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Expert systems - a natural history 

Nigel Shadbolt 
Artificial Intelligence Group 
Department of Psychology 
University of Nottingham 

Nottingham NG7 2RD 

Abstract 

This paper examines the origins, current state and future prospects for expert systems. The origins 
are traced from the schism with classic Artificial Intelligence. The characteristics of early expert 
systems are described and contrasted with more recent developments. A number of influential 
forces operating on present day systems are reviewed. The future trends in the evolution of expert 
systems are discussed. 

1 Introduction 

It has always seemed an interesting thought - can we talk about the natural history of a machine? 
In particular, can we use analogies from the natural world when thinking about the computer? 
There are similarities. We can see more complex computing devices developing from simpler ones. 
Computers occupy habitats, ecological niches to which they are more or less suited. Various forces 
operate to select the best of these. Some change, others find a role and remain unchanged, others 
perish. One can carry the analogy some way. Although it is interesting to note that there are 
those who suggest it is computing that offers insights into the natural world (Dawkins 1986). The 
genetic substrate, DNA, is after all an information encoding mechanism par excellence. 

This paper presents a natural history for one evolving species of computing systems, namely -
expert systems. What can we say of their origins, present condition and future prospects? 

2 Origins 

An important part of the natural historian's work is to establish the lineage or phylogenetic history 
of any species. To which genus does it belong? What closely related species are there? When did 
it become clearly distinct from these related species? 

In the case of expert systems, there is agreement that they developed out of a branch of the 
computing genus known as artificial intelligence (A.I.). The early origins of A.I. systems can 
themselves be traced back to the mid '50's. Expert systems appeared as a distinct line around 
the late 70's. However, there is considerable argument about just when and where the divergence 
took place. 
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Many would regard MYCIN (ShortlirTe et al 1973, 1976) as the first and original expert system. 
In part, this is because it made evident to the rest of the world the fact that something new had 
evolved. MYCIN came out of work conducted on the Stanford Heuristic Programming Project. 
The system assisted doctors in the selection of an appropriate course of treatment for patients 
with bacteremia, meningitis and cystitis. 

It is not the only contender for the accolade first expert system. Some would argue in favour of 
the DENDRAL system (Buchanan et al 1978). It too was developed at Stanford and its function 
was to infer the molecular structure of unknown compounds from mass spectral and nuclear 
magnetic response data. Another contender is MIT's MACSYMA system (Martin et al 1971). 
This system, which is today in widespread commercial use by engineers and scientists, assists in 
a range of mathematical tasks. It uses mathematical expertise to recognise a user's problem and 
then selects appropriate methods and techniques of mathematical analysis. The foundation for 
MACSYMA was the MATHLAB 68 system (Engelman 1971) which originated in the late '60's. 

Whichever one is accorded the title all these early systems share strong similarities. They 
were large, they incorporated substantial amounts of heuristic knowledge. They were built with 
applications in mind. They were American, programmed in LISP and many people saw them as 
the new wave in A.I. 

Research on other large expert systems continued through the late '70's across a range of 
application domains. These are now regarded as landmarks in the development of expert systems. 
CASNET (Szolovits et al 1978, Weiss et a) 1978) was a large medical expert system that diagnosed 
and proposed treatments for disease states related to glaucoma. One of the distinctive features of 
CASNET was that knowledge was represented in a semantic network that attempted to provide 
a causal-association model of symptoms, disease processes and treatments. The PROSPECTOR 
system (Gaschnig 1982) helped in the interpretation of geological data and attempted to assess 
the likelihood of finding various types of mineral deposits. Its knowledge representation was rule 
and network based. It used certainty factors and probability propagation methods to encode 
the idea of confidence in evidence and certainty in conclusions. XC0N/R1 (McDermott 1980) 
configures DEC VAX computer systems. It decides upon the components needed to produce an 
operational system given a customer's order. It is-a constraint driven system - it has knowledge 
about what components can go together, what the constraints at the installation site are etc. It 
uses this knowledge, expressed in a rule-based format, to reason forward from the constraint data 
to a configuration that satisfies the constraints. This commercial system is still in use and is 
considered one of the most successful in the history of expert systems. 

