Higher order discretisation methods for a class of 2-D
continuous-discrete linear systems
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Abstract: Differential linear repetitive processes are a distinct class of two-dimensional linear systems
which can be used, for example, to model industrial processes such as long-wall coal cutting
operations. Also, they can be used to study key properties of classes of linear iterative learning
schemes. The key feature of interest in the paper is the fact that information propagation in one of the
two separate directions in such processes evolves continuously over a finite fixed duration and in the
other direction it is, in effect, discrete. The paper develops discrete approximations for the dynamics
of these processes and examines the effects of the approximation techniques used on two key systems-
related properties. These are stability and the structure of the resulting discrete state-space models,
Some ongoing work and areas for further development are also briefly noted.

1 Introduction

The essential unique characteristic of a repetitive, or multi-
pass, process can be illustrated by considering machining
operations where the material or workpiece nvolved is
processed by a sequence of passes of the processing tool.
Assuming that the pass length o < +eo (.. the duration of
a pass of the processing tool) is constant, the output vector,
or pass profile, y (), 0 < ¢ < ¢, k>0, (¢ being the independ-
ent spatial or temporal variable) acts as a forcing function
on the next pass and hence contributes to the dynamics of
the new pass profile (), 0< 1<, k> 0.

Industrial examples of repetitive processes include long-
wall coal cutting and metal rolling operations [13]. In recent
years, problem areas have also arisen where adopting a
repetitive process perspective has major advantages over
alternatives, so-called algorithmic examples. This is espe-
cially true for classes of iterative learning control schemes
{11.

The basic unique control problem for repetitive processes
is that the sequence of pass profiles generated can contain
oscillations that increase in amplitude in the pass to pass
direction (l.e. the k& direction in the notation used here).
Such behaviour is easily generated in simulation studies
and in experiments on scaled models of industrial exam-
ples, such as long-wall coal cutting (see [13] for a detailed
treatment). Early approaches to stability analysis for (linear
single-input/single-output) repetitive processes was based on
first converting the system into an infinite-length single pass
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process 1o enable the application of standard techniques
(e.g. those based on the inverse Nyquist criterion). It was
soon realised, however, that this approach to stability anal-
ysis would, except In a few very restrictive special cases,
lead to incorrect conclusions [9].

The basic reason for this situation is that the infinite-
length single pass model effectively neglects their inherent
two-dimensional (2-D) systems structure, Le. information
propagation along a given pass (¢ direction) and from pass
to pass (k direction). In particular, differential linear repeti-
tive processes are a distinct class of continuous-discrete 2-D
linear systems where, in contrast to other classes of such
systems (see, for example, [6]), information is propagated in
one direction as a function of a continuous variable over
the finite and constant (by definition) pass length and as a
function of a discrete variable in the other direction. Also,
the infinite-length single pass model ignores the fact that
the initial conditions are reset before the start of each new
pass, where it is known that this is a critical feature of the
overall process dynamics.

To remove these deficiencies, a rigorous stability theory
has been developed [9] based on an abstract model of the
dynamics in a Banach space setting which includes all proc-
esses with linear dynamics and a constant pass length as
special cases. Also the results of applying this theory to a
range of subclasses, including those considered in this
paper, have been reported [13, 9].

Of particular interest in terms of applications are the sub-
classes of so-called differential and discrete linear repetitive
processes, respectively. Discrete linear repetitive processes
have clear structural links with 2-D discrete linear systerms
described by the well known Roesser [8] state space model
(or equivalents). As noted above, however, a key difference
in all cases is the fact that in a repetitive process informa-
tion propagation along a pass (Le. one of the two separate
directions) only occurs over a finite duration, namely, the
pass length.

The only essential difference between differential and dis-
crete lmear repetitive processes is that in the former the
dynamics along a given pass evolve as a function of a con-
tinuous variable defined over the pass length, as opposed to
a discrete variable in the latter. Suppose therefore that a
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filter/controller has been designed for a differential linear
repetitive process. Then an obvious means of implementing
this filter/controller is by the construction of an appropriate
discrete approximation. One possible approach here would
be to use numerical integration techniques, such as the
Euler or trapezoidal rule, which for standard, or one-
dimensional (1-D), linear systems is equivalent to the well
known bilinear transform in the frequency domain.

