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Abstract. This paper is concerned with the application of the resolution theorem proving method to reified
logics. The logical systems treated include the branching temporal logics and logics of belief based on K
and its extensions. Two important problems concerning the application of the resolution rule to reified
systems are identified. The first is the redundancy in the representation of truth functional relationships
and the second is the axiomatic reasoning about modal structure. Both cause an unnecessary expansion
in the search space. We present solutions to both problems which allow the axioms defining the reified
logic to be eliminated from the database during theorem proving hence reducing the search space while
retaining completeness. We describe three theorem proving methods which embody our solutions and
support our analysis with empirical results.
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1. Introduction

In the reified approach to defining logical systems the semantics of the reified logics
are defined by axioms in first-order logic. The advantage of the approach is that the
reified logic is represented in a logical system (first-order logic) whose semantics and
proof methods are well understood. First-order logic provides a sound framework in
which to prove theorems about the reified logic.

The reified approach, although too complex for specifying standard propositional
and first-order logics, is valuable for specifying propositional and quantified modal
logics, and can be useful in gaining an understanding of the properties of such logics.
A lack of clarity in both semantics and inference rules has been the source of
many disagreements among the advocates and opponents of modal logics (see the
discussion in Linsky (1971) and in Reichgelt (1989a) for more recent examples of
this problem).

One consequence of adopting the reified approach is that if we wish to automate
proofs for modal systems then any of the standard theorem proving methods for
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first-order logic can be used to implement a theorem prover for a reified modal logic.
However, to-date there has been little empirical or theoretical work on the properties
of theorem provers for reified logics (Reichgelt, 1989a).

This paper explores the theoretical and practical issues raised by the attempt to
improve the efficiency of theorem proving in reified logics. In doing so we identify
two major problems in the application of resolution to the reified logics of branch-
ing time and of belief. The first problem is the redundancy in the representation of
truth functional relationships in the database, for example a disjunction may be
represented explicitly {HOLDS(or(p,q),w)} and may also be represented as:
{HOLDS(p, w), HOLDS(g, w)}. This is the outcome of maintaining the axiomatic
definitions of the logical operators in the database during theorem proving. Our first
improvement to a naive approach for theorem proving is the elimination of these
axioms and their. replacement by a rewriting procedure.

The second problem, which remains after the first has been eliminated, is the axio-
matic reasoning about modal structure. This problem is particularly acute for reified
temporal logics where the temporal framework is defined by a large number of
axioms which generate a large search space. One approach is to use metareasoning
during theorem proving. However we have adopted the more fundamental aim of
defining a set of temporal axioms which specify the reified logic in such a way
that the accessible worlds structure is encoded entirely within the second argument
of HOLDS. The axioms which define the properties of the temporal logic, such as
transitivity, modify the worlds structure argument only. Therefore in resolution-
based theorem provers these axioms can be replaced by matching procedures. Our
solution can be viewed as the extension of the method of Ohlbach (1988) to the
temporal modality.

In the following sections we describe the design of three theorem provers all of
which are based on the hyperresolution inference rule (Robinson, 1979, 1991).
The first implements hyperresolution alone, the second additionally implements a
rewriting procedure, and the third implements an additional matching procedure
together with rewriting and hyperresolution. These three theorem provers have
been implemented and their performance over a range of problems has been
measured. We shall show that this empirical evidence supports our. analysis of the
alternative designs.

This paper continues, in Section 2, by presenting definitions of reified logics of
belief, of branching time and of a multi-modal logic (QIL) which combines the
epistemic and temporal modalities. The problem of theorem proving in modal logics
is introduced in Section 3. In Section 4 the rewriting procedure is described and the
process of reasoning about modality in the reified logic is contrasted with worlds-
path method of Ohlbach (1988). Section 5 presents an alternative definition of
the modal axioms where the modal semantics are encoded in a worlds-path. We
also show how these axioms can be translated into a computational procedure.
Section 6 presents experimental results which compare the performance of the
methods.
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2. Defining the Integrated Logic

-

Logical systems such as the modal logics and temporal logics are often defined axio-
matically. A set of axioms together with inference rules and rules of necessitation
(Hughes and Cresswell, 1968) define a particular logic. An alternative approach is
to define the semantics of the modal or temporal logic (the object logic) in first-order
logic. This is known as the reified approach. Examples of reified logics can be found
in Moore (1985), Reichgelt (1989b) and Shoham (1986).

The reified approach requires all operators, predicates, variables and constants of
the object, or reified, logic to be represented by functions or constants in the first-
order language. This means that formulae of the reified logic are represented as
domain terms of the first-order logic. The reified logic may be defined to correspond
to a standard logic such as the propositional calculus or the modal system K. It can
be shown that the expressivity of reified temporal logics is greater than that of the
non-reified counterpart (see Reichgelt, 1989ab).

Throughout this paper we define the semantics of the logical operators in the
reified language in terms of the standard first-order operators (A,V etc). The
predicate HOLDS of the first-order language defines the truth or validity of (the
reified representation of) a formulae of the object logic. The first-order language
can be-viewed as the metalanguage of the object logics we define.

The domain of the first-order logic is constructed from the following elements:

The set of functions: and?, or*, if 2 bel 2 possz, i-futurez, forall 2 exists, not',
future', pastl, all—future‘, all-pasl‘l
to represent truth functional and modal operators

The set of functions: pl,q2 e
to represent predicates
The function: subst® -

to represent the substitution of constants into terms
The set of constants co: a,b,c...
to represent constants of the object logic

The set of constants d:  wg, Wy ...,380,881---1 %) -~
to represent worlds, agent names and variables of the

object logic.

The superscript indicates the arity of the function, the sets co and d are distinct, and
their union defines the domain of the first-order logic.

The first-order logic has the standard interpretation with the modification that the
following equivalence holds between terms in the domain: subst(g(y,...),%,y) =
g(x,...). The formula P(subst(g(y),a,y)) has the same interpretation as
P(g(a)) where P is a predicate and g(a) is the syntactic substitution of a for y
in the term g(y), for any constant y (y plays the role of a variable in the reified
logic).
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The semantics of the truth functional operators are defined as follows. '
TF1 (Yw){(Vp)(Yq)HOLDS(and(p, q),w) « (HOLDS(p,w) N HOLDS(q,w))
TF2 (vw)(Vp)(Vg)HOLDS(or(p,q),w) « (HOLDS(p,w)V HOLDS(q,w))
TF3  (Yw)(Yp)(Yq)HOLDS(if (p,q),w) < (HOLDS(p,w) — HOLDS(g,w))
TF4 (VYw)(Vp)HOLDS(not(p),w) < ~HOLDS(p,w).

(W3]

These definitions are valid in all logics presented in this paper.

2.1. THE MODEL OF BELIEF

The model of belief is based on the K model of classical modal logic as defined by
Kripke (1971). However this model is modified to account for the names of the
believers (agents). The three place predicate R defines the accessibility relation.
The first and third arguments of R denote worlds which are accessible from each
other and the second argument denotes the name of the believer.

K (vw)(Yag)(Vp)HOLDS bel(ag,p),w) « (Vu)(R(w,ag,u) — HOLDS(p,u))
P (vw)(Vag)(¥p)HOLDS( poss(ag,p),w) « (3u)(R(w, ag,u) A HOLDS(p,u)).

Axioms which could be added to the K model of belief to give the usual extensions
are:

D (Vw)(Vag)(3u)R(w,ag,u)
4  (vw)(Vag)(Yu)(Yv)(R(w,ag,u) A R(u,ag,v)) — R(w,ag,v)
5 (Yw)(Vag)(Vu)(Yv)(R(w,ag,u) A R(w,ag,v)) = R(u,ag,v).