It is interesting to note that early versions of these systems shared many of the characteristics of 
the progenitor systems discussed earlier. They had large knowledge bases, ran on large computers, 
consumed man years of research development, were American built and they all received a lot of 
publicity. It is also interesting to note that they employed a wide range of techniques to represent 
knowledge and reason with it. In some of the earliest systems we see mixed representation methods; 
rules, nets and frames. However, it is also salutary to note that four out of the six named systems 
only reached what is termed the prototype stage. Clearly this was not yet a completely mature 
and exploitable technology. 

A new direction in the evolution of expert systems was provided by the work done on EMYCIN 
(van Melle et al 1979,1984). The acronym which stands for essential M YCIN indicates the skeletal 
nature of the system, which was MYCIN stripped of its domain knowledge. What one is left with 
is a rule-based representation language which uses a backward chaining control regime, certainty 
handling methods, and automatic explanation facilities. This abstraction away from the problem 
domain left a clean kernel system. The system was restricted to representing and reasoning with 
knowledge in a particular way. However, it provided an uncomplicated tool with which to build 
applications. In particular, it could be used to build diagnostic and classification systems. The 
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age of the expert system shell had dawned. 

Once the template for such shells became apparent they proliferated. Early shells tended to be 
primarily rule-based. They also began to migrate from costly hardware to PCs, and from LISP to 
a variety of other programming languages. The simplicity of a kernel rule-based shell made this 
process straightforward. 

The history of some of these early shells illustrates some interesting differences in respect of 
how expert systems technology developed on either side of the atlantic during the first part of 
this decade. The original EMYCIN was written in INTERLISP and ran on DEC mini computers. 
Another early shell was KAS (Reboh 1981). The concept was very close to EMYCIN, the difference 
was that KAS was the PROSPECTOR system stripped of its geological domain knowledge. Again 
the system was written in INTERLISP and ran on mini computers. 

The development of early US purpose built shells is exemplified by Teknowledge's products 
S.l and M.l. The S.l shell was an expert system building tool based on rule-based representa­
tions. Its basic control mechanism was backward chaining. However, it also supported alternative 
representational methods, including frames and a procedural language. The cost of such added 
functionality in the first part of this decade was that its original INTERLISP implementation ran 
only on specialised Xerox workstations. The more modest M.l system was capable of running on 
IBM PC hardware, it was rule-based and built using a PROLOG backward chaining architecture. 
It had no other representational capabilities. In fact, for the US M.l was rather an exception. 
A survey of US products in the early '80's shows that the main preoccupation was the provision 
of quite specialised knowledge engineering software which offered a wide range of capabilities. 
However, one paid a high price both for the software and the hardware. 

The UK scene was characterised by the appearance of a number of inexpensive, PC-based 
shells. Many of these owed much to the effort that had gone into producing PC PROLOGS. 
These implementations offered a natural vehicle for shells. PROLOG requires little augmentation 
to function as a shell. In fact, one of the first products APES (Augmented PROLOG for expert 
systems, Hammond 1982) was just such a shell. 

Other shells appearing at or around this time attempted to hide their PROLOG internals 
from the user. The recurrent feature of these systems was rule-based representations, backward 
chaining control of reasoning, and often an add-on which provided a means of representing and 
reasoning about uncertainty. 

A great deal of interest was shown in this first generation of shells. In the UK A.I. had been 
progressing steadily during the late '50's and '60's. Unlike the US it never received much govern­
mental support, but by the early '70's a number of centres of excellence and had made significant 
contributions to A.I. in fields as diverse as theorem proving and robotics. The UK A.I. scene 
suffered something of a reverse with the publication of the Lighthill report in 1973. For a while 
there was a real chance we would lose our research groups completely. However, the groups hung 
tenaciously on, and by the beginning of the '80's the environment was changing. One of the first 
signs of this changing environment was the founding by Professor Donald Michie in 1980 of the 
BCS SGES. This specialist group's goal was to bring together a community of individuals inter­
ested in the potential of expert and knowledge based systems. The 1982 Alvey Report led to the 
350 million pound Alvey programme, the EEC was also getting its ESPRIT programme under­
way. These initiatives released large amounts of funds into IKBS and its supporting technologies. 
This largesse was prompted in large part by the inception of the 1981 ICOT or Japanese Fifth 
Generation initiative. Suddenly it seemed everyone regarded A.I. as the key to future economic 
success. 

