
A Uniform Approach toProgramming the World Wide WebDanius Michaelides, Luc Moreau and David DeRoureUniversity of Southamptonfdtm,L.Moreau,dderg@ecs.soton.ac.ukTechnical Report ECSTR M98/4June 29, 1998AbstractWe propose a uniform model for programming distributed web applications. The modelis based on the concept of web computation places and provides mechanisms to coordinatedistributed computations at these places, including peer-to-peer communication betweenplaces and a uniform mechanism to initiate computation in remote places. Computationscan interact with the 
ow of http requests and responses, typically as clients, proxies orservers in the web architecture. We have implemented the model using the global pointersand remote service requests provided by the Nexus communication library. We present themodel and its rationale, with some illustrative examples, and we describe the implementa-tion.1 IntroductionMany web applications require a signi�cant amount of computation which may be distributedand requires coordination; these applications use the web infrastructure to good advantage butare often constrained by the architecture, which is fundamentally client-server. A variety ofworkarounds are possible and in practice ad hoc solutions are often adopted. In this paper wepresent a middleware layer which provides a consistent and ubiquitous model, fully integratedwith http while supporting distributed computations with peer-to-peer communication and auniform mechanism for initiation of remote computations.Even though the architecture of the World Wide Web was initially based on the client-servermodel, computations may be performed in a variety of locations:� In the client-server model, the server has the responsibility of delivering the informationto be displayed by the browser. The cgi interface and servlets o�er users the possibil-ity to execute programs in the server; cgi scripts can only be installed by the serveradministrator.� Java applets and Java scripts allow computations to be performed in the client, i.e.,browser.� Proxies [6] are computational elements that lie along the path of the web transaction;they are able to observe and respond to http requests, and they are able to modify boththe requests and the resulting documents. Applications of proxies include caching [26],personal agents [35], or on-the-
y customised link insertion [13].1



� Hierarchical Internet caches, which are a form of intermediary, involve non-trivial compu-tations. They rely on the hierarchical organisation to provide faster document delivery;they use a dedicated protocol, the Internet Cache Protocol, for communications, and theymaintain the consistency of cached document versions [39].These di�erent kinds of computations occurring during retrieval of www information pro-vide some form of load balancing which results in a reasonably e�cient system. The variety ofprotocols and document formats that the www supports has made it an ubiquitous informationpublishing tool.However, we are researching a new range of www applications that depart radically fromthe traditional client-server approach. These are societies of agents that cooperate in order toprovide users with new services such as: (i) link integrity [31] in a publishing environment,(ii) �nding other users with common interest [35], (iii) user-customised on-the-
y generationof links [13], (iv) information retrieval via mobile agents [11]. These applications di�erfrom the traditional client-server model, because they involve direct client-to-client, server-to-server, or intermediary-to-intermediary communications. The www is open enough to supportsuch forms of communications and computations, but ease of development is hampered by theheterogeneity of the environment. Indeed, the development process is ad hoc because it dependson the di�erent kinds of computations, which have di�erent semantics, are initiated in speci�cways, and use di�erent communication mechanisms.In this paper, we advocate Wexus1, a uniform approach to programming www applications.This computation model is compatible with the existing www as it relies on its infrastructure.Therefore, it does not penalise existing applications that do not make use of it. However, ito�ers a new range of facilities, which we shall illustrate with simple examples.By devising Wexus, our goal is to facilitate the development of www applications conceivedas societies of agents. The essence of our approach is to provide a uniform interface to program-ming any locations where computations may occur; servers, clients, or proxies shall be calledWeb computation places . Wexus is based on the following key ideas:1. Peer-to-peer communications between web computation places.2. A uniform mechanism to initiate computations on remote places.3. Interaction with the 
ow of www transaction.In Section 2, we develop the three key ideas underlying the Wexus programming model.Then, we illustrate Wexus by several non-trivial examples (Section 3). Two vital componentsform the core of the implementation: Section 4 describes a transport layer based on http andan extensible programmable http server (or proxy). We then compare our solution with otherapproaches in Section 5.2 The Wexus Programming ModelThe distributed programming community has investigated numerous paradigms of communi-cation for distributed environments, such as message-passing libraries [18, 19], communicationchannels [23, 28], remote procedure calls RPC [4] and its object-oriented variant, remote methodinvocation [7, 38, 40].1As a shall explain later in the paper, Wexus is based on the Nexus programming model[14, 32] that we haveextended to program the www. 2