Use of such numerical integration techniques in the case
of 1-D differential lincar systems results in dynamics
described by a 1-D discrete linear systems state space
model. Here it is argued that, for differential linear repeti-
tive processes, the dynamics of the resulting discrete
approximation should be described by a so-called discrete
linear repetitive process state space model. In particular,
this makes the well established links to 2-D linear systems
theory available for further analysis.

This paper shows that, although the trapezoidal rule is
applicable here, it is by no means as powerful as in the 1-D
case. To remove difficulties which this may cause, such as
‘poor’ approximation errors, this paper investigates the use
of higher order single step approximations and shows that
these are particularly appropriate for the discretisation of
differential linear repetitive processes. Some ongoing work
and areas for further development are also briefly noted.

2 Background

The state space model of the differential linear repetitive
processes considered here have the following form over 0 <
<o, k>

#pp1(8) = Awpia (8) + Bugi(t) + Boy, (t)

Y1 () = Czpp 1 (t) + Doy (1)

@1 (0) =0 (1)
where on pass &, x;,(f) is the n x | state vector, p,(¢) is the m
x 1 vector pass profile, a,(r) is the / x 1 vector of control
mputs.

The stability theory [9] for linear constant pass length
repetitive processes is based on the following abstract
model of the underlying dynamics, where E,, is a suitably
chosen Banach space (a complete normed linear space)
with norm ||| and W, is a linear subspace of E,;

Ypr1r = Layp + 0001 k>0 (2)

In this model, y, € E, is the pass profile on pass k, b, €
W, and L, is a bounded linear operator mapping £y into
itself. The term Ly, represents the contribution from pass
k to pass k + | and by, represents known nitial condi-
tions, disturbances and input effects on the current pass. In
this paper the model is denoted by S.

In the case of eqn. 1, the authors choose E, = Ly”[0, ¢
M L0, o] and it is routine to show that

(Low)(t) = C f A Buy(r)dr + Doy(t)

0<t<a (3)
and

¢
byl = CfeA(L*T)Buk.H (fydr 0<t<a (4)
o

The stability theory for linear repetitive processes consists
of the distinct concepts of asymptotic stability and stability
along the pass, respectively. Asymptotic stability can be
interpreted {in terms of the norm on the underlying func-
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tion space) as demanding that bounded input sequences
{(inputs plus initial conditions plus disturbances on the cur-
rent pass) produce bounded sequences of pass profiles over
the finite and fixed process pass length. It is defined in
terms of the abstract model § (for complete details, includ-
ing proofs, see [9]) as follows:

Definition 1: The linear repetitive process § is said to be
asymptotically stable if there exists a real scalar § > 0 such
that, given any initial profile y, and any disturbance
sequence {b;};-) < W, bounded in norm (ie. ||§)| < ¢, for
some constant ¢) = 0 and for all & > 1) the output sequence
generated by the perturbed process

Y1 = (Lo + 7)Y + brg E>0 (5)

is bounded in norm whenever ||y < 8.

The necessary and sufficient condition for this property
to hold is that

r{L,) <1 (6)

where #(.) denotes the spectral radius (in effect, the modulus
of the largest eigenvalue) of its argument. Note: This defini-
tion demands that asymptotic stability is retained if the
model is perturbed slightly due to modelling errors or simu-
lation approximations,

In the case of processes described by eqn. 1 it is routine
to show that asymptotic stability holds if, and only if,

'I"(Do) <1 (7)

At first sight, this result is counter-intuitive in the sense that
asymptotic stability is largely independent of the processes
dynamics and, in particular, of the eigenvalues of A which
clearly govern the dynamics produced along any pass. This
situation is due entirely to the fact that the pass length is
finite (over which duration even an unstable 1-D system
can only produce a bounded output) and will change dras-
tically when an arbitrary pass length (& — +o9) is consid-
ered.

The limit profile is used to characterise transient behav-
iour in the pass to pass (l.e. k) direction. Suppose that the
abstract process 8 is asymptotically stable and is subjected
to a sequence {h,}-; which converges strongly to ... Then
the strong limit

Yoo == lm y, (8)
k—oo
is termed the lmit profile corresponding to this input
sequence. In the special case of eqn. 1, the limit profile is
described (see [9] for the details) over 0 <7 < ¢ by

Boo(t) = (A + By(In—Dy) ™' C) oo (t) + Buoo(t)

Yoolt) = (I — Do) ! Crooll)

(9)
This is simply a 1-D linear time-invariant systems state
space model and, hence, after a ‘sufficiently large’ number
of passes, the dynamics of an asymptotically stable differ-
ential hinear repetitive process can be replaced by those of a
1-D differential linear time-invariant system.