All theorems of the conventional KD model are true in the logic defined by K, P, D.
Rule D specifies that R has the property of seriality which means that the quantifi-
cation ‘for all accessible worlds’ specified in K can never be empty, or, equivalently
that there is always some accessible belief world. Rules 4 and 5 define positive and
negative introspection by specifying that the accessibility relation is transitive and
euclidean respectively.

2.2. MODELS OF BRANCHING TIME

This section presents a branching model of time where different branches in time
represent different possible futures. In this model (which is known as K, in Rescher
and Urquhart, 1971) different branches of time cannot joint up in the future. Time
points on the same branch can be ordered but there is no ordering between time
points on diverging branches. The model is defined in terms of a validity operator
whose argument we may interpret as a logical world at point in time or simply
as an accessible world in a worlds structure. These notions are equivalent. The
accessible worlds structure is defined by the two place predicate 7. The first
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argument of T denotes a world which precedes the world denoted by the second
argument. The branching model has the property of transitivity:

TR (ve)(Vu)(Vo)(T(t,u) A T(,v)) = T(t,).

In the branching model of time, time points are not totally ordered but two time
points on a particular branch can be ordered. This propeity is known as backwards
linearity (and is defined by BLIN). In the simplest branching system it is not possible
to refer to a specific branch of time. In order to represent the alternative branches
explicitly we extend the basic logic by allowing a branch to be labelled. The label
appears as an argument in the immediate-future (i-future) operator thereby connect-
ing the temporal structure and the object language. The label can be interpreted as
being the name of an action, and as we shall see at the end of this section, this gives a
framework in which we can model planning.

The constraints on the temporal precedence relation 7 in BL, the core branching
system, are defined by TR, BLIN and EQ.

BLIN (V0)(Vu)(Yo)T(t,v) A T(u,v) — (T(t,u) V T(u, t) V equal(t,u))

EQ (Vu)(Yv)(Vp)equal (u,v) — (HOLDS(p,u) = HOLDS(p,v)).
The temporal operators are defined below. .

AF  (Vt)(Yp)HOLDS(all-future(p),t) < (Yu)(T(t,u) — HOLDS(p,u))

F  (V0)(Vp)HOLDS( future(p),t) « (Ju)(T(t, u) N HOLDS( p,u))

AP (V1)(Yp)HOLDS (all-past(p),t) < (Vu)(T(u,t) — HOLDS(p,u))

~ P (Vt)(Vp)HOLDS(past(p),t) + (3u)(T(u, 1) A HOLDS(p,u)).

There are weak and strong versions of the temporal logic. The definition of the
temporal modal operators is the same for both systems but the definition of the
worlds framework varies. In the weak logic the all-future(p) /all-past( p) formulae
do not imply that there are any future/past time points where p is true (there is an

analogous definition of K) as can be seen from the definitions above.
In the weak model

all-future( p) A all-future(not( p))

can be satisfied if there are no future points in time. A stronger temporal model
would specify that all-future(p) implies that there is some future time when p is
true. We can obtain a strong logic by adding the axioms ST1, ST2. These axioms
ensure that for all times ¢ there is always a future and a past point in time. Therefore
if all-future( p) is true at time ¢0 there is a point in time in the future of 10 (by ST1)
and p is true at that point (by AF). :

ST1 (V)(3u)T(t,u)
STZ2 (Vt)(3u)T(u,t)
The branching system (BL) is defined by TF1-TF4, TR, EQ, BLIN plus the modal
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operator definitions AF, F, AP, P. BL™ is defined by adding ST1, ST2 to BL.
Definitions of completeness are presented in Appendix 1.

Now we can extend the basic system. The logic BL? is specified by adding BI and
BIF to BL. BI further defines the branching temporal accessibility relation. The
definition of i-future shows how the label of a particular branch is encoded into
the temporal structure. If an action 7 occurs at a time point ¢ then the next time point
is named s(J, ). The temporal logic is not extended by the induction axiom.

BL  (Yu)(VI)T(u,s(l,u))
BIF (Vt)(VI)(¥p)HOLDS (i-future(l, p), t) = (T{t,s(l, t))AHOLDS(p,s(l,1)).

The motivation behind this particular formulation of a branching logic is the desire
for a formal framework in which we can model planning. Such a framework must be
able to represent propositions, actions and temporal concepts. We believe that
the branching systems satisfy these needs. A brief discussion of the uses of the
branching logic completes this section.

The label which appears as the first argument of i-future is intended to be the name
of an action thus we may have:

if (forall(blockl, forall(block2, if (and (clear(blockl), clear(block2)),
i-future(stack(block1, block2), and(on (blockl, block2), clear (block1)))))))

or
i-future( pc20—test, known —airway—reactivity)

(see Section 2.4 for quantifier definitions) where the first rule defines the action of
stacking one block on another in the classic planning domain. The second rule
defines the outcome of the pulmonary function diagnostic test, the PC-20 test,
such a rule may be present in a knowledge based system in the pulmonary function
domain.

For the sake of convenience in defining agent models an -additional temporal
operator always is defined (for example see the models in Aitken, 1992). This is
not a new operator but is defined in terms of existing operators as follows:

(Yw)(Yp)HOLDS(always(p), w) < HOLDS(and( p, all-future(p)), w).
The interpretation of always is ‘now and all times future’. This operator is useful in

defining rules and relationships which are true throughout time, the block-stacking
rule given above is one such example.

2.3. THE INTEGRATION OF TIME AND BELIEF

Now we can combine models of time and models of belief as both have been defined
in an accessible worlds framework.

Let W be a set of worlds, ve W be the real world at an origin of time and let R, T be
accessibility relations defined on W. The conditions placed on R correspond to the
model of belief, the conditions placed on T depend on the model of time. The modal
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structure is defined as: © = (v, W, R, T; P|, P, ...). The sets of worlds P; define the
worlds where the formula i is true.

We define a logical system which is an instance of ©. In this model R has the
property of seriality, that is we use a model of belief corresponding to the KD modal
system and 7 imposes the backwards linearity ordering on (a subset of) W to
implement the BL branching model of time. This system is defined by TF1-TF4,
K, P, D, TR, BLIN, EQ, AF, F, AP, P, Bl and BIF and we name it Integrated Logic
(IL). Adding ST1, ST2 to IL defines IL™ which contains the stronger temporal
model of BL™. In all definitions of modal operators given in this section the worlds
structure is explicitly represented in the metalanguage. We will refer to this as the

modal-structural approach.

2.4. FIRST-ORDER MODELS

In this section we shall define a constant domain version of IL named QIL. We can
define a varying domains model but we do not do so here.

By introducing an exists predicate (E) into the metalanguage we can reason
explicitly about domain constants and their substitution. The forall operator can
be defined as follows: i

(Yw)(Vx)(Vp) HOLDS( forall(x, D), W)
« (Vk)(E(k) = HOLDS(subst(p,k, x), w)).

The sequence subst(p,k,x) stands for the formula p with all occurrences of x
replaced by k. This is a purely syntactic notion of substitution which is all that is
required to define the common domain quantificational model. A constant domain
of object language terms is associated with every world, it is a simple matter to define
these terms as a type CO in the metalanguage such that:

(Vx)(xeCO « E(x))
The definitions of the forall and exists operators can now be more simply defined.
QU (Vw)(Vx)(Vp)HOLDS(forall(x, p), w)
— (Vk : co)(HOLDS (subst(p,k,x), w)
QE (Vw)(Vx)(Vp)HOLDS (exists(x, p), w)
o (3k : co)(HOLDS(subst(p, k, x), w)).

Adding these definitions to TF1-TF4 gives the quantified logic QPC, adding them to
IL gives QIL.

