Implementation and Performance Evaluation of a Distributed
Garbage Collection Algorithm

Luc Moreau
Email: L.Moreau@ecs.soton.ac.uk.
Department of Electronics and Computer Science,
Unaversity of Southampton, SO17 1BJ Southampton, UK

We have recently described an algorithm for distributed garbage collection based
on reference-counting 1413:15; the algorithm describes a spectrum of algorithms
according to the policy used to manage messages. In this paper, we describe
the implementation of the algorithm and evaluate its performance. We have im-
plemented two policies, which are extremes of the spectrum. The first one uses
INC_DEC messages, whose effect is to reorganise the diffusion tree, whereas the other
one does not use such messages, which in effect results in Piquer’s indirect refer-
ence counting !7. In addition, two different strategies for managing action queues
have been implemented. The conclusions of our experimentations are the following.
Using INC_DEC messages potentially offers more parallelism in the DGC activity;
this phenomenon can be measured by shorter causality chains than with indirect
reference counting. Grouping messages per destination dramatically reduces the
number of messages to be sent, though requires a more complex implementation
as messages have to be sorted per destination.

1 Introduction

Over the last decade, distributed symbolic® computing has found useful appli-
cations outside research laboratories. Environments for developing distributed
applications are now shipped by major software suppliers, and are used to pro-
duce advanced applications involving complex interactions between multiple
clients and servers. Java, which plays a dynamic role in this context, is bun-
dled with the RMI communication layer 2° able to activate methods on remote
objects.

In particular, RMI provides a distributed garbage collector (also written
distributed GC or even DGC) that turns out to be a very valuable technology
as it automatically maintains pointer consistency: it ensures that an object
will not be reclaimed as long as it is referred to locally or remotely.

The author has recently published another algorithm for distributed gar-
bage collection 3. This algorithm based on distributed reference counting was
developed and prototyped as part of NeXeme'4, a distributed implementation
of Scheme, based on the message-passing library Nexus ®. This algorithm
has been studied in details, and mechanical proofs of safety and liveness were

By symbolic, we mean non-numeric computing.

carried out using the proof assistant Coq . The algorithm in fact describes
a family of algorithms and has several optimisations. The focus of this paper
is a real implementation of the algorithm and a study of performance of its
variants and optimisations.

The algorithm was implemented in C and is using the Nexus library > for
communications. Local garbage collection is handled by Boehm and Weiser’s
collector 7. The implementation is about 5000 lines of code, plus an extra 2000
for instrumentation. Plans to implement the algorithm in Java are underway;
combined with the NexusRMI stub compiler 2, it would give access to a multi-
language garbage-collected distributed environment.

This paper is organised as follows. We briefly sketch our distributed
garbage collection algorithm in Section 2. The overall implementation de-
sign is presented in Section 3. Some benchmark programs are described and
then performance of the algorithm is evaluated in Section 4. Finally, a brief
comparison with related work concludes the paper.

2 A Family of Algorithms

Our algorithm has been presented using graphical representations and anal-
ysed at length in other papers 3415 In addition, the formal specification of
the algorithm in Coq is accessible from the following URL: http://www.ecs.
soton.ac.uk/~lavm/coq/drc. Therefore, in this section, we only present the
key features of the algorithm.

At a very abstract level, we deal with a notion of pointer (network pointer?
or global pointer 3). We call owner the node where the data referred to by
a pointer resides. Pointers can be communicated between nodes by remote
method invocation. The purpose of the distributed garbage collector is to
ensure that the data a pointer is referring to on its owner cannot be reclaimed
as long as live instances of the pointer remain in the distributed environment.

In order to achieve this goal, we use reference counters, and we assume
that all participating nodes maintain a pair of tables, called send-table and
receive-table. In addition to regular messages transporting remote method
invocations, two new messages are introduced to maintain accurate reference
counters. Reference counters, send and receive tables, and DGC messages
are used in the following rules that regulate the sending of pointers (S), the
receiving of pointers (R1, R2, R3), the handling of DGC messages (DEC,
INC), and local garbage collection (GC).

S: Every time a pointer is sent to a remote node, its associated counter is
incremented by one. If not present, the pointer is entered in the send
table of the emitter node.

R1: If a node receives a pointer sent by its owner, the pointer is entered in
the receive table, which contains the set of live pointers on the node.

GC: Once a pointer becomes garbage on a node, the pointer is removed from
the receive-table, and a decrement message DEC is sent to the pointer’s
owner.