Wexus is an extension of Nexus [14, 32], a distributed programming paradigm, available as alibrary, which provides programmers with two key ideas: global pointers refer to remote objectsand remote service requests start computations on remote places. In addition, we integratethis model into the web by providing a mechanism which maps http transactions onto remoteservice requests.The Nexus programming model is language independent: it is currently supported by Java[16], Scheme [30], Perl [15], C, Fortran, C++ [32]. Applications may even be written in sev-eral languages; as opposed to the multi-lingual approach [24], cooperation between di�erentlanguages is via distribution and common data structures and not via threads. Furthermore,higher-level communication paradigms can be built e�ciently, including remote function calls,mobile communication channels [17], or message-passing libraries.In addition, as in languages such as Obliq [7] or Java and RMI [40], global pointers aregarbage collected across distributed places, using a distributed reference counting algorithm[30].2.1 Extended NexusNexus [14] is structured in terms of �ve basic abstractions: nodes, contexts, threads, globalpointers, and remote service requests. A computation executes on a set of nodes and consistsof a set of threads, each executing in an address space called a context. (For the purposesof this article, it su�ces to assume that a context is equivalent to a process.) An individualthread executes a sequential program, which may read and write data shared with other threadsexecuting in the same context. We then de�ne a web computation place as a Nexus context.A global pointer2 represents a communication endpoint, that is, it speci�es a Web compu-tation place to which a communication operation can be directed. The remote service request(rsr) is the communication mechanism supported by Nexus. It is a binary and one-way modeof communication between a sender and a receiver. GPs can be created dynamically; oncecreated, a GP can be communicated between places by including it in an rsr. A GP can bethought of as a capability granting rights to operate on the associated endpoint. The endpointconsists of both an object and its associated communication meta-data.GP1 O3O2 GP2 GP4GP3O1 P2P1 Figure 1: The Nexus ModelFigure 1 displays twoweb computation places P1; P2. There are three endpoints, representedby circles. An endpoint is located on a web computation place and consists of an object and2A similar notion can also be found in the literature under the names of remote pointer or network pointer[5]. 3



some meta-data. There are four globals pointers GP1 to GP4, each pointing at an endpoint. Aglobal pointer may refer to a local or to a remote endpoint. We see that GP2 refers to a localendpoint. On the other hand, O3's endpoint is pointed at by GP3 and GP4.Practically, an rsr is speci�ed by providing a global pointer, a handler identi�er, and somearguments. Issuing an rsr causes arguments to be serialised in a data bu�er, the bu�er to betransfered to the web place designated by the global pointer, after which the routine speci�edby the handler is executed, potentially in a new thread of control. Both the arguments and thespeci�c data contained in the endpoint associated with the global pointer are made availableto the rsr handler.The endpoint of a global pointer refers not only to the user data but also to some commu-nication meta-data. Such meta-data contains:� Supported protocols . The Nexus communication library is multi-protocol and rsrs maybe transported on top of tcp, udp and others. In addition, we have implemented a newprotocol module for Nexus on top of http. By tunnelling rsrs into http, distributedWexus applications can use the same protocols as the www itself. This choice of a singleprotocol, amongst others, facilitates cross-�rewall applications.� rsr handlers . Each endpoint is associated with a table of handlers, from which a handleris selected upon reception of an incoming rsr. At runtime, new handlers may be added orremoved, and handlers may be re-de�ned by the user. Tables of handlers may be sharedbetween communication endpoints, which allows programmers to de�ne notions of objectclasses, able to react to a common set of rsrs.� Reference counters . In Wexus, global pointers are reference counted; this facility allowsWexus applications to know when a global pointer passed to another process is no longerused. Every time global pointers are communicated, reference counters are updated ac-cording to a published algorithm [30], whose description is beyond the scope of this paper.Control messages updating reference counters are exchanged between places using the rsrcommunication mechanism. Such messages are generated and automatically handled bythe system. A variant of our algorithm is being implemented to support massively dis-tributed computation involving a very high number of places [29].We shall come back to the implementation details of the http-based transport layer inSection 4.1. For the time being, it is su�cient to know that tunnelling works as follows. Whena rsr is issued, the data bu�er is encoded into a http form; then, it is sent to a http server,which calls a cgi script that decodes the data and sends it to the Nexus receiver. At anabstract level, the rsr mechanism provides peer-to-peer communications, but at the httplayer, messages are routed via the http server.The peer-to-peer communication mechanisms o�ered by rsrs provides the programmerwith a powerful abstraction. Indeed, they give the programmer the illusion of homogeneityeven though communications in the current Internet are not uniform:1. Security restrictions typically authorise Java applets to communicate only with the serverthat delivered the applet. Such restrictions prevent direct communications, e.g., betweentwo applications running inside two browsers. In the absence of our communication model,the user would have to program complex code working around the security restrictions,for instance by forwarding messages via a proxy.2. The Internet can no longer be regarded as a 
at space of places due to the presence of�rewalls. Direct access via tcp inside a domain is more and more frequently prevented4