Given that the pass length is finite by definition, asyrap-
totic stability cannot guarantee that the resulting limit pro-
file has ‘acceptable’ along the pass dynamics. In particular,
it cannot guarantee that the limit profile is stable as a 1-D
lincar system, i.e. all eigenvalues of the matrix 4 + Byl -
Dyy'C have strictly negative real parts. Applications do
exist where asymptotic stability is all that can be achieved
or that is required, but, in general, it is the stronger require-
ment of stability along the pass which will be required.

{EE Proc.-Circuits Devices Syst., Vol. {46, No. 6, December 1999



Stability along the pass demands that the bounded-input
bounded-output property of asymptotic stability holds uni-
formly, ie. independent of the pass length, and is defined
formally as follows:

Definition 2: The abstract model 8 is said 1o be stable along
the pass if, and only if, there exist finite real scalars A, > 0
and 4., € (0, 1) which are independent of ¢ and satisfy for
alla > 0and k= 0

LGl < Mood, (10)
where ||| is also used to denote the induced operator norm.
Necessary and sufficient conditions for this property are

foo i=supr(Ly) < 1 (11}
>0

and

Mg = sup sup ||(zf — L)Y < +eo (12)
@0 iz| >
for some real number A € (r., 1).

The first of these two conditions states that asymptotic
stability for all possible values of the pass length is a neces-
sary condition for stability along the pass, which in the case
of differential linear repetitive processes of the form consid-
ered here reduces to eqn. 7. The extra conditions imposed
by stability along the pass are available in scveral equiva-
lent forms but in this work the authors will make use of the
following set (for a proof see [11]):

Theorem I: Suppose that the pair {4, By} is controllable
and the pair {C, A} is observable. Then differential linear
repetitive processes described by the state space model
eqn. | are stable along the pass if, and only if,

(@) all eigenvalues of Dy have modulus strictly less than
unity

(b) all eigenvalues of A have strictly negative real parts
(¢) the two variable polynomial

SIan *Bg

7\ =
pc(5,~; : -c 21, — Dq (13)

satisfies
p.is,2) #£0

The natural discrete analogue of a differential linear
repetitive process is a so-called discrete linear repetitive
process. Hence the discretisation of a process described by
eqn. 1 should result in a discrete linear repetitive process
state space model. Note also that a number of the key sys-
tems theoretic problems solved to date for discrete linear
repetitive processes, such as so-called local reachability and
controllability [4], have made, as appropriate, extensive use
of the fact that these processes can be transformed into the
well known 2-D hinear systems state space model due to
Roesser [8] (or equivalents). (Note that not all systems the-
oretic questions for discrete linear repetitive processes can
be solved by this route.} This is an added incentive in aim-
ing to obtain a discrete linear repetitive process state space
model as the result of discretising eqn. 1, i.e. the well estab-
lished systems theory for these 2-D linear systems is (poten-
tially) available to study the effects of discretisation on, say,
the controliability properties of eqn. 1.

Re(s) 20 Jz[z1  (14)

3 Trapezoidal discretisation

By analogy with the 1-D linear systems case, the natural
starting point to derive discrete approximations to the
dynamics of eqn. 1 is to consider the use of the trapezoidal
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method of numerical integration or, equivalently, the bilin-
ear transform. This method preserves stability in the 1-D
case but can lead to unacceptably low accuracy. The analy-
sis of this Section shows that this method applied to eqn. !
again preserves stability (asymptotic and hence stability
along the pass). It is noted that an atterapt to increase the
accuracy by increasing the number of steps in the approxi-
mation procedure at any point also leads to very undesira-
ble features which mean that the resulting approximations
cannot be usefully emploved in subsequent analysis and
design.

