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Expert systems - a natural history

Nigel Shadbolt
Artificial Intelligence Group
Department of Psychology
University of Nottingham
Nottingham NGT7 2RD

Abstract

This paper examines the origins, current state and future prospects for expert systems. The origins
are traced from the schism with classic Artificial Intelligence. The characteristics of early expert
systems are described and contrasted with more recent developments. A number of influential
forces operating on present day systems are reviewed. The future trends in the evolution of expert
systems are discussed.

1 Introduction

It has always seemed an interesting thought - can we talk about the natural history of a machine?
In particular, can we use analogies from the natural world when thinking about the computer?
There are similarities. We can see more complex computing devices developing from simpler ones.
Computers occupy habitats, ecological niches to which they are more or less suited. Various forces
operate to select the best of these. Some change, others find a role and remain unchanged, others
perish., One can carry the analogy some way. Although it is interesting to note that there are
those who suggest it is computing that offers insights into the natural world (Dawkins 1988). The
genetic substrate, DNA, is after all an information encoding mechanism par ezcellence.

This paper presents a natural history for one evolving species of computing systems, namely -
expert systems. What can we say of their origins, present condition and future prospects?

2 Origins

An important part of the natural historian’s work is to establish the lineage or phylogenetic history
of any species. To which genus does it belong? What closely related species are there? When did
it become clearly distinct from these related species?

In the case of expert systems, there is agreement that they developed out of a branch of the
computing genus known as artificial intelligence (A.I). The early origins of A.L systems can
themselves be traced back to the mid '50°s. Expert systems appeared as a distinct line around
the late '70's. However, there is considerable argument about just when and where the divergence
took place,
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Many would regard MYCIN (Shortliffe et al 1973, 1976) as the first and original expert system.
In part, this is because it made evident to the rest of the world the fact that something new had
evolved. MYCIN came out of work conducted on the Stanford Heuristic Programming Project.
The system assisted doctors in the selection of an appropriate course of treatment for patients
with bacteremia, meningitis and cystitis,

It is not the only contender for the accolade first ezpert system. Some would argue in favour of
the DENDRAL systemn (Buchanan et al 1978). It too was developed at Stanford and its function
was to infer the molecular structure of unknown compounds from mass spectral and nuclear
magnetic response data. Another contender is MIT's MACSYMA system (Martin et al 1971).
This system, which is today in widespread commercial use by engineers and scientists, assists in
a range of mathematical tasks. It uses mathematical expertise to recognise a user's problem and
then selects appropriate methods and techniques of mathematical analysis. The foundation for
MACSYMA was the MATHLAB 68 system (Engelman 1971) which originated in the late '60's.

Whichever one is accorded the title all these early systems share strong similarities. They
were large, they incorporated substantial amounts of heuristic knowledge. They were built with
applications in mind. They were American, programmed in LISP and many people saw them as
the new wave in A.L

Research on other large expert systems continued through the late '70’s across a range of
application domains. These are now regarded as landmarks in the development of expert systems.
CASNET (Szolovits et al 1978, Weiss et al 1878) was a large medical expert system that diagnosed
and proposed treatments for disease states related to glaucoma. One of the distinctive features of
CASNET was that knowledge was represented in a semantic network that attempted to provide
a causal-association model of symptoms, disease processes and treatments. The PROSPECTOR
system (Gaschnig 1982) belped in the interpretation of geological data and attempted to assess
the likelihood of finding various types of mineral deposits. Its knowledge representation was rule
and network based. It used certainty factors and probability propagation methods to encode
the idea of confidence in evidence and certainty in conclusions. XCON/R1 (McDermott 1980)
configures DEC VAX computer systems. It decides upon the components needed to preduce an
operational system given a customer’s order. It is a constraint driven system - it has knowledge
about what components can go together, what the constraints at Lhe installation site are etc. It
uses this knowledge, expressed in a rule-based format, to reason forward from the constraint data
to a configuration that satisfies the constraints. This commercial systern is still in use and is
congsidered one of the most successful in the history of expert systems.