DEC: When a node receives a DEC message pertaining to a pointer, it decre-
ments the counter associated with the pointer; if the counter reaches 0,
the pointer is removed from the send-table.

R2: If a node receives a pointer sent by any emitter and if the pointer is
already live on the node, then a DEC message is sent back to the emitter.

R3: If a node receives a pointer not sent by its owner and if the pointer is
not live on the node, the pointer is entered in the receive table, then
an INC_DEC message is sent to the owner, containing a reference to the
emitter.

INC: When a node receives an INC_DEC message referring to pointer and a
third node, it increments the counter associated with the pointer in its
send-table and it posts a DEC message to the third node.

The algorithm also assumes in-order message delivery between any pair of
nodes. In order to ensure safety and liveness, send-tables but not receive-tables
are defined as roots of local garbage collectors. The algorithm is safe because
a pointer will remain present in its owner’s send-table as long as a reference
remains active remotely. Consequently, the data associated with the pointer
will not be reclaimed by the local garbage collector, because the send-table
makes the pointer accessible from the local GC roots.

The key idea of the algorithm is the INC_DEC message followed by the
DEC message, whose effect is to safely propagate reference counter values from
internal nodes of the diffusion tree to the owner (which is the root of the
diffusion tree for the current pointer). This allows internal nodes that no
longer use a pointer to safely reclaim the resource used by the pointer.

Optimisations are possible. First, messages may be delayed and grouped.
Second, R3 immediately followed by GC, may be optimised by a single DEC
message to the node that sent the pointer. Our algorithm in fact defines a
spectrum of algorithms®. Eager activation of R3 tends to flatten the diffusion
tree, whereas delaying INC_DEC messages as much as possible leads to Piquer’s
indirect reference counting!”.

3 Implementation Design

Our implementation of the algorithm relies on two libraries for communica-
tions and local garbage collection. We use Nexus®, a message-passing library
for communications, and we use Boehm and Weiser’s local garbage collec-
tor 7. Boehm’s garbage collector was used because it is conservative and mul-
tithreaded and therefore can easily coexist with the Nexus C library; it is
also the garbage collector used by Bigloo !? at the heart of our distributed
Scheme, NeXeme . A major design concern was to make the implementation
independent of these libraries.

3.1 The Communication Library

In this Section, we present the characteristics of the communication library that
is expected by our implementation. They are heavily influenced by Nexus®, but
they form the essence of a distributed object system. A computation executes
on a set, of nodes and consists of a set of threads, each executing in an address
space called a context. (For the purposes of this article, we do not make the
distinction between a node and a context, which we regard as equivalent to a
process.) An individual thread executes a sequential program, which may read
and write data shared with other threads executing in the same context.

“Host pointers” and a mechanism for initiating remote computations rep-
resent the essence of a distributed object system. A host pointer is a net-
work representative of an object; it may also be found under the terminology
startpoint/endpoint pair or network pointer 2. Remote method invocation (or
remote service request ®) is typically the mechanism used for activating remote
computations.

The actual interface to the communication layer is library dependent. Gen-
erally, a communication is specified by providing a host pointer, a handler
identifier, and a data buffer, in which data are serialised. Initiating the com-
munication causes the data buffer to be transfered to the context designated
by the host pointer, after which the routine specified by the handler is exe-
cuted, potentially in a new thread of control. Both the data buffer and pointed
specific data are available to the handler.

In the right-hand side of Figure 1, we see a simple representation of the
heap managed by the communication library. In Nexus, a host pointer is
formed of a startpoint-endpoint pair. An endpoint points at some user data
and is associated with a handler table; a startpoint is bound to an endpoint
and may be copied to remote heaps.

DGC Pointer
protocol " Nexus
life cycle /~ StartPoint |
reference count z '

mutex / / \

hp — | / ‘ v

user | ,"ho_st | “
ipointer | |

g i Nexus i

! i EndPoint |

\ Y !

User Object /
Handlers Table
heap managed by local garbage collector heap managed by

communication library

Figure 1: Objects, Communication Pointers, and DGC pointers

3.2 Distributed GC Pointers

Users allocate objects in a garbage collected heap, they create host pointers
pointing to these objects, and they communicate these host pointers to remote
hosts. The goal of the distributed garbage collector is to ensure that objects
allocated in the garbage collected heap are not going to be reclaimed as long
as host pointers pointing at them are accessible remotely.