As awareness increased and money poured in, more and more companies and academic sites be­
came active in the area. As momentum gathered and expectations rose perhaps it is not surprising 
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that a sense of what the technology could realistically achieve was not always retained. 

Nevertheless, this interest together with the emergence of an expert system shell technology 
led to real progress. Only a few years later Professor Alan Bundy (1987) in a key note lecture at 
ES87 was able to observe 

the UK expert system community has been very successful in the development of small 
scale, commercial, rule-based, expert systems. A typical example is a fault diagnosis 
system for a piece of specialised hardware, consisting of a set of less than 100 rules, 
running on a PC, in one of the many commercial shells. Part of the success consists in 
the unexpected (to me anyway) discovery of a large number of commercially interesting 
problems which yield to such a simple mechanism. 

What Bundy was describing in terms of our natural history analogy is equivalent to the spe-
dation of simple but effective forms - an explosion of simple systems to fill the many niches that 
exist. 

He also referred to a preoccupation with diagnostic systems. So distinguishing one particular 
generic class of expert systems. There are in fact a range of types of problem solving we could 
imagine expert systems performing. A number of classifications have been proposed, the one 
below derives from Waterman1 1986. Each of these different types is proposed to have a different 
underlying problem solving structure. This is sometimes called the inference level. And can be 
regarded as a type of knowledge in its own right. It is knowledge about how components of 
expertise are to be organised and used in the overall problem solving system. 

Type Description 
Diagnosis Inferring system malfunctions from observables 
Interpretation Inferring situation descriptions from sensor data 
Prediction Inferring likely consequences of given situations 
Design Configuring objects under constraints 
Planning Designing and sequencing actions 
Monitoring Comparing observations to plan vulnerabilities 
Debugging Prescribing remedies to malfunctions 
Repair Executing a plan to administer a prescribed remedy 
Instruction Teaching of any knowledge level component 
Control Governing overall systems behaviour 

Table 1: Generic Problem Solving Categories 

Inference level knowledge is, of course, only one variety of knowledge one is likely to find in 
expertise. Using a classification due to Weilinga and Breuker (1986) we can distinguish three other 
general sorts of knowledge; strategic, task and domain level knowledge. 

Strategic knowledge monitors and controls the overall problem solving. This can have to do 
with the way resources are used. What to do if the proposed solution fails or is found to be 
inappropriate in some way. What to do when faced with incomplete or insufficient data. Task 
level knowledge is sometimes called procedural knowledge. This is knowledge to do with how goals 
and sub-goals, tasks and sub-tasks should be performed. Thus in a classification task there may 
exist a number of tasks to perform in a particular order so as to utilise the domain level knowledge 

This is in fact a rather coarse characterisation and if we take just the category of diagnosis it can be further 
analysed into sub-types; heuristic diagnosis, systematic diagnosis through causal tracing, systematic diagnosis 
through localisation. 

H M W M n f U R I ——asafcifflsqBg 



Shadbok: Expert systems - a natural history 

appropriately. By domain level here we mean its narrow sense - knowledge that describes the 
concepts and elements in the domain and relations between them. This sort of knowledge is 
sometimes called declarative, it describes what is known about things in the domain. 

Any field of expertise is likely to contain, to greater or lesser extents, elements of domain, 
task, strategic and inference knowledge. At any particular knowledge level the information may 
be explicit or implicit in an experts' behaviour. Thus in some domains the experts may have no 
real notion of the strategic knowledge they are following whilst in others this knowledge is very 
much in the forefront of their deliberations. Also, of course, the requirements on a system about 
how far it needs to implement these various levels will vary. But they can become evident even 
in modest first generation applications. Moreover, it is acknowledged that significant reasoning 
about problem domains requires more than just modelling simple relationships between concepts 
in the domains - it requires causal models of how objects influence and affect one another, models 
of the processes in which objects participate. This is a hard problem. And often the limitations 
of first generation expert systems means that sophisticated domain models cannot be supported. 
It was this point that Bundy went on to discuss in his ES87 address. 