It is interesting to note that early versions of these systems shared many of the characteristics of
the progenitor systems discussed earlier. They had large knowledge bases, ran on large computers,
consumed man years of research development, were American built and they all received a lot of
publicity. It is also interesting to note that they employed a wide range of techniques to represent
knowledge and reason with it. In some of the earliest systems we see mixed representation methods;
rules, nets and frames. However, it is also salutary to note that four out of the six named systems
only reached what is termed the profofype stage. Clearly this was not yel a completely mature
and exploitable technology.

A new direction in the evolution of expert systems was provided by the work done on EMYCIN
(van Melle et al 1979, 1984). The acronym which staiids for essential MYCIN indicates the skeletal
nature of the system, which was MYCIN stripped of its domain knowledge. What one is left with
is a rule-based representation language which uses a backward chaining control regime, certainty
handling methods, and automatic explanation facilities. This abstraction away from the problem
domain left a clean kernel system. The system was restricted to representing and reasoning with
Enﬂifledge in a particular way. However, it provided an uncomplicated tool with which to build
applications. In particular, it could be used to build diagnostic and classification systems. The
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age of the expert system shell had dawned.

Once the template for such shells became apparent they proliferated. Early shells tended to be
primarily rule-based, They also began to migrate from costly hardware to PCs, and from LISP to
a variety of other programming languages. The simplicity of a kernel rule-based shell made this
process straightforward.

The history of some of these early shells illustrates some interesting differences in respect of
how expert systems technology developed on either side of the atlantic during the first part of
this decade. The original EMYCIN was written in INTERLISP and ran on DEC mini computers.
Another early shell was KAS (Reboh 1981). The concept was very close to EMYCIN, the difference
was that KAS was the PROSPECTOR system stripped of its geological domain knowledge. Again
the system was written in INTERLISP and ran on mini computers.

The development of early US purpose buili shells is exemplified by Teknowledge's products
S.1 and M.1l. The 5.1 shell was an expert system building tool based on rule-based representa-
tions. Its basic control mechanism was backward chaining. However, it also supported alternative
representational methods, including frames and a procedural language. The cost of such added
functionality in the first part of this decade was that its original INTERLISP implementation ran
only on specialised Xerox workstations. The more modest M.1 system was capable of running on
IBM PC hardware, it was rule-based and built using a PROLOG backward chaining architecture.
It had no other representational capabilities. In fact, for the US M.1 was rather an exception.
A survey of US products in the early '80's shows that the main preoccupation was the provision
of quite specialised knowledge engineering software which offered a wide range of capabilities.
However, one paid a high price both for the software and the hardware.

The UK scene was characterised by the appearance of a number of inexpensive, PC-based
shells. Many of these owed much to the effort that had gone into producing PC PROLOGS.
These implementations offered a natural vehicle for shells. PROLOG requires little augmentation
to function as a shell. In fact, one of the first products APES (Augmented PROLOG for expert
systems, Hammond 1982) was just such a shell.

Other shells appearing at or around this time attempted to hide their PROLOG internals
from the user. The recurrent feature of these systems was rule-based representations, backward
chaining control of reasoning, and often an add-on which provided a means of representing and
reasoning about uncertainty.

A great deal of interest was shown in this first generation of shells. In the UK A.L had been
progressing steadily during the late '50's and '60’s. Unlike the US it never received much govern-
mental support, but by the early '70’s a number of centres of excellence and had made significant
contributions to A.L in fields as diverse as theorem proving and robotics. The UK A.I. scene
suffered something of a reverse with the publication of the Lighthill report in 1973. For a while
there was a real chance we would lose our research groups completely. However, the groups hung
tenaciously on, and by the beginning of the "80's the environment was changing. One of the first
signs of this changing environment was the founding by Professor Donald Michie in 1980 of the
BCS SGES. This specialist group’s goal was to bring together a community of individuals inter-
ested in the potential of expert and knowledge based systems. The 1982 Alvey Report led to the
350 million pound Alvey programme, the EEC was also getting its ESPRIT programme under-
way. These initiatives released large amounts of funds into IKBS and its supporting technologies.
This largesse was prompted in large part by the inception of the 1981 ICOT or Japanese Fifth
Generation initiative. Suddenly it seemed evervone regarded A.l. as the key to future economic
success.