In the 1-D case, application of the trapezoidal rule
assumes that the elements in the control input vector, say,
u(l} are stepwise, ie. #(iT + A) = u(iT), A < T where T
denotes the sampling period. The trapezoidal rule,
expressed in terms of a signal w(f) with index / 2 0 and
sampling period T is given by

. . T, ... o
w(il) = w((i—-1)T)+ 3(w(zT) +w((i-1)T)) (15)
Alternatively, the trapezoidal rule can be expressed in terms
of the well known bilinear transform between the continu-
ous and discrete domains, i.e.

2z—-1
S:T[z—l—l} (16)

which preserves stability, i.e. if the original continuous time
system is stable then so is the resulting discrete system
under this rule. Suppose, therefore, that the entries in both
the control input and pass profile vectors of eqn. 1 are
stepwise, i.e. for AL T,

Y (0T + A} = 3, (iT) (i7)

Then it is straightforward to show that, under the trapezoi-
dal rule with sampling period 7, the dynamics of eqn. 1
can be approximated by those of a discrete linear repetitive
process of the form

Lry1 (?, -+ 1) = Aﬂ:kJr] (1) + Buk+1(i) + B{]yk (%)
Yipr () = Cziq1(i) + Doy, (i)
(18)
where, for ease of notation, we have suppressed the explicit
dependence on T and

. ™ L] T
= - (= 1A I, ~—JA

A=ln G4 ()4

. T -1

borfi- (D)) 5

R T -t

By=T [In - (5) A] Bo

c=cC

Do = Dy (19)
The discrete linear repetitive process described by eqn. 18 is
asymptotically stable if, and only if, r(Dg) = 1(Dp) < | and

the following result {for a proof see [10]) gives a set of nec~
essary and sufficient conditions for stability along the pass:
Theorem 2: Su[?osen that the pair {A, B,} is controllable
and the pair {C, A} is observable. Then discrete linear
repetitive processes described by the state space model
eqn. 18 are stable along the pass if, and only if,

(a) all eigenvalues of the matrix £, have modulus strictly
less than unity
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(h) all eigenvalues of the matrix A have modulus strictly
less than unity

(¢) the two variable polynomial

ZlIn - A

B
palen,2) = |0 o

Z.[m - D(J (20)
satisfies
pd(zlv Z) # 0

Now consider the stability properties (asymptotic and
along the pass) of eqn. 18 as the result of applying the
trapezoidal rule to eqn. 1. Then the fact that (¢) and (b) of
theorem 1 are preserved 1s obvious. Also the following rela~
tion holds between the polynomials p.(s, 2) and pfz), z)

lz1] > 1 |z] > 1 (21)

Pz, 2) = pc(s,z)(% [l_jr]]z) (22)

ETE S

Hence, as the transformation

- () o

is bilinear, it follows immediately that the stability along
the pass is also preserved. This result 15 stated formally as
follows:

Theorem 3. Suppose that the differential linear repetitive
process decribed by eqn. ! is numerically approximated by
application of the trapezoidal rule under the assumptions
of eqn. 17 to yield the discrete linear repetitive process state
space model of eqn. 18. Then the resulting discrete linear
repetitive process state space model is stable along the pass.

To assess the accuracy of this method it is necessary to
consider its approximation errors (which is, of course, well
studied in the numerical analysis literature). Consider,
therefore, a function, say, f{£) and let 1) denote its jth
derivative. Then the local truncation error with the trape-
zoidal rule is given by

3

pen =G| M0 wemecearr
(24)
Suppose now that the truncation error induced by the trap-
ezoidal rule is unacceptably high. Then an obvious step is
to consider a higher order method where in the 1-D case
the higher-order Adams-Moulton methods, which belong
to the general class of multstep methods for numerical
integration (see, for example, [12]), are an obvious choice.
The key point to note here, however, is that the use of
higher order methods to reduce the truncation error in the
discretisation of a differential linear repetitive process
would result (see [3] for the details) in a model structure
with ‘very poor transparency’. In particular, it is very diffi-
cult, if not impossible, to determine what happens to key
systems theoretic properties of differential linear repetitive
processes under approximation. Hence, it is not a suitable
basis for further analysis and design studies. The remainder
of this paper shows that this basic requirement, i.e. ‘trans-
parency” with reduced error relative to the trapezoidal rule,
can be achieved using the well known higher order single

step numerical integration methods.