UK knowledge engineers have also been active in building much larger expert systems, 
with hundreds or even thousands of rules. In addition, they have experimented with 
alternative knowledge representation and reasoning techniques, e.g frames, objects, 
semantic nets, etc. This use of large scale expert systems and of alternative and/or 
multiple knowledge representations has been more typical in the US market, but both 
are becoming more important here. 

In a lecture delivered to the previous years conference, Steels (1986), had also pointed out 
the need for us to look beyond first generation systems. He pointed out some of the limitations 
of first generation systems. First generation systems tend to rely on behavioural heuristics, if X 
is observed do Y. These are surface models of performance, with no deep model of competence. 
A second generation system would have an additional component in the form of a deep model 
which gives the system an understanding of the domain over which the heuristics operate. In fact 
Steels argues that an important source of inspiration for this second generation component is to 
be found in A.I. work in areas such as qualitative reasoning (Price and Hunt 1989 this volume, 
Suguya 1989 this volume). This enhances the problem solving of any system by modelling the 
domain principles, its causal and functional properties. Associated with the need to provide deep 
models Steels remarked on the need for powerful methods of building KBSs. One category of tools 
would help in the knowledge acquisition process - a process that needs to be more sophisticated 
than ever if deep models are to be implemented. 

We can discern then a number of recurrent themes leading up to the present; a substantial 
number of modest rule-based applications in place, a concern to provide a methodology for the 
knowledge engineer, the emergence of more powerful shells, the recognition of an impending second 
generation of expert systems. The questions now relate to the current well-being of the expert 
system species. Will the dissemination of small expert systems and shells continue? Are knowledge 
engineering methods available? Can the technology be scaled up to large applications? When will 
commercial second generation expert systems arrive? 

3 Current conditions 

The Alvey programme for all its faults, real and imagined, was a great catalyst. It succeeded 
in forging a bridge between academe and industry. And although as Bramer (1986) remarked 
many of the best researchers were led into endless rounds of grant writing and administration, 
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there was real disappointment when the Bide report, which suggested a comprehensive follow on 
to Alvey, was largely ignored. In its place the DTI's Information Engineering Directorate (IED) 
has attempted to continue what Alvey began. For all its efforts it is hamstrung by the funding 
conditions it has to work by. Usually a number of partners, commercial and academic, will get 
together to form a consortium to carry out a programme of work. The consortium can apply for 
up to 50% of its total eligible costs, academic partners however receive 100% of their costs and 
this is taken from the 50% of costs the IED will pay to the consortium. The industrials then 
receive the remaining amount of money in proportion to their original costs. The effect of these 
rules is to make academic participation unattractive to industrial partners. Moreover, the absolute 
proportions awarded tend to mitigate against small to medium sized company participation. 

The SERC is the other source of funding for academics. However, money is so tight that the 
SERC only manages to fund a minority of its alpha rated (technically excellent) research proposals 
in computer science. 

Meanwhile the infrastructure that was so painfully built-up in Alvey is gradually coming apart. 
As yet, we have no definite commitment to funding for community Clubs, Special Interest Groups, 
mailshots, awareness and training. 

Problems of awareness and training are still widespread in the UK scene. The awareness prob­
lem manifests itself, in part, in a perception of expert systems as a risky and esoteric technology. 
Too many institutions only maintain a watching brief. But watching briefs can lead to problems 
when, for example, management decides to sample the technology. The person maintaining the 
watching brief is expected to produce a compelling technology demonstrator. Often, there are 
simply insufficient resources in house to produce a convincing demonstration. The demonstrator 
fails, the technology is seen to be immature, the management remains unconvinced, the company 
maintains its watching brief. 