To define a varying domain quantificational model it is necessary to distinguish
between the substitution into a predicate-function term (atomic) and substitution
into a more complex term which consists of modal or truth functional functions.
In the former case the subst function can be applied immediately, in the latter case
the interpretation of reified modal formulae such as: HOLDS(sub (future(p),a,x),w)
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must be defined explicitly e.g. by a rule such as:

(Yw)(Vx)(Vp) HOLDS (sub( future(p),a, x), w)
— (Ju)(T(w,u) N HOLDS(sub(p, a, x), u))
(Yw)(Vx)(Vp)HOLDS ( forall (x,p), w) :

o (VK)(E(k,w) — HOLDS(sub(p,k,x),w)) -
(Vw)(Vx)(Vp : atomic)HOLDS(sub( p,k, x), w)

> (E(k,w) A HOLDS(subst(p,k, x),w))
(Yw)(3k)E(k,w).

In addition the quantifier elimination rules must be modified to introduce the func-
tion sub, as shown above, and the interpretation of sub is defined in terms of the subst
function defined earlier. The remainder of this paper is concerned with constant
domain modal logics.

3. Theorem Proving Methods for Modal Logics

Many theorem proving methods for modal logics are designed for particular classes
of epistemic, temporal or dynamic logics. The most commonly used proof techniques
are the tableau, matrix and resolution methods originally developed for first-order
logic. In general these techniques cannot be immediately applied to modal logics.
Additional inference rules are required to account for the modal context of a
formula or literal. - ‘

Tableaux and sequent based proof methods for modal logics have been automated
-by Fitting (1988), Catach (1991) and J ackson and Reichgelt (1989). Proofs obtained
by these methods have a more natural style than resolution style proofs as the
methods were originally developed for human use. Of particular note is the
TABLEAUX system of Catach who has extended the tableaux method to cover
temporal logics. The matrix method of Wallen (1987) and the resolution methods
of Farinas del Cerro (1985), Konolige (1986), Ohlbach (1988) and Auffray (1989)
produce proofs of a less natural style reflecting their design as automated proof
methods. These methods cover the modal systems D, S4, S5 plus K and its
extensions® and as yet none has been extended to the temporal case.

It is not our central concern here to evaluate the strengths and weaknesses of the
various approaches but rather to develop and assess one particular approach,
the resolution method, as applied to reified logics. Perhaps by presenting some
empirical data we shall be able to contribute to some future assessment of the
alternative theorem proving methods. In this paper we present two modifications
to a standard first-order theorem prover which reduce the search space and hence
improve theorem proving performance. Unlike the direct approaches to theorem
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proving (i.e. those methods mentioned in the preceeding paragraph), the modifica-
tions we propose are not made in order to account for the translation of the modal
logic into first-order logic. Such translations are required in order that first-order
proof methods can be applied to modal logics. We require no such translation
because in the reified method the semantics of the object logic (the modal logic) is
defined in first-order logic. - '

Theorem proving in any reified logic can be carried out using an un-modified
first-order theorem prover. All that is required is the conversion of the definitional
rules of the logic into clause form and the application of binary resolution. This
implements a complete and correct proof procedure (assuming the first-order
theorem prover to be complete). This naive approach provides a method of theorem
proving in all classes of object logics including the Integrated Logic. However there
is a major problem Wwith the naive method. This is the massive search space generated
by the logical axioms. In the following sections we identify two sources of this
problem and propose two modifications to a standard first-order theorem prover
which qualitatively reduce these problems.

The first modification we propose makes use of the fact that the rules defining
the semantics of the modal operators are equivalence relations. This means that
we can choose to replace all occurrences of all truth functional and modal
functions by an equivalent and unique clause form. We shall show that this pro-
cedure eliminates the representational redundancy which makes a naive approach
infeasible.’

The second modification we propose requires the semantics of the object logics
to be represented in a more computationally efficient manner than in the defini-
tions of Section 2. The intuition is that a worlds-path argument can be introduced
into the HOLDS predicate to replace the predicates R and T of the metalanguage.
The use of a worlds-path construction is common to many of the direct methods of
modal theorem proving in belief logics, especially Ohlbach (1988). We apply this
device to the modalities of time and belief, and consequently to the Integrated
Logic.

The remainder of this section describes the worlds-path method of Ohlbach in
order to illustrate the central ideas and to serve as a reference for an analysis of
proof search space in reified logics.

3.1. ENCODING MODALITY BY A WORLDS-PATH

The worlds-path method of encoding modal context is defined by the rules given
below.* The worlds-path is denoted by the superscript of a formula. The symbol :
stands for the append function ie. [0] : [w] = [0, w]. The successive application of
these rules (and others which account for quantifiers) results in formulae where all
modal operators have been eliminated. Theorem proving can be carried out by
resolution, plus additional unification algorithms which determine whether the
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worlds-paths of two literals being matched can be unified. Matching requires the
unification of the variables of the formulae and the unification of the worlds-path.

(Va) k= bel(p)* — (vw)(E 7))
(Va) = poss(p)®* = (Aw)(E p* )
(Va)(vp)(Vq) E or(p,9)* = (FP*V E¢°)
(Ya)(vp) E ~p* = — F P
The superscript denotes the worlds-path.
No additional worlds-path unification steps are necessary in order to implement
the KD model of belief. This is because the condition of seriality which is imposed

on the accessibility relation is correctly modelled by the universal quantifier where
(Yw)p — (Iw)p for any p. It is a simple matter to deduce the D axiom:

(Vo) | bel(p)* — = poss(p)®
for all p. -
In the KD4 system the accessibility relation is both serial and transitive.
Transitivity is implemented by mapping elements of one worlds-path onto elements
of another. For example:

If a« = [0, 4,b] (where a and b are constants)
and 8 = [0, w] (where w is a variable)

then the mappings [0] — [0] and [a, 4] — [w] unify the worlds-paths o and . A set of
such mappings can be defined for most belief logics (KD and stronger normal
systems) Ohlbach (1988) and it is these mappings which are implemented by the
worlds-paths unification algorithm. The theorem proving problem is made more
complex by the additional unification steps but this method does not induce an
expansion of the search space in order to reason about the modal structure.

4. Making Theorem Proving Feasible by a Rewriting Procedure

In this section we describe a theorem proving method which is applicable to all
reified systems. This method has two stages, the first can be implemented as a
rewriting procedure which eliminates all reified operators from the database. This
procedure is applied prior to the second stage, which is theorem proving proper.
We describe two implementations of the operator-elimination procedure and show
that completeness is maintained. We compare the proposed two stage method
with worlds-path method and analyse the differences between the two approaches.
Taken together, the rules which define the semantics of the logical operators define
a large search space most of which is redundant. This is a redundancy in the
representation of the disjunction, conjunction and worlds model. For example

(i) HOLDS(and(p, bel(ag,q)), w) may be represented as

(i) HOLDS(p,w) A HOLDS(bel(ag,q),w) or
(iii) HOLDS(p,w) A (~R(w,ag,u) V HOLDS(q, u)).
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The situation is actually much worse as for any formula p, for all formulae g, if
HOLDS(p,w) is true then HOLDS(or(p,q),w)) is true. The search space clea'rly
contains redundancies as many of the different representations of a formula are
equivalent, in addition many are logically weaker.

We begin by defining data as formulae containing HOLDS predicates which take a
ground proposition as an argument orin the quantified case take a reified formula
which has a ground predicate symbol. By this definition the formulae (i) to (iii)
above are data while the meaning postulates of the previous section contain no
ground terms and are not considered as data. The general approach we adopt to
obtaining proofs is to compute the extension of the logical model defined by the
data formulae in order to demonstrate a contradiction.

We can choose to eliminate all object language operators from all data to obtain
the most expanded form of the proposition. As the expanded form is obtained from
the original data by applying equivalence rules the expanded form and the original
data are equivalent. Theorem proving can be carried out on this expanded (or
rewritten) dataset without the need for the operator definition clauses to be present
in the database. Completeness is maintained and the search space is reduced as we
shall now show by considering a procedure which employs resolution. A procedural
rewriting method can achieve the same purpose. The derivation of the rewriting
algorithm is also presented below.