As awareness increased and money poured in, more and more companies and academic sites be-
came active in the area. As momentum gathered and expectations rose perhaps it is not surprising
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that a sense of what the technology could realistically achieve was not always retained.

Nevertheless, this interest together with the emergence of an expert system shell technology
led to real progress. Only a few years later Professor Alan Bundy (1987) in a key note lecture at
ES87 was able to observe

the UK expert system community has been very successful in the development of small
scale, commercial, rule-based, expert systems. A typical example is a fault diagnosis
system for a piece of specialised hardware, consisting of a set of less than 100 rules,
running on a PC, in one of the many commercial shells. Part of the success consists in
the unexpected (to me anyway) discovery of a large number of commercially interesting
problems which yield to such a simple mechanism,

What Bundy was describing in terms of our natural history analogy is equivalent to the spe-
ciation of simple but effective forms - an explosion of simple systems to fill the many niches that

exast.

He also referred to a preoccupation with diagnostic systems. So distinguishing one particular
generic class of expert systems. There are in fact a range of types of problem solving we could
imagine expert systems performing. A number of classifications have been proposed, the one
below derives from Waterman® 1986. Each of these different types is proposed to have a different
underlying problem solving structure. This is sometimes called the inference level And can be
regarded as a type of knowledge in its own right. It is knowledge about how components of
expertise are to be organised and used in the overall problem solving system.

Type Description

Diagnosis Inferring system malfunctions from observables
Interpretation Inferring situation descriptions from sensor data
Prediction Inferring likely consequences of given situations
Design Configuring objects under constrainis

Planning Designing and sequencing actions

Monitoring Comparing observations to plan vulnerabilities
Debugging Prescribing remedies to malfunctions

Repair Executing a plan to administer a prescribed remedy
Instruction Teaching of any knowledge level component
Control Governing overall systems behaviour

Table 1: Generic Problem Solving Categories

Inference level knowledge is, of course, only one variety of knowledge one is likely to find in
expertise. Using a classification due to Weilinga and Breuker (1986) we can distinguish three other
general sorts of knowledge; strategic, task and domain level knowledge.

Strategic knowledge monitors and controls the overall problem solving. This can have to do
with the way resources are used. What to do if the proposed solution fails or is found to be
inappropriate in some way. What to do when faced with incomplete or insufficient data. Task
level knowledge is sometimes called procedural knowledge. This is knowledge to do with how goals
and sub-goals, tasks and sub-tasks should be performed. Thus in a classification task there may
exist a number of tasks to perform in a particular order so as to utilise the domain level knowledge

!This is in fact & rather coarse charsclerisation and if we take just the category of disgnosis it can be further

enalysed into sub-types; heuristic di e U + L ‘thrciish S matic di 7
l-h'rﬁ'l-'l.;hln oy ic diagnosis, systematic diagnosis ough causal tracing, syste ic diagnosis
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appropriately. By domain level here we mean its narrow sense - knowledge that describes the
concepts and elements in the domain and relations between them. This sort of knowledge is
sometimes called declarative, it describes what is known about things in the domain.

Any field of expertise is likely to contain, to greater or lesser extents, elements of domain,
task, strategic and inference knowledge. At any particular knowledge level the information may
be explicit or implicit in an experts’ behaviour. Thus in some domains the experts may have no
real notion of the strategic knowledge they are following whilst in others this knowledge is very
much in the forefront of their deliberations. Also, of course, the requirements on a system about
how far it needs to implement these various levels will vary. But they can become evident even
in meodest first generation applications. Moreover, it is acknowledged that significant reasoning
about problem domains requires more than just modelling simple relationships between concepts
in the domains - it requires causal models of how objects influence and affect one another, models
of the processes in which objects participate. This is a hard problem. And often the limitations
of first generation expert systems means that sophisticated domain models cannot be supported.
It was this point that Bundy went on to discuss in his ES87 address.