At the other extreme, there are those who argue that building expert system is now all routine. 
They deprive the technology of its success. The achievements disappear under the moving tide 
of IT advances. In promoting awareness and interest in a technology, it is always important to 
enumerate the successes and spin offs. 

Problems of awareness crop up in another way. The Alvey programme, although beneficial in 
many ways, fostered a rather introverted community. The consequence of this was that those inside 
the community were made very aware of the technology, and soon came to think that everyone else 
must be too. In fact, the technology has not really succeeded in getting outside of the Financial 
Times top 100 listed companies. There is still a substantial job of awareness to tackle. 

There has also been a belief that awareness leads to technical competence. The fact is that 
acquiring an adequate knowledge engineering competence takes a lot of effort, and a current 
problem is the provision of trained people. The most comprehensive training is obtained by those 
who have taken a number of the IKBS M.Sc. conversion courses available and who have computing 
or a relevant cognitive science background. However many personnel are recruited from general 
IT conversion courses. The problem here is that these courses are often only marginally relevant 
to the technologies which comprise IKBS. Training problems are compounded by the fact that 
we lack an agreed idea of a syllabus or curriculum that might form a minimal requirement for 
a qualification in knowledge engineering. There are still relatively few Honours undergraduate 
courses in A.I., and even fewer graduates going on to complete PhDs. Those personnel in post, 
who are expected to acquire competence in the new technologies face the problem of finding the 
time and expert help to support their retraining. There is an urgent need to attend to the training 
requirements in IKBS and A.I. 

Moving on to consider the application of expert systems technology, we noted the proliferation 
of small to medium sized applications. Most of these are rule-based. Most occupy modest but 
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effective niches in a variety of areas from manufacturing to finance, power utilities to medicine. 
There are, however, a number of areas in which it has proved more difficult to deploy IKBSs. 
These include real time applications, very large databases applications, and domains where the 
reasoning is non-standard, where conditions are constantly changing, or where the knowledge 
base itself needs to be constantly updated. These application areas present technological and 
methodological problems that are forcing us to apply a richer range of techniques, and develop 
more powerful methods of IKBS specification and formulation. To some extent, they are setting 
the agenda for current expert system research. 

If we look at current developments in methods and tools for knowledge engineering we find 
one particularly active area - knowledge acquisition. It is difficult to establish methods and 
methodologies for conducting acquisition through the life-cycle of KBS construction. The most 
thorough framework is provided by KADS - Knowledge Acquisition and Domain Structuring 
(Breuker 1987, Weilinga and Schreiber 1989 this volume). KADS embodies seven principles for 
the elicitation of knowledge and construction of a system. We will not detail them all here, but 
one is of particular relevance given the discussion earlier about knowledge levels. It recommends 
that the analysis should be model-driven as early as possible. This requires that one should bring 
to bear a model of how the knowledge is structured early on in the process, and use it to interpret 
subsequent data. This will involve appeal to what we have called inference level knowledge earlier 
in this paper. It may also include appeal to models of the domain, or devices in the domain 
(Chandrasekaran, 1988). 

An important theme in this and other current approaches to knowledge acquisition is that 
the enterprise should be viewed under the metaphor of model building, rather than the mining of 
information. In this regard, we have moved from a transfer view of acquisition to a model view. 
This recognises that even within first generation expert system construction, a knowledge engineer 
is engaged in a subtle process. Knowledge engineering is not simply a matter of transferring 
knowledge from an expert into a knowledge base. The final product is a model of various aspects 
of an expert's knowledge. 

A rather less disciplined methodology and yet one that is almost always associated with expert 
systems is rapid prototyping. The idea is that it is easier for experts to criticise a working system, 
than it is to specify the system in the first place. Initially, a prototype is built, without much regard 
to its weaknesses, and the expert makes suggestions about its performance. These suggestions are 
incorporated into the system by programmers, and at the next session there should be fewer errors. 
This cycle continues until the expert is satisfied with the behaviour of the system. 

There is some debate as to whether rapid prototyping constitutes a methodology or a knowledge 
acquisition technique. In fact, a growing area of research is concerned to evaluate the various claims 
made about knowledge acquisition methods and techniques (Burton et al 1987, 1988, Shadbolt k 
Burton 1989). 

