriented software construction” Prentice Hall.
	[8] H. A. Simon (1996) “The sciences of the artificial” MIT Press.
	[9] C. Szyperski (1998) “Component Software” Addison Wesley.
	[10] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc Software Engineering 144 26...
	[11] M. Wooldridge and N. R. Jennings (1995) “Intelligent agents: theory and practice” The Knowle...
	[12] M. J. Wooldridge and N. R. Jennings (1998) “Pitfalls of Agent-Oriented Development” Proc 2nd...