4.1. THE REWRITING PROCEDURE

Let DC be the set of clauses obtained by converting the definitional rules of a reified
logic into clause form. Let OC be the data set, also in clause form. The aim of
resolution is to derive a contradiction from DC U OC. DC consists of two types
of rules, equivalence rules which define an operator, ER, and modal rules, MR.
The set DC is consistent — applying resolution to rules within this set _will never
derive a contradiction. By noting that the set ER are equivalence relations we
propose the following two stage resolution procedure.

The first stage is to define the set OC? by the resolution of one clause from ER
with one clause from OC or OC¢. The resolution strategy of this stage ensures
that each application of binary resolution eliminates an operator from OC®.> This
procedure terminates when all operators have been eliminated. By the arguments
above OC and OC® are equivalent and resolutions among ER are unnecessary.
The second stage of theorem proving applies resokution to OC¢ U MR. The advan-
tages of this method are that the set ER has been eliminated from the database
during the main theorem proving stage and that completeness is maintained.

The first stage need not be implemented by resolution, a rewriting algorithm can
be derived automatically from ER. The rewriting algorithm performs two functions.
First, it eliminates all occurrences of reified functions. That is, after rewriting, the
database consists of sentences from which the reified functions such as and, or,
past etc have been eliminated. Secondly, it converts input sentences to clausal form.
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The rewriting procedure consists of two subprocedures, one for rewriting positive
HOLDS literals, and one for rewriting negative HOLDS literals, called rw and nrw
respectively. Both are constructed automatically from the meaning postulates
defining the semantics of the reified functions. In order to construct a rewriting
procedure, we first convert those meaning postulates‘that define a reified function
into clausal form. The resulting cladses are then ordered so that the leftmost literal
in each is either the negative or the positive literal which was the antecedent of the
original meaning postulate. Since each meaning postulate defining the meaning of a
reified function will always have exactly one HOLDS predicate in its left-hand side,
the existence of such a literal is guaranteed for each clause. Moreover, if a meaning
postulate yields more than one clause, the literal in question will be identical for each
clause. Thus, for example, TF1 will yield the following two sets of clauses:

{[-HOLDS(and(p,q),v), HOLDS(p,v)]
[~-HOLDS(and(p,q),v), HOLDS(q,v)]} )
{(HOLDS(and(p, q),v),~HOLDS(p,v),~HOLDS(gq,v)[}

These sets of clauses can then be used to generate a separate statement in the
definition of the rewriting algorithm. Each set of clauses whose first literal is
negative yields an -additional statement in the definition of the nrw sub-routine,
while each set of clauses whose first literal is positive yields one for rw. The right-
hand side of the clause is obtained as follows. First, delete the left-most literal
from each clause, i.e. the HOLDS literal defining the reified function. Then, replace
each negative literal —=p by rw(p) and each positive literal by nrw(p). For each
clause, if there is more than one expression remaining, construct a statement apply-
ing the function append to each rewritten literal. Finally, if there is more than one
such append statement, then form a new statement applying the function merge to
the different append statements; otherwise simply return the append statement.

The functions merge and append act as expected. They both take lists of clauses as
arguments. The function merge forms new clauses by combining clauses in the first
argument list with those in the second list. The function append simply appends
two lists of clauses. The effect of these functions is to distribute disjunction and
conjunction over the clauses generated by subsequent rw or nrw operations.

To illustrate the generation of a rewriting procedure, consider the sets of clauses
generated from TF1. After applying the first step, we have:

{I[HOLDS(p,v)|[HOLDS(g,v)]}
{(~HOLDS(p,v),~HOLDS(g,v)]}.

The first set of clauses will generate the right-hand side for nrw(HOLDS(and( p, q),v)),
while the second one will generate that for rw(HOLDS(and(p,q),v)). The second
step yields:

{[nrw(HOLDS(p,v))][nrw(HOLDS(q,v))|}
{(rw(HOLDS(p,v)),rw(HOLDS(q,v))]}
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which after applying the final steps, result in: ' . N
merge(nrw(HOLDS(p, v)), nrw(HOLDS(q,v)))
append (rw(HOLDS(p,v)),rw(HOLDS(q,v))).

In addition to the clauses for rw and nrw defined in this way, each rewriting
algorithm contains two further clauses, which are in fact the first ones to be

applied, namely:
rw(HOLDS(p,v)) = {{HOLDS(p,v)]}

if p is the name of an atomic proposition.

nrw(HOLDS(p,v)) = {[~HOLDS(p,v)]}

if p is the name of an atomic proposition.

The full rewriting algorithm for any reified logic is obtained by applying the above
procedure to the definitional rules.

The Two-Stage resolution procedure is independent of the object logic under con-
sideration. It is applicable to the belief logics, temporal logics and the Integrated
Logics. The ‘architecture’ of this approach is derived from the properties of the rules
defining the reified logics. Experiments with Two-Stage theorem provers have shown
that this method makes the theorem proving problem feasible, the experimental
results are presented in Section 6.

4.2. COMPARISON OF THE WORLDS-PATH AND REWRITING METHODS

Comparing proofs employing the reified method with those employing the
worlds-path construction reveals that there is a greater branching of the search
space in the reified method. As an example consider the proof of bel(p) from
a database consisting of this formula alone. The proof procedure -is to
add -bel(p) to the database and derive the empty clause [J, as illustrated in
Table I.

The explicit representation of the R predicate, in the Two-Stage reified method,
causes the search space to branch to a greater degree than in the worlds-path
method. For example atomic clause (ii) will resolve with all clauses containing the

Table I. Comparison of proof methods.

Worlds-path Two-Stage reified method
method
Data a) {E p*) i) {~R(0,a,w)HOLDS(p, w)}
Goal b) {&= ~p" 1} i) {R(0,4,c)} iii) {~HOLDS(p,c)}
Inference Steps Ofc/wjbya+b iv) {HOLDS(p,c)}[c/w] by i +ii
O by iv +iii
Computation R=1,U=2 R=2,U=5

Key: R = the number of applications of resolution, U = the total number of variables unified.
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literal —R(0,a,w). This literal occurs in all clauses derived from statements
about a’s beliefs. The result of applying binary resolution is to derive new
clauses concerning the truth of HOLDS literals at world ¢ for all clauses
concerning a. A contradiction will only be deduced by resolutions involving
the other goal clause (iii). Hence many unnecessary computations are made.
The equivalent step of modal réasoning in the worlds-path method is the
unification of terms in the worlds-path, but this does not happen until
matching propositions have been identified and therefore the problem does not
arise.

In the above example there are no additional axioms defining the worlds structure,
however we must consider the cases where they do occur. The clause {R(x,y, f(x))}
defines KD, the serial extension of K. Adding this clause to the set (1)—(iii) listed
above expands the search space yet more. In the temporal modality, reasoning
about the modal structure is even more problematic since the temporal axioms
themselves define a large search space. _

Our conclusion is that the Two-Stage method has made automated proof in
reified logics a possibility, through the elimination of representational
redundancy. The problem of reasoning about modal structure in an efficient
manner is not solved and this approach compares unfavourably with the
worlds-path approaches in this respect. This problem will be tackled in the following
section.

5. Encoding Modal Semantics in Terms of Worlds-Paths

We can combine the reified method of defining modal logics with the idea of
encoding the modal structure in a worlds-path. The central idea is to complicate
the world argument of HOLDS( ) by making it a more complex construction, in
order to remove the explicit representation of worlds structure. The idea of a
worlds-path is common to many of the syntactic methods of modal resolution. In
this section we redefine the reified logics making use of the worlds-path to eliminate
the R and T predicates from the first-order language. Previously the syntactic
methods have used this device to derive efficient belief logics. We show how this
device can also be used to replace T in the strong temporal logics. All of the systems
presented in this section are extensions of common domain object language defined
by TF1-TF4, QU, QE.