Host pointers may be regarded as network representatives of user objects.
We introduce a new kind of objects, called DGC pointers, which are garbage-
collected network representatives of user objects.

A DGC pointer is a data structure allocated in the garbage-collected heap,
containing several fields:

e a user pointer, which points at the user data if the DGC pointer is located
on the owner;

e a host pointer, which points, in the case of Nexus, at a communication
startpoint;

e a reference counter indicating the number of times that the pointer has
been exported to a remote context;

a mutex to ensure exclusive access to the DGC pointer content;

information about the life cycle, to be explained below;

the distributed garbage collection protocol handling this object.
DGC pointers have a life cycle composed of three states:

1. live: When a DGC pointer is created, it is said to be live, and it remains
S0, as long as it is accessible from a root of the local garbage collector.

2. phantom: The local garbage collector is responsible for detecting when
a DGC pointer becomes garbage. Finalization changes the pointer state
to “phantom”. During this new stage, the pointer is no longer used (not
even reachable) by the application, but remains active so that distributed
GC information can be propagated.

3. dead: Once the DGC has updated all its information related to a DGC
phantom pointer, the local garbage collector can detect its inaccessibility,
for a second time; then, the DGC pointer can again be finalized and
it enters the new phase “dead”. In this third phase, the host pointer
associated with the DGC pointer is deallocated explicitly.

3.3 DGC protocols

All DGC pointers have a three-stage life cycle, but the DGC protocol de-
termines the distributed garbage collection policy that regulates this object:
the policy determines when, where, or what kind of message pertaining to this
pointer has to be sent. The DGC protocol is an explicit field of a DGC pointer.
Protocols are also represented by a data structure whose fields are represented
in Figure 2.

When a message containing a DGC pointer arrives to a node, the DGC pro-
tocol has to determine whether the pointer is present locally; for this purpose,
it uses a “receive table” containing all live pointers. Similarly, it maintains a
“send table” containing all the pointers that were sent remotely. Note that ref-
erence counters are directly associated with the pointers themselves. The send
table is a root of the local garbage collector but the receive table is not. Such
an organisation guarantees that only objects that are sent remotely remain
accessible to the local garbage collector.

The local garbage collector plays an essential role in our implementation
because it detects when a DGC pointer becomes garbage; during finalization,
it moves pointers to the phantom or dead stages of their life cycles. During
these phases, the DGC or the communication layer may have to send messages,
operations that may be long and require a lot of memory. It is not suitable to
perform these operations during the finalization itself; indeed, finalization is
usually performed inside the garbage collector critical section, and one prefers
to quit this section as quickly as possible to avoid starving other threads run-
ning in parallel and requiring more memory. Instead, finalized DGC pointers
are entered in a finalization queue.

Weak
Receive
Table
Proto
receive table
send table
create ptr Send
send ptr Table

receive ptr
enqueue DEC
enqueue INC_DEC
deallocate

unrefe.ren(.:ed Finalize Queue
finalization /
finalize queue Out

idle thread

output queue

In

\ dle Thread \
\ Action Queue

ndler Out In
ndler
. — DGC Pointer transfer

Polling Communication — pointer
Thread Layer .
---= weak pointer

Figure 2: Protocol and associated data structures

=Z
Q0
joy=n
oo

O~

A dedicated thread, called the idle tread, is responsible for transferring
pointers from the finalization queue into an action queue. This action queue
is also directly used by protocols, when for instance, upon receiving a pointer,

a DGC message must be emitted. As we do not want the DGC activity to
delay the mutator®, DGC messages are not immediately sent, but enqueued in
the action queue. The same idle thread is also responsible for activating items
from the action queue; this operation typically requires calling a procedure of
the communication layer.

The last active element in this picture is the polling thread of the commu-
nication library. It is responsible for reading incoming messages and activating
the corresponding handlers. The distributed garbage collector implementation
provides some handlers for handling DEC and INC_DEC messages or initialising
remote nodes.

The protocol datastructure contains pointers to the receive and send tables,
to the finalize and action queues, to functions for pointer creation, finalization,
communication notification, and deallocation, and to all necessary mutexes
to protect access to critical resources. Most of our code is parameterised by
the protocol managing the current DGC pointer; this organisation facilitates
easy dispatch. This implementation technique allows us to have, in a single
environment, pointers managed by several protocols running at the same time.