UK knowledge engineers have also been active in building much larger expert systems,
with hundreds or even thousands of rules. [n addition, they have experimented with
alternative knowledge representation and reasoning techniques, e.g frames, objects,
semantic nets, etc. This use of large scale expert systems and of alternative and/or
multiple knowledge representations has been more typical in the US market, but both
are becoming more important here.

In a lecture delivered to the previous years conference, Steels (1986), had also pointed out
the need for us to look beyond first generation systems. He pointed out some of the limitations
of first generation systems. First generation systems tend to rely on behavioural heuristics, if X
is observed do Y. These are surface models of performance, with no deep model of competence.
A second generation system would have an additional component in the form of a deep model
which gives the system an understanding of the domain over which the heuristics operate. In fact
Steels argues that an important source of inspiration for this second generation component is to
be found in A.l. work in areas such as qualitative reasoning (Price and Hunt 1989 this volume,
Suguya 1989 this volume). This enhances the problem solving of any system by modelling the
domain principles, its causal and functional properties. Associated with the need to provide deep
models Steels remarked on the need for powerful methods of building KBSs. One category of tools
would help in the knowledge acquisition process - a process that needs to be more sophisticated
than ever if deep models are to be implemented.

We can discern then a number of recurrent themes leading up to the present; a substantial
number of modest rule-based applications in place, a concern to provide a methodology for the
knowledge engineer, the emergence of more powerful shells, the recognition of an impending second
generation of expert systems. The questions now relate to the current well-being of the expert
system species. Will the dissemination of small expert systems and shells continue? Are knowledge
engineering methods available? Can the technology be scaled up to large applications? When will
commercial second generation expert systems arrive?

3 Current conditions

The Alvey programme for all its faults, real and imagined, was a great catalyst. It succeeded
in forging a bridge between academe and industry. And although as Bramer (1986) remarked
many of the best researchers were led into endless rounds of grant writing and administration,



Shadbolt : Expert systems - a natural history

there was real disappointment when the Bide report, which suggested a comprehensive follow on
to Alvey, was largely ignored. In its place the DTI's Information Engineering Directorate (1ED)
has attempted to continue what Alvey began. For all its efiorts it is hamstrung by the funding
conditions it has to work by. Usually a number of partners, commercial and academic, will get
together to form a consortium to carry out a programme of work. The consortium can apply for
up to 50% of its total eligible costs, academic partners however receive 100% of their costs and
this is taken from the 50% of costs the IED will pay to the consortium. The industrials then
receive the remaining amount of money in proporiion to their original costs. The effect of these
rules is to make academic participation unatiractive to industrial partners. Moreover, the absolute
proportions awarded tend to mitigate against small to medium sized company participation.

The SERC is the other source of funding for academics. However, money is so tight that the
SERC only manages to fund a minority of its alpha rated (technically excellent) research proposals
in computer science.

Meanwhile the infrastructure that was so painfully built-up in Alvey is gradually coming apart.
As yet, we have no definite commitment to funding for community Clubs, Special Interest Groups,
mailshots, awareness and training.

Problems of awareness and training are still widespread in the UK scene. The awareness prob-
lem manifests itself, in part, in a perception of expert systems as a risky and esoteric technology.
Too many institutions only maintain a watching brief. But watching briefs can lead to problems
when, for example, management decides to sample the technology. The person maintaining the
watching brief is expected to produce a compelling technology demonstrator. Often, there are
simply insufficient resources in house to produce a convincing demonstration. The demonstrator
fails, the technology is seen to be immature, the management remains unconvinced, the company
maintains its watching brief.