by �rewalls. Messages may have to be routed via �rewalls and Wexus provides such amechanism of transparent routing.3. Local area networks, clusters of workstations, or even supercomputers usually rely onfast communication protocols. By its multi-protocol approach, Nexus may automaticallyuse these protocols instead of http. Even though we have the possibility to tunnel allrsrs in http, automatic and dynamic switching between protocols may provide betterperformance.The rsr mechanism also provides a uniform way of starting remote computations as re-ceiving a rsr �res up a handler. Currently, all the kinds of computations supported by thewww have their own ways of being started. Applets are started when html pages are down-loaded and further applet computation may be created by communicating via sockets. cgiscripts are started by passing a sequence of keyword-value strings. Internet caches use theirown protocol (Internet Cache Protocol). Our communication layer abstracts away from theseplace-dependent mechanisms by providing the single notion of rsr.2.2 Interacting with the WWW Information FlowThe second facet of our Wexus programming model is the possibility to interact with theinformation 
ow of www transactions. A www transaction is typically initiated by a browser,passed to its proxy (an intermediary), which in turn passes it to the next intermediary, until itreaches the server. The latter returns a result, forwarded by each place in the chain. All placesin both directions have the opportunity to modify the information that is being transfered.At each place of computation, we want to provide programmers with the means to interactwith the 
ow of information. Therefore, we o�er callback mechanisms that allow user-de�nablecode to be called in response to events happening during www transactions. In order to providea uniform model of programming, the callback code is de�ned as a Nexus handler, which is calledas if the www transaction had been a Nexus remote service request.http connectionGET URL rsr(de�ne, server-gp, gp, string)rsr(unde�ne, server-gp, gp)ANSWER rsr(get, gp1, GP, URL, key, value, ...)rsr(notify, gp2, URL, key, value, ...)GP rsr(open, GP, type, error-code)rsr(close, GP)rsr(write, GP, document-data)rsr(de�ne-get-callback, server-gp, gp1)rsr(de�ne-notify-callback, server-gp, gp2) nexus interactionhttp interactionFigure 2: A Wexus Aware http Server5