This section begins by defining three logical models in terms of a worlds-path
index. The rules defining these logics include those which eliminate an operator of
the object language, as was the case previously. In addition we define rules which
modify the worlds-path index of formulae and inference rules. The next step is
to rewrite these definitions so that they can apply to atomic formulae only (i.e.
literals in a clause) and the logic remain complete. Having achieved this, the index
modification rules can be implemented as unification rules and the inference rules
as resolution rules.
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5.1. THE MODEL OF BELIEF —

We must encode the semantics of all accessible worlds (where there is at least one
accessible world) in the metalanguage. In contrast to the definitions K and P of
Section 2.1 the predicate R must not appear in the metalanguage for the reasons
given above. This is achieved by employing the exact correspondence between this
notion of ‘all accessible worlds’ and Vx. This approach is common to Ohlbach
(1988),- Jackson and Reichgelt (1987) and has the consequence that the model of
belief is based on KD. The argument of the HOLDS( ) operator becomes a list
construction with the following convention for writing lists:

Let - be a list construction function thena-b=-(a,b),anda-b-c=- (a, - (b,c))
where the left expressions are shorthand for the linear lists on the right. We shall
refer to these constructions as index-lists.

The KD model of belief is defined by operator definition rules B and PB in
addition to TF1-TF4, QU, QE.

B (Vi)(Yag)(Vp)HOLDS(bel(ag,p),i) < (Vj: w)(HOLDS(p,j-ag-i))
PB (Vi)(Vag)(Vp)HOLDS( poss(ag, p),i) e~ (3j: wY(HOLDS(p, j-ag-i))

The definitions make use of a type theory where w is the type ‘worlds’. The index-list
is built up from right to left. This is because it is easier to add a first element to a list
than to add a last element while keeping the list linear. For example - (c,-(b,a)) plus
d as a first element = - (d, - (c, - (b,a))) where the - ( ) function is applied to both
existing structures. Adding d as the last element means finding the last element
and applying the - ( ) function — all these operations would have to be defined in
the logic.

If we try to implement a K model by the worlds-path method then we could
modify the definitions of P and PB to account for the case where there is no
accessible world, as below. '

(Vi)(Yag)(Vp)HOLDS (bel(ag, p), i)
— (Vj: w)(HOLDS(p,j-ag-i)V End(ag,i)).

Alternatively the End predicate can be introduced into the definition of the unifica-
tion procedure (Ohlbach (1988)). Both approaches involve explicit reasoning about
the worlds structure therefore neither approach is a significant improvement on the
definitions K, P in Section 2.1. We conclude that the worlds-path approach is an
improvement on the modal-structural approach only in the case where the core
modal system is KD i.e. where the correspondence between the modal operators
and V, 3 is exact.

In the modal-structural approach the extensions of KD were defined by logical
rules constraining R. In the worlds-path approach this is not possible as R has
been eliminated from the axiomatisation. An alternative way to define the exten-
sions of KD is to add the axioms for 4, 5 as rules in the metalanguage.6 This
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solution satisfies all formal semantic considerations but we must also _take
implementational factors into account. Rules 4 and 5 appear to have adverse
implications for the efficiency of theorem proving. If these rules were converted
into clause form and added to the database then the problems of representational
redundancy would reappear. However we can look at these rules from another
perspective: the effect of axioms 4 and 5 is to modify the index-list and to leave
the reified proposition unaltered, therefore we can view these rules as specifying
computational procedures which can be built into the theorem prover. Once these
procedures have been defined there is no need to retain the clause form of the
axioms in the database.

Our solution to the problem of reasoning about modal structure has two compo-

nents: the first is the definition of thé semantics of the modal operators (rules B
and PB above) and the definition of rules which modify the worlds-path to specify
particular modal properties. The second component is the mapping of the two sets
of logical rules into rewriting procedures and index-list unification procedures
respectively.
_As the logical implication operator and the procedural implication operator
of computer languages have different semantics, the definition . of the
extensions 4, 5 of KD must be modified in order to account for these
differences.

We shall refer to ‘path rules’ as those rules which are part of the definition of the
logic and are of the format: HOLDS(p,i) = HOLDS(p,j)- The extensions of KD
are defined by operator definition rules and path rules, KD is defined by the operator
definition rules alone. The path rules must be implemented as a procedure in the
theorem prover. The implementation must be derived from the path rules and
must be equivalent to them._Therefore the semantics of the operators in the
path rules must match the semantics of the operators in the procedure. A
procedural implication operator = is introduced. The = operator has the following
semantics:

PA(P=0Q)—0Q

The = operator is weaker than standard implication as from (P = Q) and ~Q it is
not possible to deduce - P. That is, the procedural implication operator can only be
applied in the forwards direction. This is exactly the interpretation that the rules of
the implemented unification procedure will have.

From the above considerations the path rules must be of the form
HOLDS(p,i) = HOLDS(p,j). These rules must also specify a consistent strategy
for modifying the index-list. The most obvious strategy is that the length of the
index-list of the conclusion must be shorter than, or equal to, the length of the
index-list of the condition. If this is not the case then the procedure of applying
path rules may not terminate as a rule increasing the length of the index-list may
be recursively applied.

The following axiom sets are used in place of the standard definitions of 4 and 5 in
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the modal systems KD4 and KD5 respectively.

4" QOP= QP
5/ o00OP= 0P
5" oOP = 0OOP ) .

They are defined in terms of procedural implication and no rule increases the length
of the modal path. These axioms have the desired properties of path rules and are
translated into the index-list formulation below.

E4'  (ViI:w)(Vk:w)(3j: w)(Vi)(Vag)(Vp)HOLDS(p,k-ag-1-ag" i)
= HOLDS(‘p,j-ag-i)

ES'  (VI: w)(Vj: w)(3k : w)(Vi)(Vag)(Vp)HOLDS(p,k-ag-1-ag- i)

_ = HOLDS(p,j-ag-i)

ES"  (VI:w)(Vh:w)(¥j:w)(3k: w)(Vi)(Vag)(Vp)HOLDS(p,k-ag-1-ag- i)
= HOLDS(p,h-ag-j-ag-i). -

The specification of KD5 by two additional axioms, instead of one, arises from the
interaction of 5 with itself i.e. 0OP — OOLIP — OOP by two applications of 5. This
derivation requires an increase in the degree of modality or, in terms of index-lists, -
the introduction of a variable of type w in the first step of the deduction. We remove
the need to introduce such variables by the particular choice of axioms E5', ES".
The derivation of rewrite rules from B and PB is straightforward (see Section 4)
the derivation of a procedural algorithm from path rules is presented in Section
5.3. In contrast with the method of Ohlbach (1988) it is not guaranteed that the
axiom set defining a transitive relation among accessible worlds can simply be added
to an axiom set defining symmetry, euclideanness or reflexivity in order to define an
accessibility relation which combines several properties. The interaction of these
properties must be accounted for, as shall be illustrated in the following section.

5.2. THE BRANCHING MODEL OF TIME

We wish to retain the efficient features of the worlds-path approach in our redefini-
tion of the branching temporal logic. Consequently we restrict our treatment to the
strong branching system. The basic approach is to add terms to the worlds-path
which stand for ‘all points in time in the future’ and ‘some point in time in the
future’. The past time operators are treated similarly, however they are replaced
by terms defined as a different type to future-path terms in order to avoid confusion.

Let the types ft and pt be future and past time points respectively (both types are
distinct from w). Future time points may also be denoted by domain terms (type ¢0)
as these terms are used as arguments of the i-future operator and therefore must be
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encoded into the worlds-path. Let ¢t = prU ft. In the following rules we define the
modal operators of BL?. If we wished to implement BL™ we would delete rule EBI.