AL the other extreme, there are those who argue that building experl system is now zll routine.
They deprive the technology of its success. The achievements disappear under the moving tide
of IT advances. In promoting awareness and interest in a technology, it is always important to
enumerate the successes and spin offs.

Problems of awareness crop up in another way. The Alvey programme, although beneficial in
many ways, fostered a rather introveried community. The consequence of Lhis was that those inside
the community were made very aware of the technology, and soon came to think that everyone else
must be too. In fact, the technology has not really succeeded in getting outside of the Financial
Times top 100 listed companies. There is still a substantial job of awareness to tackle.

There has also been a belief that awareness leads to technical competence. The fact is that
acquiring an adequate knowledge engineering competence takes a lot of effort, and a current
problem is the provision of trained people. The most comprehensive training is obtained by those
who have taken a number of the IKBS M.Sc¢. conversion courses available and who have computing
or a relevant cognitive science background. However many personnel are recruited from general
IT conversion courses. The problem here is that these courses are often only marginally refevant
to the technologies which comprise IKBS. Training problems are compounded by the fact that
we lack an agreed idea of a syllabus or curriculum that might form a minimal requirement for
a qualification in knowledge engineering, There are still relatively few Honours undergraduate
courses in A.l., and even fewer graduates going on to complete PhDs. Those personnel in post,
Tha are expected to acquire competence in the new technologies face the problem of finding the
time and expert help to support their retraining. There is an urgent need to attend to the training
requirements in [KBS and ALl

Moving on to consider the application of expert systems technology, we noted the proliferation
of small to medium sized applications. Most of these are rule-based. Most occupy modest but
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effective niches in a variety of areas from manufacturing to finance, power utilities to medicine.
There are, however, a number of areas in which it has proved more difficult to deploy 1KBSs.
These include real time applications, very large databases applications, and domains where the
reasoning is non-standard, where conditions are constantly changing, or where the knowledge
base itself needs to be constantly updated. These application areas present technological and
methodological problems that are forcing us to apply a richer range of techniques, and develop
more powerful methods of IKBS specification and formulation. To some extent, they are setting
the agenda for current expert system research.

If we look at current developments in methods and tools for knowledge engineering we find
one particularly active area - knowledge acquisition. It is difficult to establish methods and
methodologies for conducting acquisition through the life-cycle of KBS construction. The most
thorough framework is provided by KADS - Knowledge Acquisition and Domain Structuring
(Breuker 1987, Weilinga and Schreiber 1989 this volume). KADS embodies seven principles for
the elicitation of knowledge and construction of a system. We will not detail them all here, but
one is of particular relevance given the discussion earlier about knowledge levels. It recommends
that the analysis should be model-driven as early as possible. This requires that one should bring
to bear a model of how the knowledge is structured early on in the process, and use it to interpret
subsequent data. This will involve appeal to what we have called inference level knowledge earlier
in this paper. It may also include appeal to models of the domain, or devices in the domain
(Chandrasekaran, 1988).

An important theme in this and other current approaches to knowledge acquisition is that
the enterprise should be viewed under the metaphor of model building, rather than the mining of
information. In this regard, we have moved from a transfer view of acquisition to 2 model view.
This recognises that even within first generation expert system construction, a knowledge engineer
is engaged in a subtle process. Knowledge engineering is not simply a matter of transferring
knowledge from an expert into a knowledge base. The final product is a model of various aspects
of an expert’s knowledge,

A rather less disciplined methodology and yet one that is almost always associated with expert
systems is rapid prototyping. The idea is that it is easier for experts to criticise a working system,
than it is to specify the system in the first place. Initially, a prototype is built, without much regaed
to its weaknesses, and the expert makes suggestions about its performance. These suggestions are
incorporated into the system by programmers, and at the next session there should be fewer errors.
This cycle continues until the expert is satisfied with the behaviour of the system.

There is some debate as to whether rapid prototyping constitutes a methodology or a knowledge
acquisition technique. In fact, a growing area of research is concerned to evaluaie the various claims
made about knowledge acquisition methods and techniques (Burton et al 1987, 1988, Shadbolt &
Burton 1989).