4  Single step higher order discretisation

The intrinsic feature of these methods is that higher order
derivatives are employed. The simplest of these is the 4th-
order method (see, for example, [7]) which (in the same
notation as eqn. 15) takes the form
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w((i + 1)7T) = wiT) + g[{u(iT) +w((i+1)T)]

2
v %[{b(z’T) —b((i + 1)T)]

(25)
The associated s to z plane mapping is given by
a z+1 2 T
z =2 - = — b= 26
8 +bs z—1 “=7 & (26)

This mapping function is well known in filter theory (and
also robust control) where it is termed an all-pass transfor-
mation (see, for example, [14]). In particular, the left-hand
side (defined in terms of s only) is used to join band-pass
analogue filters with low-pass equivalents and the right-
hand side (defined in terms of z only) is an inverse bilingar
transform. The following result shows that this method
preserves stability properties in the 1-D case (and, hence, its
basic feasibility for use in the discretisation of dynamic sys-
tems).

Theorem 4: The transformation given by eqn. 26 maps the
left half of the complex s-plane, ie. s = o+ i, s#0, <0
into the closed vnit circle |z] < 1 of the complex z-plare.

Proof: The transformation eqn. 26 can be rewritien as

bs> +s+a
= 0 27

bs? —s+a i 27)
and setting s = i, it follows that the imaginary axis in the
s plane is transformed fo the set

L ((a — bw?)? —w%):i—ﬁ(q—bwz)w (28)
(@ — bw?)? +w?

Hence [z] = 1 and the associated argument is ¢ — 2
arctan{@(¢ — be?)), and w e {0, V(a/b)} = ge {01}, we
{V(ath)} = ¢ e {m, 2x}. From this it follows that this map-
ping is onto the unit circle in the z-plane. Finally, for an
arbitrary o,

L (b0 — bw? + 0 +a) +i(w + 2bow) (29)
T (b0 = bw? — o +a) +i(—w + 2bow)
and it is easy to see that <0 = |z < 1.
The local truncation error for this method {defined in the
same terms as eqn. 24) is

z

5
B(ET) = 1o 1910

Note that the presence of second derivative terms in
eqn. 30 means that the first derivatives of the entries in the
mput vector of eqn. 1 are required for its application.
Hence, the stepwise assumption used previously is no
longer appropriate because it would clearly introduce addi-
tional error. Instead, a simple argument leads to the
requirement that the first derivatives of the entries in the
mput vector are such that i, (iT + A) = a,(iT, A< T, ie.
the entries are approximated befween samples by straight
line segments where at each sample instant the left and
right limits of the approximations are equal. This is termed
a piecewise linear approximation here,

Assuming that the entries in the input vector are piece-
wise linear and applying eqn. 25 to eqn. | yields the follow-
ing state space model:

@iy (0 + 1) = Ag@pi1(8) + Bawpa (i + 1)
+ Baugy1 (3) + Bsyg (i + 1) + Bey, (4)
Yir1 (B) = Cpp1 (4) + Doy (1)

t,=4T < (<t (30)

(31)
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where

4 =1r

As = I - §A+ %AQ _I + :fA + %AZ]

B; = _I §A+ %ZA? N :%B - Z;;AB}

B, = LI §A+ —AQ_ - :§B+ %ZAB]

B; = iIﬂ - %A + I;—;AQ- - %Bo - f—;ABO]

B; = iIn - gA + T—;AZ: - ng + 2ABO]
(32}

It is also easy to show that eqn. 31 have strong structural
links with the Roesser model. All that is required is a
simple ‘forward transformation’ of the pass profile vector
followed by a change of variable in the pass number. These
are given by

Ye—1(2) = V(i) 0<i<a, k>0
li=k+1 (33)

and introducing them into eqn. 31 vields the state space
model

2t + 1) = Az (i) + Baw(s + 1) + Baw; (1)
+ BsYi(i + 1) + B Yi(4)
Yii1(2) = Coy(d) + Do (i)
(34)
Now introduce the state vector transformation
X[(Z) = CCJ:('!.) - Bg’u.g (l) - B5Y2(l) (35)
into egn. 34 to yield

Xi(i+1)= A3 Xy (i) + (By + Az B3y (i)
+(Bs + A3 B5)Y(3)
Y11 (i) = CXi (i) + CBswi (i) + (Do + CBs)Yi{i)

(36)

which is precisely the Roesser model without advanced or
retarded arguments. Note that, even if the otiginal differen-
tial process does not have an inertial term, i.e. of the form
Duy (1), in the equation defining the pass profile vector,
the resulting discretisation has such an inertial term unless
CB; = 0. Numerical examples which demonstrate the
advantages of the discretisation method developed in this
Section can be found in [5].