3.4 Implemented Protocols

In order to study the benefits of the INC_DEC message on the diffusion tree
reorganisation, we have implemented the following protocols:

1. The algorithm that uses INC_DEC messages (as described in Section 2).

If a DGC pointer p is received on a node, and if p is not a live pointer
present in the receive-table, and if the emitter and receiver are both
different from the pointer’s owner, then an INC_DEC message is prepared
and enqueued in the action queue. When processed, the INC_DEC message
will be sent to the pointer’s owner. If a DGC pointer p is received on a
node, and if p is live and present in the receive-table, then a DEC message
is prepared and enqueued in the action queue.

Let us observe that we do not send DGC messages immediately, but
add them to the action queue. This approach has two benefits: (i)
The activity of receiving a pointer p typically occurs when the mutator
proceeds; by delaying the sending of a DGC message, we favour the
mutator over garbage collection activity. (i) By managing all DGC
messages in a same queue, we may optimise them, as explained in Section

3.5.

bThe term “mutator” is usually used to denote the “useful” component of an application, in
contrast to the collector that deals with collecting garbage.

2. Indirect reference counting 7.

In this protocol, INC_DEC messages are not used. DGC pointers now have
an extra field, called emitter, which contains a reference to the node that
emitted the pointer. If a DGC pointer p is received on a node, and if p is
not a live pointer present in the receive-table, then the emitter field for p
is set to the node that emitted p. Otherwise, DEC messages are prepared
as in the first protocol. Once the pointer is finalized and reaches the
phantom state, a DEC message is no longer sent to its owner but to the
node that initially emitted the pointer.

In addition, we also provide DGC pointers that are not reference counted; they
are handled by a third protocol:

3. The null protocol

The null protocol does not maintain reference counters for pointers. In
our implementation, nodes are denoted by null protocol pointers. Such
pointers are added to every communication so that recipients can be
informed of the message origin node.

Each protocol supports an unreferenced method (similar to the unrefer-
enced method on RMI object in Java2?). This method is called every time a
reference counter reaches the value zero.

When a pointer’s reference counter reaches the value zero, the pointer is
removed from the send-table; the pointer then may still be live, if used locally,
or if the local garbage collector has not detected yet it has become garbage.
The unreferenced method must be distinguished from finalization; a finalizer is
executed only once, when the pointer is inaccessible, whereas the unreferenced
method may be invoked as many times as the reference counter reaches zero.

3.5 Implemented Action Queues

The policy to handle messages is independent of the protocol. We present here
two policies to handle action queues. Currently, the algorithm supports three
types of actions:

1. Sending a DEC message. In the simple case, this consists of sending a
single DEC message related to a pointer. In the most complex case, it
sends a message to decrease the reference counters of several pointers, by
an amount given for each pointer.

2. Sending an INC_DEC message. In the simple case, this consists of sending
an INC_DEC message to a pointer’s owner. In the most complex case, the
message acts upon the reference counters of several pointers.

3. Deallocating a pointer. This action consists of deallocating all resources
used by a host pointer in the heap managed by the communication li-
brary.

A safety condition of the algorithm is that DEC messages cannot overtake
INC_DEC messages if they are related to the same pointer. A further constraint
is that deallocation of a pointer cannot take place before the last message to
that pointer has been emitted.

The action queue is a data structure containing actions; actions may be
entered in or retrieved from an action queue. Any implementation strategy is
valid for action queues, as long as it preserves the safety conditions set by the
algorithm. We have implemented two variants of the action queue:

1. The FIFO action queue.

Actions are handled in a fifo manner. No attempt is made to merge
messages that are related to the same pointers.

2. The sorted action queue.

Each action for sending a DEC message entered in the queue is merged
with a similar action related to a same pointer. Therefore, actions
for sending DEC messages are associated with a counter specifying the
amount by which a counter has to be decreased. In order to preserve the
safety condition, a DEC message is only extracted from a sorted queue if
there is no INC_DEC message waiting to be processed. In order to facili-
tate these operations, actions are sorted by their type: INC_DEC messages
in a queue, while the other actions are maintained in a second queue. As
INC_DEC messages have a lower frequency, we have decided not to merge
them.

A further optimisation is possible: if a DEC message is sent to the owner
of a pointer, and if the sorted queue contains an INC_DEC message for
the same pointer (to be followed by a DEC message to a node s), then
these messages can replaced by a single DEC message to s directly.

4 Performance Evaluation

In this section, we evaluate and compare the different protocols and the differ-
ent action queues that we have implemented. First, we describe the benchmark
programs that we have used; second, we present our results.