Tools construction is an important area of current work. Again let us take knowledge ac-
quisition as illustrative. Currently, there four main types of acquisition tool available or under
development (Boose 1989 provides a comprehensive review). _

Firstly, those systems which are implementations of standard knowledge elicitation techniques,
such as repertory grids and concept sorting. Secondly there are those systems which use machine
learning techniques to induce rules from sets of worked examples and cbserved data. In addition
to these categories, there are also systems which use knowledge about the structure of a particular
domain in order to drive the elicitation. However, these are large-scale systems dedicated to
specific projects, and are not generally available. Finally, there are a number of large-scale,
generic knowledge acquisition environments under construction. These typically provide a number
of automated KE techniques, knowledge base editors, automated tianscript analysis and various
other support software for the knowledge engineer. These systems are currently at the research
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stage, and as yet are not generally available. Although they are not yet available they indicate
the shape and form of the next generation of knowledge engineering tools.

4 The future

In the last section we mentioned some of the difficult technical problems that must be solved
if expert systems are to progress. One of these is expanding the types of reasoning available
to systems. Those advancing the cause of second generation systems regard the expansion of
reasoning capabilities as crucial. Many applied problems require recourse to non-standard methods
of reasoning such as defaull and ebduclive reasoning. Many of these non-standard reasoning
methods are non-monetonic (Ginsberg 1987 for a review).

Work on non-menotonic reasoning is becoming an important issue in expert systems. Many
current expert systems make an implicit assumption of monetonicily, facts true at the beginning of
a reasoning session are assumed to remain true throughout. If facts subsequently become false then
usually the system has to restart inference from the beginning. There is no way of determining
what information generated by the system is still valid. Many deductions may have been made
on the basis of a fact that is no longer true. There are systems and shells that offer mechanisms
to help manage this problem, so-called truth mainienance or belief revision systems. They tend
to incur high computational overheads and complicate problem solving. The provision of mere
elegant solutions to these problems remains an important area of work (Smith & Kelleher 1988).

Hand in hand with reasoning is the representational component of any expert system. At
ES84 Professor Aaron Sloman (1984) made an appeal for the provision of more varied classes of
representation to sopport the kind of complex modelling and reasoning that our second generation
systems will require.

He argues that if we look at the notations, formalisms and representational systems used by
a wide range of professions, {rom mathematics to music, programming to cartography, we find
a huge variety of types. These have arisen to fulfill requirements imposed by the nature of the
domain and the purposes for which they were to be used. Some of the forces that have shaped
the development of these represenialions are perceptual and cognitive, and involve problems of
parsing and interpreting certain sorts of structure. Some of the forces of development have had
to do with the processes that the formalisms are involved in; calculation, planning, searching, and
the detailed control of action. Sloman recommended that

we need Lo explore the uses of different sorts of formalism for different purposes. We
need to understand how an intelligent system can choose between different formalisms,
and how it can, on occasions, create new formalisms when doing so would give new
insight or heuristic power of some kind

This recommendation still stands. One very radical approach is to be found in the technology
of connectionism of neural nets (McClelland & Rummelhart 1985, Rummelhart & McClelland
1985). And is is not just the problem of representation that this technology is being applied to.
It is also being used to tackle problems in learning and perceplion, reasoning and information
retrieval,

Neural nets consist of a set of processing units. In neural nets all processing is carried out
by the units - there is no control or executive program. Units are connected together and each
connection has a weight or strength. Unit’s receive input and as a function of these inputs compute
an output. The system is inherently parallel becavse many units can carry out their computations
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at the same time. In a network learning usually occurs due to the modification of the weights of
existing connections.