Figure 2 describes the modes of interaction of a Wexus-aware http server. The serveris represented by a box accepting http requests on the left-hand side. Such requests areestablished by a place creating a tcp connection to the server, and sending a http GETrequest. The http server is expected to return the resulting document on the same connection.For each incoming http request, the server sends a get rsr containing the requested url,as well as any key-value pair speci�ed in the url or in the information contained in the httprequest. This rsr is sent to a programmer-speci�able global pointer gp1, which may be pointingeither at a data inside the http server itself, or at a data of another process, possibly residingon another host.The handler which is called in response to this get rsr is expected to produce a documentwhich, according to the http speci�cation, has to be returned eventually on the connectionestablished between the client and the server. Therefore, before sending the get rsr, theserver creates an internal data structure containing some information about the connection,and creates a global pointer GP pointing at it. This global pointer is also passed as an elementof the get rsr.In order to return the document to the server, a remote service request write has to be sentto the GP inside the server, passing it the document to be returned to the tcp connection.Several write rsrs can be sent and will be handled sequentially; the resulting document isobtained by concatenating each individual data. These write rsrs must be preceded by an openthat indicates the type of the document; symmetrically, they must be followed by a close, whichmarks the end of the document.The get rsr is said to be synchronous because it is called by the server, following anhttp request, with the intent of generating the answer to the transaction. We also provide anasynchronous variant, called notify, which passes the same information (except the return GP)to another global pointer gp2; the handler of the notify request it is not intended to return adocument.Besides accepting http requests, issuing and receiving remote service requests, a Wexus-aware http server must also be con�gurable: for instance, one wishes to specify the globalpointers gp1 and gp2 to which remote service requests are sent. We further introduce tworsrs that an Wexus http server must handle. The two rsrs de�ne-get-callback and de�ne-notify-callback specify the global pointers gp1 and gp2 to which get and notify must be sent,respectively.Also, we would like http requests to start a computation on any object. To this end, weprovide a mechanism by which the get rsr can be sent to any global pointer. Requests for aurl of the typeprotocol://host.domain:port/path1/path2/.../pathi?key_1=value_1&key_n=value_n,not only package all key-value pairs into the rsr, but also handle in a particular way thereserved key gp. An http server maintains a table associating global pointers with their stringrepresentations. When a url uses the key gp, the associated string is searched in the table,and the matching global pointer is the pointer to which get and notify are sent. Consequently,we provide mechanisms to de�ne an association between a global pointer and a string by thede�ne rsr; the unde�ne rsr allows one to delete such an association.Our approach has several bene�ts:� Conversion. As we have adopted the single mechanism of remote service requests andassociated handlers, a get (or notify) handler may be activated by sending remote service6



get getclient server
serverGP subwriteFigure 3: A Wexus-Aware http Serverrequests immediately to the place where the handler is de�ned; vice-versa, the Nexusworld opens itself to non-Nexus applications via http requests.� Composition. All www computation places may adopt the same strategy, from clientsto servers. They can be composed in interesting ways, such as in Figure 3, where allcomponents are supposed to be Wexus aware. Using an http GET request (or a getrsr), the client requests a document, but speci�es a local GP as the location to returnthe document. The www server delegates the handling of the get request to a subserver,which can directly return the result to the client.If the client is not Wexus aware, the same triangular organisation can be obtained byconnecting the client to a Wexus-aware proxy.� With and Without Connections. The WorldWide Web is connection oriented, which forcesresults to be returned on the same connection chain as the request. On the other hand,the Nexus model is connection-less because a request has to specify the global pointerto which a result has to be sent. Both approaches integrate nicely in this framework,where a Wexus-aware component converts GET http requests into get rsrs, and a writesends results back onto a connection. The connection-oriented approach provides a modelwhere each place in a chain can act as a �lter on the requests/data. The connection-lessapproach permits more dynamically con�gurable networks and facilitates load-balancingas illustrated in Figure 3.2.3 Summary of the Wexus Programming ModelWexus is an extension of Nexus to the www. Numerous publications are available about Nexus,its di�erent language bindings, transport protocols and performance [32]. In a previous paper,we have de�ned the formal semantics of Nexus as an abstract machine [30]. In this section we7