Tools construction is an important area of current work. Again let us take knowledge ac­
quisition as illustrative. Currently, there four main types of acquisition tool available or under 
development (Boose 1989 provides a comprehensive review). 

Firstly, those systems which are implementations of standard knowledge elicitation techniques, 
such as repertory grids and concept sorting. Secondly there are those systems which use machine 
learning techniques to induce rules from sets of worked examples and observed data. In addition 
to these categories, there are also systems which use knowledge about the structure of a particular 
domain in order to drive the elicitation. However, these are large-scale systems dedicated to 
specific projects, and are not generally available. Finally, there are a number of large-scale, 
generic knowledge acquisition environments under construction. These typically provide a number 
of automated KE techniques, knowledge base editors, automated tianscript analysis and various 
other support software for the knowledge engineer. These systems are currently at the research 
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stage, and as yet are not generally available. Although they are not yet available they indicate 
the shape and form of the next generation of knowledge engineering tools. 

4 The future 

In the last section we mentioned some of the difficult technical problems that must be solved 
if expert systems are to progress. One of these is expanding the types of reasoning available 
to systems. Those advancing the cause of second generation systems regard the expansion of 
reasoning capabilities as crucial. Many applied problems require recourse to non-standard methods 
of reasoning such as default and abductive reasoning. Many of these non-standard reasoning 
methods are non-monoionic (Ginsberg 1987 for a review). 

Work on non-monotonic reasoning is becoming an important issue in expert systems. Many 
current expert systems make an implicit assumption of monotoniciiy, facts true at the beginning of 
a reasoning session are assumed to remain true throughout. If facts subsequently become false then 
usually the system has to restart inference from the beginning. There is no way of determining 
what information generated by the system is still valid. Many deductions may have been made 
on the basis of a fact that is no longer true. There are systems and shells that offer mechanisms 
to help manage this problem, so-called truth maintenance or belief revision systems. They tend 
to incur high computational overheads and complicate problem solving. The provision of more 
elegant solutions to these problems remains an important area of work (Smith & Kelleher 1988). 

Hand in hand with reasoning is the representational component of any expert system. At 
ES84 Professor Aaron Sloman (1984) made an appeal for the provision of more varied classes of 
representation to snpport the kind of complex modelling and reasoning that our second generation 
systems will require. 

He argues that if we look at the notations, formalisms and representational systems used by 
a wide range of professions, from mathematics to music, programming to cartography, we find 
a huge variety of types. These have arisen to fulfill requirements imposed by the nature of the 
domain and the purposes for which they were to be used. Some of the forces that have shaped 
the development of these representations are perceptual and cognitive, and involve problems of 
parsing and interpreting certain sorts of structure. Some of the forces of development have had 
to do with the processes that the formalisms are involved in; calculation, planning, searching, and 
the detailed control of action. Sloman recommended that 

we need to explore the uses of different sorts of formalism for different purposes. We 
need to understand how an intelligent system can choose between different formalisms, 
and how it can, on occasions, create new formalisms when doing so would give new 
insight or heuristic power of some kind 

This recommendation still stands. One very radical approach is to be found in the technology 
of connectionism of neural nets (McClelland fc Rummelhart 1985, Rummelhart & McClelland 
1985). And is is not just the problem of representation that this technology is being applied to. 
It is also being used to tackle problems in learning and perception, reasoning and information 
retrieval. 

Neural nets consist of a set of processing units. In neural nets all processing is carried out 
by the units - there is no control or executive program. Units are connected together and each 
connection has a weight or strength. Unit's receive input and as a function of these inputs compute 
an output. The system is inherently parallel because many units can carry out their computations 



Shadbolt: Expert systems - a natural history 

at the same time. In a network learning usually occurs due to the modification of the weights of 
existing connections. 