EAF
EF
EAP
EP
EBI

(Vi) (¥p)HOLDS (all-future(p), i) — (Vu : ft)(HOLDS(p,u-i))
(Vi)(Vp) HOLDS future(p),i) < (3u: ft)(HOLDS(p,u-i))
(Vi)(Vp) HOLDS(all-past(p),i) = (Yo : pt)(HOLDS(p, - i))
(Vi)(Vp)HOLDS (past(p),i) « (3o : pt)(HOLDS(p, - i))
(Vi)(VI : co)(Vp) HOLDS (i-future(l, p), i) «— HOLDS(p,!-1).

The temporal model must have the properties of partial ordering of time points and
transitivity. We can model transitivity by the combination of terms in the index-list.
The partial ordering of time points can also be implemented in part by path rules
however we must also define an inference rule (PO). The fact that we must imple-
ment an additional inference rule in our theorem prover is a source of inefficiency.
However this situation is still an improvement on the previous approach where
there were 6 temporal inference rules whose use had to be controlled.

As was stated previously the path rules must satisfy a set of constraints. The rules
EB1-EB7 meet all conditions and together with EAF, AF, EAP, AP, EBI and PO
define a complete logic of branching time.

EBI

EB2

EB3

EB4

EB5

EB6

EB7
PO

(Vx : f1)(Vy 2 f1)(3z : f1)(Ip) (Vi) (HOLDS(p,y - x - i)
= HOLDS(p,z-i))
(Ve : pt)(YB : pt) (37 : pt)(Vp)(ViY(HOLDS(p, B+ i)
= HOLDS(p,v+i)) B}
(Va : pr)(3x : ft)(Vp)(Vi)(HOLDS(p, x- - i) = HOLDS(p,i))
(Vx : ft)(3a : pt)(¥p)(Vi)(HOLDS(p, o+ x - i) = HOLDS(p,i))
(Vo : pt)(Vy : ft)(3x : ft)(Vp)(Vi)(HOLDS(p, % - &+ i)
= HOLDS(p,y-i))
(Vx : ft)(VB : pt)(3ex : pt)(Vp)(Vi)(HOLDS(p, o x+ i)
= HOLDS(p,B+1))
(Vx : co)(3y : ft)(Vp)(Vi)(HOLDS(p, x+ i) = HOLDS(p,y-i))
(Vi)(Ya : pt)(VB : pt)(3v : pt)(36 : pt)(Vp)(Yq)(Vr)
(~HOLDS(p,c.i)V ~HOLDS(q,.i) V ~HOLDS(r, c..i)
HOLDS(p,B.i) vV HOLDS(q,6.0.i) V HOLDS(r,v.5.i))

Rules EB1, EB2 define the property of transitivity and correspond to T4 and T8 of
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the axiom set as defined in Appendix 1. The rules EB3-EB6 define the interaction
between the past and future operators. The inferences that past (all-future(;))
implies p and future(all-past (p)) implies p are defined by EB3, EB4 respectively.
These rules correspond to the axioms T3 and T7.
The rule EBS defines the inference past (all-future( p)) implies all-future(p) and
EB6 defines future(all-past( p)) implies all-past( p). These rules arise from the inter-
action of transitivity and the sequences past (all-future( p)), future(all-past( p)). The
deductions they define are implicit in the axiom set (they can be derived from T3, T4,
: T7, T8 or from EB1-EB4 if = is replaced by —). All deductions which could be
made by the interaction of the converses of EB1-EB4 with the set EB1-EB4
itself, are no longer valid due to the use of the = operator. Therefore these deduc-
' tions must be explicitly defined by path rules. Rule PO is derived from the following
two rules: ' '

(Vi)(Fa : pt)(¥B : p1)(Fy : p1) (36 : p1)(¥P)
((HOLDS(p,c.i) A ~HOLDS(p,B.i)) = ai=7B.iVB.i= b.a.i)

(Vx: t)(Vy: t)(Vp)(Vi)(x =y — (HOLDS(p,x) — HOLDS(p,y)))-

~The first rule states that if p is true sometime o in the past of i and p is false sometime
(3 in the past of i then either & precedes 3 or 3 precedes c. The right hand side of this
rule is refuted if both the assumptions a = ~-B and B =6-acan be refuted. The
second rule connects equality between points in time with the truth of reified
formula at the named points. We assume that no other rules include the equality
predicate which allows us to combine these rules in order to eliminate this
predicate. The result after some simplification is PO, a rule which has little intuitive
value but which serves to complete the definition of the branching logic.

The path rules which define the temporal model must ultimately be implemented
in a resolution algorithm. They must define a procedure which terminates. This is
guaranteed as each apphcation of a path rule EB1-EB7 reduces the length of the
(finite) index-list therefore at some point the list is either reduced to length 1, or
no path rule is applicable. In both cases the procedure terminates. Another conse-
quence of implementing the path rules as part of a resolution inference procedure
is the need to restrict the quantification of p to the case where p is atomic. The
path rules given above must be transformed and a method for doing this is given
in Section 5.3.

The component models of belief and branching time can again be combined to

. obtain the strong Integrated Logic IL™.

5.3. SPECIFYING THE INDEX-LIST UNIFICATION ALGORITHM

Index-list unification can be viewed as an extra condition which must be satisfied
in order for the matching of two literals to succeed. This can be expressed by the
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resolution rule (RR) given below in which the predicate IL-UNIFY(i, j) is true
where the index-lists i and j can be unified.

RR (Vp : atomic)(Vi)(Vj)
((HOLDS(p,i)V A) A (~HOLDS(p, j) V B) A IL-UNIFY(j, j))
— (AV B)

where A and B are disjunctions

Rule RR shows how index-list unification is integrated into the binary resolution
rule. The predicate IL-UNIFY defines the metalevel .concept of unifiable worlds-
paths, just as the HOLDS predicate defines the metalevel concept of truth at a
possible world.

We must now define the conditions when IL-UNIFY(i, j) is true. These must be
precisely the conditions defined by the path rules EB1-EB7. The path rules cannot
be directly translated into statements in the unification algorithm without accounting
for the restriction in the quantification of the variable p in RR to reified atomic
formulae. The problem is that while a modal formulae may be substituted for p in
any of rules EBI-EB7, in the theorem prover all modal operators will be eliminated
by the rewriting procedure. Hence we may have an index-list such as v-ag-x-y
where v is of type world (w), ag is an agent name and x, y are future time points,
in which case rule EB1 is no longer applicable which would be incorrect. The solu-
tion is to view the sequence x - y as a sub-path of the index-list and redefine EBI to
- allow the deduction of:

(3z: ft)HOLDS(p,h-z-i) from HOLDS(p,h-y-x-i)

for any values of A, i or p: The pattern of quantification of EBI specifies that z is
dependent upon x and y alone and hence rule EB1 can be interpreted as defining
a modification to any sub-path of any reified formulae, that is, we can now view
index-list unification as a process which is independent of reified formulae. This
can be expressed as follows:

EBY'(Vx : ft)(¥y : ft)(3z : 1) (VR)(Vi){h |y - x| i) = (h|z]i)

where ( ) represents an index-list and || represents a sub-path.

This transformation of the path rules allows the statements of the unification algo-
rithm to be derived in a straightforward manner. The algorithm given below defines
the conditions under which sub-paths can be unified as the derivation of TERMN
from SUB-PATH(i,j) (UT1, UT2). The algorithm defines that unifiable sub-paths
can be combined to obtain unifiable index-lists (U1, U2). Each path rule contributes
two statements to the definition of the sub-path algorithm. Statements TL1, TR1
are derived from Rule EB1’ and define that EB1’ may be applied to either of the



-

RESOLUTION THEOREM PROVING IN REIFIED MODAL LOGICSe,” 123

index-lists being tested for unification.