4.1 Benchmark Programs

The scientific programming community has developed a series of benchmarks
for sequential and parallel languages. Similarly, the Lisp programming com-
munity has been using Gabriel’s benchmarks 6, and Feeley ¢ has produced a
series of programs to measure the efficiency of MultiLisp. We dramatically
lack benchmarks specifically designed for evaluating the performance of dis-
tributed garbage collectors. Therefore, we have devised two benchmarks that
exhibit the properties of our implemented policies: cycle highlights the effect
of INC_DEC messages, whereas diffuse shows the benefits of the sorted action
queue.

Each of our benchmarks was specifically designed to evaluate a given fea-
ture of the implementation. Unfortunately, we also lack real applications that
evaluate the overall effect of the algorithm. We are confident that such appli-
cations will become available as platforms such as Java and RMI get widely
used.

Cycle

The first benchmark is aimed at measuring the benefit of reorganising the
diffusion tree, using INC_DEC messages. In theory, we would consider a very
high number of nodes. The first node allocates a DGC pointer, passes it to the
second node, which in turn passes it to the third one, and so on. The result is
a very unbalanced diffusion tree. In practice, we consider a number of nodes
N, forming a circle, where the successor of node N — 1 is node 0. In order
to avoid sending a pointer p to a node that has already received it, we create
a new DGC pointer p', every N — 1 steps; p’ is defined so as to point to the
current pointer p: this organisation ensures that p remains live as long as p' is
live. Then, we repeat the process with p'.

Figure 3 displays an example of execution. It displays the timelines of
three nodes participating to the computation; one unit in Figure 3 represents
100pS. Plain (or red®) lines represent mutators messages carrying pointers.
We see that a pointer is passed from process 2 (label A) to process 1, and then
to process 0, where a new pointer is created (label C), passed to 2, and then
1, and so on.

Dashed (or blue) lines represent INC_DEC messages, whereas dotted (or
green) lines denote DEC messages. We also see that when process 0 receives
the first pointer, it sends an INC_DEC message (label E) to process 2, its owner,
which in turn sends a DEC message (label F) to process 1. The potential benefit

€A coloured version of this document is made available from
http://www.ecs.soton.ac.uk/~lavm/papers/pdcsia99-colour.ps.gz.

BWINC_DEC
DEC
EFINALIZH

)_INC_DEC_MESSAGE

mple pv: Global Timeline

al

Teroot_ex:

Figure 3: Diffusion tree reorganisation

may be finalized and then a DEC message may be sent from process 1 to 0

of this reorganisation is that the pointer is no longer needed on process 1, it
(label G, at time 3635).

whose presence is only required by the garbage collector

This example illustrates that the reorganisation of the diffusion tree avoids

“zombie pointers” 17,

in order to correctly maintain reference counters.

In fact, the cycle program is typical of mobile applications, which for

instance keep a pointer to their home base while they migrate.

Every hop

of a mobile program potentially keeps the home base pointer in the send-table

of the previous node. Using the INC_DEC message resets the counter for that
pointer, which will then be reclaimed.

In such a benchmark, interesting measures that can be taken concern the
(i) number of messages, (i) total time (including time to cleanup), (i)
length of causality chain (to be explained in Section 4.3).

Diffuse

In the cycle program, the mutator’s activity is sequential, as it propagates one
pointer node after node. Even though a limited distributed garbage collection
activity may take place in parallel, there is not much room for optimising DGC
activity. Therefore, we designed a second benchmark, which is measuring the
benefit, of grouping DGC messages per destination.

We consider a number of node N, such that each node knows about the
N — 1 other nodes. A node receives a DGC pointer and two integers width
and depth. If depth is zero, then the pointer is discarded. Otherwise, the same
pointer is propagated width times, to destination nodes chosen randomly, with
a depth given by depth — 1.

This program diffuses a pointer along a tree of a specified depth and width,
whose nodes are decided at runtime. We select the width and depth such that
the total number of nodes N is much smaller than widthPt": as a result,
a same pointer will be communicated to a same node several times during a
short period interval.

A variant of this algorithm consists of executing several pointer diffusions
in parallel in order to measure the reuse of DGC messages for different pointers.

The first three interesting measures are similar to the ones for circle, the
last two are specific to this benchmark: (i) number of messages, (ii)
total time (including time to cleanup), (7ii) length of causality chain (to be
explained in Section 4.3), (iv) counters values in a DEC message, (v)number
of DGC pointers in a single DEC message.