Within such nets the representations are patterns of activation over units. Experience is 
recorded as changes in the weights of a net. Patterns of activation come and go, what remains are 
traces when they have passed. A trace is bound to be distributed over many different connections, 
and each connection is implicated in many different associations. The traces of different experiences 
are therefore superimposed in the same set of weights. In neural nets one regards the retrieval of 
a representation as a partial reinstatement of a network state, using a cue which might only be a 
fragment of the original input. 

The whole connectionist research enterprise is generating a great deal of excitement. It is 
claimed to offer real solutions to very hard problems in representation, perception and learning. 
Connectionist models seem able to take in large amounts of data and self-organise so as to learn 
underlying regularities and patterns in the data. They are then able to recognise similar patterns 
in new data and reinstate previous patterns as appropriate. This makes them an exciting prospect 
for a whole range of expert system applications. 

But such networks are not without their problems (Pinker & Prince 1988). It is often difficult to 
come up with the right set of inputs. One has to decide how to set the weights on the connections 
and how they should subsequently modify themselves. Because of the distributed nature of the 
knowledge in such nets it is virtually impossible to obtain explanations of the net's behaviour. 
Nevertheless there is no doubt that they will begin to make their presence felt within our subject. 

We now move on to a different force which will play a part in how expert systems evolve -
hardware developments. We take for granted the remarkable performance now being delivered on 
lost-cost machines. However, this power is changing both what we can do and how we do it. 

The developments in hardware will ameliorate many problems associated, for example, with 
real time, on-line applications. The emergence of super-PCs will break the constraints imposed 
by restrictive operating systems and limited memory. A similar breakthrough is occurring in 
the workstation range - increasing power is offered at falling prices. This will allow quite modest-
organisations to run networks of powerful machines. These PC-workstations will provide 16 million 
instructions per second with 32 megabytes of main memory as standard. This sort of power will 
also support ever more extensive programming environments. 

An important secondary feature of this new generation of PC-workstations will be the rou-
tine provision of large, high resolution displays. Such hardware devices will provide the medium 
for much more sophisticated Human Computer Interaction (HCI). The incorporation of graphi-. 
cal, video and audio displays into expert system interfaces will provide solutions to some of the 
problems of information presentation. 

A rather different consequence of this raw power may be a move back to brute force methods. 
A major impetus behind early A.I. was the need to produce elegant axiomatisations of problems 
so as to circumvent hardware limitations. It was simply not possible to imagine building a natural 
language translation system that operated by recourse to table lookup. When planning or game-
playing the search of even quite small problem spaces required intelligent heuristics to guide the 
search. Increasing computer power allows computationally intensive approaches to become an 
option. But limitless power and brute force methods can also reduce the motivation to look for 
principles. 

In contrast to technical issues let us consider directions in applications. Whatever field is 
chosen it is clear that one major development will be the increasing importance of embedded 
expert systems. Such systems will sit within much larger conventional software. Such embedding 
requires methods and standards if a coherent and consistent design philosophy is to arise that 
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extends from traditional pieces of software through to KBS and expert system programs. 

We have already mentioned that more expert systems will be built to tackle a wider range of 
generic problem solving areas than has been attempted hitherto. As this happens the technology 
will need to be aware of developments in other branches of A.I. One example is the work that has 
been steadily progressing in the planning and scheduling sub-fields of A.I. Indeed there are signs 
that substantial collaboration is occurring in this area between expert system and A.I. researchers. 

One set of questions a natural historian would ask, concerns the social life of the species being 
examined. Whilst it would be a little premature to enquire after the social habits of expert systems, 
their creators certainly have social ends and ambitions. What of them? There has been within 
the BCS SGES a long-standing and proper concern for the social consequences and implications of 
expert systems. There have been a number of conference articles, and now a journal, dedicated to 
these matters. We will not rework the arguments here save to remind ourselves that expert systems 
do not exist in a moral vacuum. They raise important issues of responsibility and accountability, 
matters of judgement and conscience. 

5 Concluding remarks 

This paper has tried to discern the origins, current state and future directions of the expert 
system. It has been largely preoccupied with the UK scene, but that reflects the principle interest 
of our parent professional body the BCS. It has also sought to draw on a somewhat strained and 
lighthearted analogy with the natural historian's account of the progress of natural forms. 
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