Ul (Vx)(Vy)(SUB-PATH(x,y) = TERMN ) = IL-UNIFY(x,y)

U2 (Vx)(Vy)(Vu)(Vo)(IL-UNIFY(x,y) A IL-UNIF Y(u,v))

— IL-UNIFY(x|u,y|v)

UTI- (Vx)SUB-PATH(x,x) = TERMN

UT2 (Vx)(Vy)SUB-PATH(x:y,x-y) = TERMN

TL1  (Vy:ft)(Vx :ft)(3z : f1)(Vi)SUB-PATH(y - x,i) = SUB-PATH(z,i)

TR1 (Vy:ft)(¥x:f1)(3z: ft)(Vi)SUB-PATH(i,y .x) = SUB-PATH(i, z)
Each of the path rules EBI-EB7 adds two sub-path modification rules to the unifi-
cation algorithm. There are fourteen rules which may be selected in order to show

that two paths unify and there may be more than one substitution under which
two literals resolve. For example:

HOLDS(p,c-b-a-i) and ~HOLDS(p,y-x-i)
can be resolved under the substitutions

{lc/¥),(g(b,a)/x]} or {[&(c, b}/ ) [a/x]}

where a, b, ¢ are constants of type f1, x, y are variables of type ft and g is the skolem
function introduced by TL1. This is the case because both JL-UNIF Y(c-b-a-i
glc,b)-a-i) and IL-UNIFY(c-b-a-i,c -g(b,a)+ i) are true.

The search space defined by the path rules may seem large but in fact it is limited
as the type theory and the pattern of quantification restrict the number of rules
which actually apply for any particular pair of index-lists.

6. Theorem Proving.

There is a common theorem proving strategy wﬁich is applicable to each logic
described in section 5. The three steps in the strategy correspond to the different
functions of the reified rules defining the logical system.

STEP 1: The rules defining the semantics of the reified operators are applied
exhaustively to the domain language formulae. All operators are eliminated to
give a data set in clausal form which is equivalent to the original data.

STEP 2: The binary resolution rule is applied. This involves index-list unification by
procedural rules derived from the path rules which define the logic.

STEP 3: If the definition of the logic includes inference rules then at some point in
the search a meta-control decision must be made to apply an inference rule.

For KD and its extensions there is no third step to the theorem proving process. For
the temporal logics the application of the inference rule is necessary in order to con-
struct proofs which depend on the total or partial ordering of time points. There is a
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natural division between simple temporal reasoning and more complex inferences
derived from the ordering theorems. The former includes reasoning about
transitivity and is implemented by unification, the latter requires the inference rules
to be applied. This division can be used in the meta-control strategy. If the branching
logic is restricted to future time operators then step 3 can be eliminated from
the theorem proving procedure. This would implement a system with enough
expressivity to model planning with a more efficient proof procedure than the
complete logic.

Now we turn to the question of the efficiency of the theorem proving methods. We
shall examine one aspect of this issue: that of the size of search space generated by
hyperresolution. The two measures that we are interested in are the number of
clauses generated during the proof and the number of applications of the hyper-
resolution rule réquired in the derivation of the empty clause. The former measure
indicates the magnitude of the search space, the latter indicates the depth of search
required. The problems that we consider in this study are listed in Table II, they are a
subset of the formulae which define completeness in the propositional calculus, belief
logic and temporal logic (see Appendix 1 for the full set). Formula PC1 defines a
fundamental truth functional relationship in the propositional calculus. Bl is true
by the definitions of the belief and possibility operators while B2 defines a truth func-
tional relationship which holds among beliefs. T4 and T7 hold because the temporal
structure is transitive and T5 defines the property of backwards linearity. Each of
these formulae illustrate a particular property of the reified logics. The other
formulae of the completeness-set depend on similar properties: the definition of
_ the operators, transitivity or the combination of modal and truth functional
reasoning, therefore the 6 formulae of Table II are representative of the 18 which
specify completeness in IL. The experimental results are presented in Table III.

The results show that as the definitional rules of the reified logics are replaced by
rewriting and unification procedures the initial number of clauses in the database is
reduced. As was staied earlier, this is one of our aims. The Naive theorem prover was
unable to solve any of the problems in this trial, in fact no solution was found to PC1
within the first 14,000 clauses (however the Naive Method was able to solve simpler

Table II. Problem set.

PC1 (Yw)(Vp)HOLDS(if(or(p, P),P):W)
Bl  (vw)(Vag)(Vp)(HOLDS(poss(ag, p),w) — HOLDS (not (bel{(ag, not( p))), w))

B2  (Yw)(Vag)(¥p)(Vq)(HOLDS(bel(ag, if (p,q)),w) — (HOLDS(bel (ag, p), )
— HOLDS(bel(ag, 9),w)))

T4  (Yw)(Vp)(HOLDSall-past (p), w) = HOLDS all-past (all-past (p)),w))

TS (Yw)(¥p)(Vq)(HOLDS(and(past(p), past(q)),w) — (HOLDS(past(and(p,q)), )
v HOLDS  past (and( p, past(g))), w) V HOLDS( past (and(g, past(p))), ¥)))

T7  (Yw)(Vp)HOLDS( future(all-past(p)),w) — HOLDS (p,w))
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Table III. Experimental results

Problem Naive Method Two-Stage Method Three-Stage Method
Clauses HR Clauses HR Clauses HR
PCl1 *(41) - 3 (10) 2 2(2) 2
Bl * (42) - ’ 1 (11) 1 1(2) 1
B2 * (43) - 8 (12) 3 2(3) 2
T4 * (42) - 72 (12) 3 1(2) 1
TS * (44) - * (15 - 15 (5) 5
T7 * (42) - 12 (11) 2 1(2) 1

Key: Clauses = I(J) means that I clauses were generated from an initial set of J clauses, HR = K
means that K applications of hyperresolution were required, and * indicates that no solution was
found after generating 200 clauses.

problems). The addition of the rewriting algorithm in the Two-Stage Method makes
all problems soluble, with the exception of T5. The Three-Stage Method solves all
problems.

The performance of Two-Stage and Three-Stage Methods is comparable for
problems PC1 and Bl. This is due to the use of hyperresolution which combines
several binary resolutions into one step, the greater number of binary resolutions
required in the Two-Stage Method is therefore hidden. However for B2 the Two-
Stage Method requires three applications of hyperresolution in the proof in
comparison with 2 applications by the Three-Stage Method. The extra depth of
search is due to explicit reasoning about the R predicate and leads to a greater
expansion of the search space. This finding is in accordance with the analysis
of Section 3. The greatest difference between the Two-Stage and Three-Stage
Methods occurs in the temporal problems. In problems T4 and T7 the Three-
Stage Method finds a solution with one application of hyperresolution while
the Two-Stage Method requires three and two applications of hyperresolution
with the consequential expansion in search space. Only the Three-Stage
Method is able to prove T5—the formulae whose proof requires reasoning
about the total ordering of time points on a particular branch of the temporal
structure.

The additional computational complexity introduced by the worlds-
path unification rules must be included in a full analysis of the efficiency of
modal theorem proving, such an analysis would also include the gains of structure
sharing methods (for example those of Boyer and Moore (1972) or Staples and
Robinson (1990)) the use of reduction rules (Eisinger et al., 1991) and other
advanced techniques. We have focussed on one component of the efficiency
question, that of induced search space, which we regard as being of primary
importance.

From the experimental results and from the analysis presented above we conclude
that the addition of the rewriting stage makes theorem proving in reified logics
feasible. The second modification of encoding the possible worlds structure in
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terms of a worlds-path, and defining unification rules to unify paths, further
improves theorem proving performance.