4.2 Measure Quality

Measuring the performance of a distributed garbage collector is not a trivial
task because, as for any other distributed algorithm, execution may be non-
deterministic due to processes or threads scheduling and messages propagation.
Some of our benchmarks even use random number generators.

The absence of a global clock has also influenced the design of our bench-
marks. When we wish to measure a time duration, we made sure that the
measures were taken on a single node. Some of our graphical visualisations

display timelines for several nodes; some of these timelines may have to be
shifted with respect to each other because time 0 is not defined globally.

It is also quite difficult to measure the exact time spent on various DGC
sub-activities due to preemption.

In addition, there are issues that are specific to garbage collection. There is
a strong partnership between distributed garbage collectors and local garbage
collectors: it is their cooperation that provides automatic distributed memory
management. In particular, several DGC events are triggered by finalization
initiated by local garbage collectors, when some objects are detected to be
garbage. For instance, sending a DEC message when a pointer is no longer
needed or deallocating communication resources are both started by finalizers.
Consequently, the performance of our DGC algorithm cannot be measured
independently of the local collector?.

Furthermore, specific properties of local garbage collectors come into effect.
For instance, in our case, the local garbage collector is incremental, and needs
to allocate objects in order to reclaim existing garbage and activate finalizers.
In order to circumvent this feature, we created a thread whose purpose is to
allocate garbage to be sure that objects that are relevant to our experiments
get finalized.

4.8 Comparison

Figure 4 displays the messages that were sent for two runs of the cycle pro-
grams (a) using INC_DEC messages or (b) using indirect reference counting
(IRC). Dark (red) lines represent mutators messages, whereas light lines (blue
or green) represent DGC messages. With IRC, the distributed garbage col-
lection activity does not take place when the mutator is proceeding, but only
starts after the mutator has accomplished its execution. A sequence of DEC
messages is then propagated in a direction opposite to the one the pointer was
propagated.

On the other hand, as previously illustrated in Figure 3, DGC activity is
interleaved with the mutator computation when INC_DEC messages are used.
A very high number of DGC messages may be propagated at a very early stage
in parallel.

dIn general, DGC activity cannot be measured independently of the local collector activity.
However, in the particular case of the cycle program using indirect reference counting, it is
known that once the reference counter of a pointer p; becomes zero, the pointer ps pointed
by p1 has lost its last active reference; therefore a DEC message may be sent immediately for
p2, without waiting for the finalizer activation. Therefore by using knowledge that is specific
to the problem, some benchmarks may be improved. However, we did not implement such
a variant because it does not remain valid for other DGC strategies.

20000 000 0000 100000 720000 140000

Proess0]-||-\

Pmcessl§ a ’ \\

- ‘}Al‘\l

| i
: H
Process 3| [[IONE 10

Pmeemi \-s

5’

Figure 4: The cycle benchmark with (a) INC_DEC messages (b) IRC

Let us consider the situation where n iterations of the circle have been
executed, and let us imagine that all INC_DEC and subsequent DEC messages
have been propagated. We then obtain a situation such that for each circle
there remains a single instance of a DGC pointer that is live. Consequently,
the number of DEC messages that remains to be propagated is given by the
number of circles that were completed, as opposed to IRC where the number
of DEC messages is given by the number of circles multiplied by the number of
nodes in a circle.

The benchmark was designed so as to model mobile computations, hopping
from nodes to nodes. In theory, we should therefore consider a very high
number of nodes. In practice, we consider a smaller number, but artificially
create new pointers that we propagate in a circular manner. Therefore, if we
push this example to the limit of a very high number N and a single circle, in
case (a), after all INC_DEC and DEC messages were propagated, there remains
only 1 DEC message to send, whereas in case (b), N messages still have to be
defined.

Figure 4 also shows that using INC_DEC message potentially reduces the
total duration of the benchmark; in this figure, 1 unit is 100us and execution
duration is halved when using INC_DEC messages. It should be noted that in
case (a), about three times more messages were exchanged than in (b), but
messages could be propagated in parallel.

The absence of parallelism when using IRC can be explained in a more
formal way. The length of the longest causality chain is substantially higher
in the indirect reference counting algorithm than in the presence of INC_DEC
messages. Causality !2 is a partial relationship between events, which expresses
the causal dependencies between events: if event e; causally depends on event
es, then e, necessarily occurs after e;. Causal dependencies occur in the
following cases:

1. on a given node, if a DGC pointer is successively involved in two events
e1 and es, then e, causally depends on ey;

2. receiving a message causally depends on sending it;

3. if event e creates a DGC pointer p pointing at another DGC pointer p/,
then e causally depends on the last event incurred by p’ on the same
host.