Within such nets the representations are patterns of activation over units. Experience is
recorded as changes in the weights of a net. Patterns of activation come and go, what remains are
traces when they have passed. A trace is bound to be distributed over many different connections,
and each connection is implicated in many different associations. The traces of different experiences
are therefore superimposed in the same set of weights. In neural nets one regards the retrieval of
a representation as a partial reinstatement of a network state, using a cue which might only be a
fragment of the original input.

The whole connectionist research enterprise is generating a great deal of excitement. It is
claimed to offer real solutions to very hard problems in representation, perception and learning.
Connectionist inodels seem able to take in large amounts of data and self-organise so as to learn
underlying regularities and patterns in the data. They are then able to recognise similar patterns
in new data and reinstate previous patterns as appropriate. This makes them an exciting prospect
for a whole range of expert system applications.

But such networks are not without their problems (Pinker & Prince 1988), It is often difficult to
come up with the right set of inputs. One has to decide how to set the weights on the connections
and how they should subsequently modify themselves. Because of the distributed nature of the
knowledge in such nets it is virtually impossible to obtain explanations of the net's behaviour.
Nevertheleas there is no doubt that they will begin to make their presence felt within our subject.

We now move on to a different force which will play a part in how expert systems evolve -
hardware developments. We take for granted the remarkable performance now being delivered on
lost-cost machines, However, this power is changing both what we can do and how we do it.

The developments in hardware will ameliorate many problems associated, for example, with
real time, on-line applications. The emergence of super-PCs will break the constraints imposed
by restrictive operating systems and limited memory. A similar breakthrough is occurring in
the workstation range - increasing power is offered at falling prices. This will allow quite modest:
organisations to run networks of powerful machines. These PC-workstations will provide 16 million
instructions per second with 32 megabytes of main memory as standard. This sort of power will
also support ever more extensive programming environments.

An important secondary feature of this new generation of PC-workstations will be the rou-
fine provision of large, high resolution displays. Such hardware devices will provide the medium
for much more sophisticated Human Computer Interaction {HCI). The incorporation of graphi-
cal, video and audio displays into expert system interfaces will provide sclutions to some of the
problems of information presentation.

A rather different consequence of this raw power may be a move back to bruie force methods.
A major impetus behind early A.l. was the need to produce elegant axiomatisations of problems
so as to circumvent hardware limitations. It was simply not possible to imagine building a natural
language translation system that operated by recourse to table lookup. When planning or game-
playing the search of even quite small problem spaces required intelligent heuristics to guide the
search. Increasing computer power allows computationally intensive approaches to become an
option. But limitless power and brute force methods can also reduce the motivation to lock for
principles.

In contrast to technical issues let us consider directions in applications. Whatever field is
chosen it is clear that one major development will be the increasing importance of embedded
expert systems. Such systems will sit within much larger conventional software. Such embedding
requires methods and standards if a coherent and consistent design philosophy is to arise that
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extends from traditional pieces of software through to KBS and expert system programs.

We have already mentioned that more expert systems will be built to tackle a wider range of
generic problem solving areas than has been attempted hitherto. As this happens the technology
will need to be aware of developments in other branches of A.L. One example is the work that has
been steadily progressing in the planning and scheduling sub-fields of A.I. Indeed there are signs
that substantial collaboration is occurring in this area between expert system and A.L researchers.

One st of questions a natural historian would ask, concerns the social life of the species being
examined. Whilst it would be a little premature to enquire after the social habits of expert systems,
their creators certainly have social ends and ambitions. What of them? There has been within
the BCS SGES a long-standing and proper concern for the social consequences and implications of
expert systems. There have been a number of conference articles, and now a journal, dedicated to
these matters. We will not rework the arguments here save to rémind ourselves that expert systems
do not exist in a moral vacuum. They raise important issues of responsibility and accountability,
matters of judgement and conscience.

5 Concluding remarks

This paper has tried to discern the origins, current state and future directions of the expert
system. It has been largely preoccupied with the UK scene, but that reflects the principle interest
of our parent professional body the BCS. It has also sought to draw on a somewhat strained and
lighthearted analogy with the natural historian’s account of the progress of natural forms.
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