7. Conclusions

This paper has presented new empirical and theoretical work on theorem proving in
reified logics. The rewriting methods and worlds-path methods we have employed
are not new but have been used in a novel application. The extension of the
worlds-path method to the temporal modality is an original result. Adopting the
reified approach aided this work by providing a logical metalanguage for the
definition of our concepts.

We conclude that in defining theorem provers for reified logics the elimination of
representational’ redundancy is an essential step. This can be implemented as a
rewriting procedure which is applied prior to theorem proving. Reasoning about
modality remains a significant burden. This problem can be tackled for logics whose
possible worlds semantics are directly analogous to the universal and existential
quantifiers of first-order logic. In these cases a worlds-path approach can be
taken so that reasoning about modality is implemented by an algorithm which is
guaranteed to terminate. For temporal logics the situation is more complex and a
single rule from the axiomatisation of the logic must be retained during theorem
proving.

Appendix 1. Showing the Axiomatisation of the Reified Logics to be Complete

As we have specified the reified logics by defining the semantics of the individual
operators our logics are correct in the semantic sense. It remains to show that
the definitions are complete. This is achieved by showing that combinations of
operators have the correct equivalences and relations. The axiomatisations for
most of the logical models presented above are well known and we ‘use these res
and quantification. The derivation in QIL of the axioms of the standard axiom sets
of the object logic shows that QIL contains the object logic. Proof of completeness
also requires that this containment be strict, but this question will not be dealt with
here.

There are two advantages in using the reified method. These are firstly, that the
definition of theorems is entirely within first-order logic. All variables in a theorem
have a well defined status and rules of substitution for formulae and domain con-
stants are also well defined. A second consequence of the first-order formulation is
that proof of theorems can be carried out using the well understood inference rules
of first-order logic. The definitions of modal systems often include rules of necessita-
tion such as +a—tF0Oa (Hughes and Cresswell, 1968, p. 31) and
+ a — all-future(a) (Rescher and Urquhart, 1971, p. 55). In the reified method
these rules are replaced by the formulation (Yw)HOLDS(a, w). The interaction of
modality and quantification can be complex and it is an advantage to eliminate

1
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ambiguity by explicitly defining substitution and necessitation rules. As a result of
these features of the reified logics proofs can be derived automatically by means
of a conventional theorem prover for first-order logic.

We prove the theorems of the component models by proving

(Vw)(Vp)HOLDS(a, w)

which is equi\}alent to  a in conventional notation, where « is a theorem which
includes p as a formula-variable.

PCl1
PC2
PC3
PC4

PC5

For the

and (i (p,

The axiomatisation of PC

(Yw)(Vp)HOLDS(if (or (p, p), P), W)

(vw)(¥p)(¥q) HOLDS(if (g, 0r(p,9))s W)

(Yw)(vp)(¥q) HOLDS(if (or(p, 9),0r(9,P)): W)

(¥w)(¥p) (q) (¢r) HOLDS(if(if (g, ), if (or (£, 4), 0r (P, 1)), W)

The definition of and

(¥w)(Vp) HOLDS (and(if (and (p, ), not (or (not (p), not(9)))),
if (not (or (not ( p), not(g))), and(p, 9))), w).

sake of clarity we shall replace the if operator and the sequence
q),if(g,p)) in the theorems below by the — and «— metalanguage

operators.

Bl
B2

B3

Tl
T2

T3
T4
TS5

The axiomatisation of K
(Vw)(Yag)(¥p)HOLDS poss(ag, p),w)HOLDS (not (bel (ag, not( ))),w)
(Yw)(Vag)(Vp) (V) HOLDS (bel(ag, (1, 9)), W)

— (HOLDS (bel(ag, p),w) — HOLDS (bel(ag,q),w))
(vw)(Vag)(Vp)HOLDS (bel(ag, p), w) — HOLDS( poss(ag, p), w)-

The axiomatisation of BL
(¥ t)(Yag)(Vp)HOLDS( future(p),t) = HOLDS(not (all-future(not ( p))),t)
(Ve)(Yp)(Vq) HOLDS (all-past (if (P, 4)), 1)

— (HOLDS(all-past(p),t) —» HOLDS (all-past(q)),t)
(Vt)(Vp)HOLDS( past (all-future( p)),t) — HOLDS (p,t)
(Ve¢)(Vp)HOLDS(all-past(p),t) = H OLDS (all-past (all-past(p)), t)
(V¢)(Vp)(Yq)HOLDS (and( past(p), past(4)), 1)

— HOLDS(past(and(p,q)),t) V HOLDS( past(and( p, past (@), t)

v HOLDS(past(and(q,past(p))),t)
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T6

T7
T8
T9
T10

Ql

Q2
Q3

"%J . STUART AITKEN ET AL.

(V)(Vp)(Vq) HOLDS (all-future(if(p, 9)), 1)
— (HOLDS (all-future(p),t) — HOLDS(all-future(q), t))

(V¢)(Vp)HOLDS( future(all-past (p)),t) — HOLDS(p,t))
(Vt)(Vp)HOLDS ((all-future( p), t) — HOLDS (all-future(all-future( p)),t)
(Vt)(Vp)HOLDS(all—futu}e( p),t) — HOLI.)S (future(p),t)
(V1)(vVp) HOLDS (all-future(p), t)

— HOLDS(forall(l, i-future(l, and( p, all-future( p)))), t)-

The axiomatisation of the quantifiers
(Vw)(¥p)(Vx)HOLDS( forall(x, p), w)
— HOLDS (not (exists(x,not (p))),w)

(vw)(¥p)(Vx)(Vy)HOLDS(forall(y, if (forall(x, p), p)), W)
(Vw)(¥p)(Yx)HOLDS(forall(x, p),w) — HOLDS(exists(x, p), w)

Theorems on the interaction of quantification and modality

Q4 ~(Yw)(Vag)(Vp)(¥x)(Vy) HOLDS (exists(x, bel (ag, p)), w)

Q5

Q6

Q7

Q8

— HOLDS(bel(ag, exists(y, p)), w)
(Yw)(Vp)(Vx)(Vy) HOLDS (exists(x, future(p)), w)
— HOLDS(future(exists(y, p)), w)
(Vw)(Vp)(Vx)(Vy) HOLDS forall(x, bel (ag, p)), w)
— HOLDS(bel(ag, forall(y, p)),w)
(vw)(Vp)(Vx)(Vy)HOLDS (bel(ag, forall(x, p)),w) -
— HOLDS(forall(y, bel(ag, p)),w)
(Yw)(Vp)(Vx)(Vy) HOLDS future(exists(x, p)), w)
— HOLDS (exists(y, future(p)), w).

Not provable
(Yw)(Vp) HOLDS (bel(ag, exists(x, p)),w) — HOLDS (exists(x, bel(ag, p)), w)-
Proof of these axioms is achieved by steps in first-order logic with no modifications in

syntax, inference rules or the need for necessitation rules. The reified method puts these
common modifications to first-order logic proof theory onto a more formal basis.

Notes

! In considering the completeness problem, there are two advantages in using the reified method. The first
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is that theorems (including modal theorems) can be expressed entirely within first-order logic and the
second is that proofs of theorems can be carried out using the well understood inference rules of
first-order logic. The issue of completeness is dealt with in Appendix 1.

2 1n fact most cover only a subset of this range.

3 By feasible we mean refutable by resolution under a simple control strategy, i.e. forwards or backwards
chaining. We do not consider metalevel control strategies in this evaluation.

4 The syntax of our account differs from that of Ohlbach (1988). ‘

5 This can be done by ordering the literals in clauses of ER such that the left most contains a reified
function and restricting the application of the binary resolution rule to the left most clauses of ER only.
6 In fact these rules must be expressed in an appropriate form, see E4', E5’ and E5”.
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