The causality relationship is a partial order from which we can derive a
directed acyclic graph, starting in ¢g and converging to the last event of the
computation. We can determine the longest path from ¢y to the end of the
computation, which we call the longest causality chain. The longest causality

Length of Causality Chains
T

6561 T T
Indirect Reference Counting —+—
Diffusion Tree Reorganisation ---x---
2187 |
Q<
[
3
- 729 -
j=2
ks)
243
<
81 | | | | | |

0 10 20 30 40 50 60 70
Number of cycle iterations

Figure 5: Length of the longest causality chain for circle with 3 nodes

chain is an indication of the number of events that have to be executed in
sequence. The shorter the chain, the more parallelism we can observe. Figure
5 displays the length of such chains for different runs of the cycle program.

The measure that is relevant to us is the difference between the length of
the longest causality chains in the two algorithms. In order to show that this
difference is proportional to the number of nodes involved in the computation,
the y axis scale is expressed in the logarithm of the number of hosts. We
can see that the space between the curves remains constant as the number of
iterations increases.

Figure 6 displays the messages that were sent for two runs® of the diffuse
program with (a) a fifo message queue or (b) with a sorted message queue. We

¢The DGC protocol used INC_DEC messages but an exactly similar result is obtained with
IRC. The reason being that in the presence of only three nodes, we are never in the situation
of sending an INC_DEC message.

0 T0000 20000 30000 30000 50000 60000 70000 50000 90000

Process 0 -IIIII\E HEII || 5 h’u i 1
= '/' //W =
| ug /) " (I
" IQ/‘ / /’/4
i r i
| \\ /i |
// f "l“
! 'M&‘ 'r"\\\' “” //‘ y /‘"‘A‘L/ p A :‘»
2 '.\”»"Q 34"':‘7“‘5‘5/ ‘ i
| NN X< ‘1!@!’ A
AT
\‘\\‘V A
i N \« ‘
process2 | 58 [s HH [Eds | \E szl

HE\ I

Figure 6: The diffuse benchmark with (a) fifo and (b) sorted message queues

can observe a dramatic reduction of the number of DGC message exchanges
when sorted message queues are used. In addition, overall execution time
decreases as less time is required for communications.

The following table gives a small sample of the number of messages ex-
changed during some runs of the diffuse program. The column mutator in-
dicates the number of messages exchanged by the mutator, fifo and sorted
respectively indicate the number of DGC messages using the fifo and sorted
action queues.

| depth | width | mutator | fifo | sorted |

6 3 1092 | 732 104
6 4 5460 | 3640 394

As the width increases, the frequency at which pointers are sent to nodes
where they were previously sent also increases. Consequently, the sorted queue
has got more opportunities to optimise the grouping of messages to a same
destination.

5 Related Work and Conclusion

Literature on distributed garbage collection is abundant; we refer to Jone’s
book!? for a complete chapter on the subject and the garbage collection page?
with more than 1600 references. In previous papers '*13, we have covered the
differences between our algorithm and other reference counting or reference
listing approaches such as Birrel’s>'®, Lermen and Maurer’s'"»?' Piquer’s 7,
or Bevan’s?.

In this paper, we have focused on the impact of our algorithm on com-
munications. The distributed version of the train GC® uses an algorithm to
keep track of live pointers. Their algorithm requires less messages than ours;
however, the information that is made available is not the same because, for
instance, the number of remote live copies or their location (in the case of
reference listing) is not made available to the owner of a pointer. A similar
discussion also hold for Weighted Reference Counting®.

The garbage collector we present in this paper is based on reference count-
ing. As other reference-counting algorithms, ours is unable to reclaim dis-
tributed cycles. However, we should observe that there is a range of applica-
tions that do not create distributed cycles. In particular, Tel and Mattern 2!
have shown that the problem of termination in distributed systems is equiv-
alent to distributed GC. Reference counting can be used because processes
form a hierarchy. Groups ¢ also have a hierarchical organisation and can be
reference counted.