5 1-D model

It is known from previous work [4] that a number of key
systems theoretic properties for discrete linear repetitive
processes cannot be completely characterised using 2-D
Roesser model (or equivalent) representations. One such
property is so-called complete pass controllability which, in
effect, demands the existence of an admissible (in a well
defined sense) input sequence to drive the process to a pre-
specified pass profile on a pre-specified pass number. In [4]
this problem was solved by developing an equivalent 1-D
discrete linear time invariant systems state space model of
the process dynamics. (Compare this to the 1-D representa-
tions of other classes of 2-D linear systems developed by [2]
where the matrices and vectors involved Increase in dimen-
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sion as the process evolves, a feature which means that
these representations are of extremely limited use in actual
problem solving.) This Section develops the 1-D model rep-
resentation of the dynamics of the discrete approximation
eqn. 31 to the dynamics of differential linear repetitive
processes of the form of eqn. 1 and considers its (potential)
role in onward analysis.

First introduce the so-called pass profile, state and input
vectors for eqn. 31 as

Y() = [07(0),. .., 4f (@ — 1))
X = [2f(1),. m?‘(a)f
U(l) .= [u Ly, .. ul (o - 1)] (37)

Then it follows from some extensive, but routine, manipu-
lations that the 1-D discrete linear time invariant state
space representation for the dynamics of eqn. 31 has the
form

YU+ 1) = ®Y() + AU()

X(1) =TY() + U (38)
where
P =
Dy 0 0 D
C'_B6 % 2 0
CAJBG CBﬁ DO 0
CAS2Bs CA§*Bs CA*Bs - Dy
(39)
A=
0 0 0 0
CB, D 0 0
CA;B, CB, D 0
CA;™’By CA{*B, CAY "B, - D
(40)
T =
B B 0 o000
A3 Bs B; B 00
AS™'Bs A2?Bs AT *B; -+ Bs B;
(41)
3 =
B, B; 0 o000
AZB4 B4 Bg. tee 0 0
A 'By A2*B, A*B, -~ By B
(42)
where

50:D0+CB5 D =CB;

B, =B,+A3B; B;=DBs+ A3;B; (43)
Consider now the discrete counterpart of eqn. [, a ‘true’
discrete system. Then it has been shown [4] that stability of
a process in the normal sense of its 1-D systems representa-
tion is equivalent to asymptotic stability of the process
from which it was constructed. The 1-D model, egn. 38, is,
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however, stable in the normal sense, and hence asymptoti-
cally stable if, and only if, all cigenvalues of the matrix Dy,
and those of Dy have modulus strictly less than unity. The
role of the I-D representation in the construction and anal-
ysis of discrete approximations to the dynamics of eqn. 11is
currently being investigated. In addition to the controllabil-
ity aspects this includes the formulation and solution of
opfimal control problems and related controller design
issues.

6 Conclusions

This paper has considered the problem of developing dis-
crete approximations to the dynamics of differential linear
repetitive processes. It has been shown that the trapezoidal
rule is not as powerful as in the 1-D linear systems case. In
particular, attempting to improve the accuracy of the trape-
zoidal rule by using more steps produces discrete approxi-
mations which are not ‘very transparent’ in the sense that it
is very difficult, if not impossible, to determine what hap-
pens to key systems theoretic properties of the differential
process under approximation.

To remove these difficulties, it has been shown that
higher order single step methods have the basic transpar-
ency required, i.e. ‘higher accuracy’ combined with a result-
ing discrete linear systems state space model which enables
stability properties of the approximation to be immediately
established. Also, it is feasible via the existence of Roesser
and alternative 2-D linear systems state space model inter-
pretations of the resulting discrete process to study the
effects of the approximation on key systems theoretic prop-
erties such as reachability and controllability. Similarly, the
1-D representation is available to assist in the investigation
of the effects of the approximation on pass controllability
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and related properties. These and related aspects are cur-
rently under investigation and will be reported on in due
course.
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