This paper concludes an investigation about an algorithm for distributed
garbage collection based on reference counting. This algorithm has been spec-
ified, and its correctness has been proved mechanically. In this paper, we have
described a complete implementation and evaluated some of its performance
aspects. A complete performance evaluation would require real-world appli-
cation using distributed GC, but we currently lack such applications. Future
work concern a Java implementation of the algorithm, which would provide a
multi-lingual environment, using Nexus/Globus as a communication layer and
the NexusRMI stub compiler 3.

Acknowledgements

Thanks to Christian Queinnec and Danius Michaelides for their comments.
This research was partially funded by EPSRC grant GR/M84077.

1. David I. Bevan. Distributed Garbage Collection using Reference Count-
ing. In PARLE Parallel Architectures and Languages Europe, volume 259
of Lecture Notes in Computer Science, pages 176-187. Springer-Verlag,
June 1987.

2. Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward
Wobber. Distributed Garbage Collection for Network Objects. Technical
Report 116, Digital Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301, December 1993.

3. Fabian Breg and Dennis Gannon. Compiler support for an RMI imple-
mentation using NexusJava. Technical report, Indiana University, 1997.

4. Marc Feeley. An Efficient and General Implementation of Futures on
Large Scale Shared-Memory Multiprocessors. PhD thesis, Brandeis Uni-
versity, 1993.

5. TIan Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach
to Integrating Multithreading and Communication. Journal of Parallel
and Distributed Computing, 37:70-82, 1996.

6. Richard P. Gabriel. Performance and Evaluation of Lisp Systems. Series
in Computer Science. MIT Press, Cambridge, Massachusetts, 1985.

7. H.-J.Boehm and M. Weiser. Garbage Collection in an Uncooperative
Environment. Software — Practice and Experience, 18(9):807-820, 1988.

8. R.L. Hudson, R. Morrison, J.E.B. Moss, and D.S. Munro. Garbage Col-
lecting the World: One Car at a Time. In Proceedings of OOPSLA’97,
Atlanta, USA, 1997.

9. Richard Jones. The Garbage Collection Page.
http://stork.ukc.ac.uk/computer_science/Html/Jones/gc.html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Richard Jones and Rafael Lins. Garbage Collection. Algorithms for Au-
tomatic Dynamic Memory Management. Wiley, 1996.

C.-W. Lermen and D. Maurer. A Protocol for Distributed Reference
Counting. In Lisp and Functional Programming, pages 343-354, 1986.
Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In M. Cosnard et al., editors, Proceedings of the International
Workshop on Parallel and Distributed Algorithms, pages 215-226, Ams-
terdam, 1989. Elsevier Science Publishers.

Luc Moreau. A Distributed Garbage Collector with Diffusion Tree Re-
organisation and Object Mobility. In Proceedings of the Third Interna-
tional Conference of Functional Programming (ICFP’98), pages 204—215,
September 1998. Also in ACM SIGPLAN Notices, 34(1):204-215, Jan-
uary 1999.

Luc Moreau, David DeRoure, and Ian Foster. NeXeme: a Distributed
Scheme Based on Nexus. In Third International Europar Conference
(EURO-PAR’97), volume 1300 of Lecture Notes in Computer Science,
pages 581-590, Passau, Germany, August 1997. Springer-Verlag.

Luc Moreau and Jean Duprat. A construction of distributed reference
counting. Technical Report RR1999-18, Ecole Normale Supérieure, Lyon,
March 1999.

Luc Moreau and Christian Queinnec. Design and Semantics of Quantum:
a Language to Control Resource Consumption in Distributed Computing.
In Useniz Conference on Domain-Specific Languages (DSL’97), pages
183-197, Santa-Barbara, California, October 1997.

José M. Piquer. Indirect Distributed Garbage Collection: Handling Ob-
ject Migration. ACM Transactions on Programming Languages and Sys-
tems, 18(5):615-647, September 1996.

David Plainfossé and Marc Shapiro. A Survey of Distributed Garbage
Collection Techniques. In Henry G. Baker, editor, International Work-
shop on Memory Management (IWMM95), number 986 in Lecture Notes
in Computer Science, pages 211-249, Kinross, Scotland, 1995.

Manuel Serrano. Vers une compilation portable et performante des lan-
gages fonctionnels. PhD thesis, Université Paris VI, December 1994.
Sun MicroSystems. Java Remote Method Invocation Specification,
November 1996.

Gerard Tel and Friedemann Mattern. The Derivation of Distributed
Termination Detection Algorithms from Garbage Collection Schemes.
ACM Transactions on Programming Languages and Systems, 15(1):1—
35, January 1993.