present a summary of the primitives o�ered by Nexus, as used in this paper, and their informalde�nition.The Nexus programming model may be summarised by the three constructs displayed inFigure 4. The function make-gp takes any object and returns a global pointer pointing at thisobject. The created global pointer is a �rst-class data-structure, which may be passed to otherplaces using remote service requests.Remote service requests are initiated by the rsr construct, which expects a handler name,a global pointer, and some arguments. The arguments will be marshalled into a data bu�er,which will be sent to the place containing the endpoint associated with the provided globalpointer.(make-gp object)(rsr rsr-name receiver-gp val1 val2 . . . )(de�ne-rsr-handler write-rsr (receiver-object a1 a2 )body) Figure 4: Three Nexus ConstructsUpon receiving the data bu�er, the arguments will be extracted. The handler name givenwhen the rsr was issued determines the routine which is called on the receiver. Such a routinemust have been de�ned previously using the de�ne-rsr-handler construct. This construct issimilar to a function declaration, specifying the formal parameters and the body. When thehandler is called, its formal parameters will be bound to the arguments extracted from thereceived data bu�er. In addition, the handler is also given the user data associated with theendpoint, which is passed as a �rst argument, before the data contained in the bu�er.get-rsr gp, url, key1, value1, . . .notify-rsr url, key1, value1, . . .open-rsr type, error-codewrite-rsr document-dataclose-rsrde�ne-get-callback-rsr gpde�ne-notify-callback-rsr gpde�ne-rsr string, gpunde�ne-rsr stringFigure 5: Remote service requests supported by Wexus serversFigure 5 displays the prede�ned rsrs and their arguments as supported by Wexus. Aget request transmits a global pointer, a url, and a variable number of key-value pairs; thehandler is expected to return the document designated by the url to the speci�ed gp. Thenotify requests has the same arguments except the global pointer; it provides information thatthe url was requested.A get handler is expected to return a document to a global pointer. First, the type of thedocument (a string) and an error code (success or failure) must be sent via an open request.8



Then, the document itself is sent via a sequence of write requests. Finally, a close request,without any argument, indicates the end of the document.The de�ne-get-callback speci�es the default global pointer to which get requests must besent. Similarly, de�ne-notify-callback speci�es the global pointer for notify.The request de�ne takes a string and a global pointer and creates an association betweenthem. The unde�ne request takes a string and removes it from the table of associations. Namesare used during the conversion of a http GET request into a get rsr. Let us consider thefollowing url:protocol://host.domain/path?key_1=value_1&key_n=value_n&gp=string_gp.It is converted into the following get request(rsr get-rsr object-gp browser-gp "path" "key 1" "value 1" "key n" "value n"),with object-gp the global pointer associated with string gp.3 Some ApplicationsThe authors have experience of a number of distributed web applications which have adoptedan architecture based on proxies. These include:1. The Distributed Link Service [13], which uses a proxy to insert hypertext links on-the-
y asa document passes through towards the browser. The links are obtained by interrogatinga link database. It can also report the links asynchronously.2. In MEMOIR [35] the proxy noti�es other components when a document is obtained, sothat they can record the users \trail". Components register their interest in events ofcertain kinds and subsequently receive asynchronous noti�cations. The user can makecomplex queries which result in distributed computations, and there are also persistentcomputations which process data.It is however impossible to present such real applications due to the code size. Instead, wedescribe several small examples which capture key functionality inherent in these applicationsand illustrate our programming model.1. We implement access counters to illustrate the callback mechanisms, and synchronous orasynchronous handlers. We then show how to extend the program by involving clients inorder to provide reference counters on urls.2. The personal cache is an example of a distributed application across several places; it alsoillustrates the bene�ts of the connection-less approach.3. The summary example shows response to user requests and communications betweenservers to pre-compute some information.4. The distributed traversal engine (Section 3.3) is an application distributed across multipleservers. It also illustrates the bene�t of reference counters on global pointers.NoteMost of the code presented in this section is written in Scheme [36]. In order toshow that our approach is language-independent, we have programmed one examplein C. Other languages can also be used, including Java for which there is a Nexusbinding. We have adopted Scheme because it provides us with a high-level interface[30] to Nexus and powerful abstraction primitives, therefore reducing code size.9



3.1 From Access Counters to Reference CountersSometimes, users wish to display the number of times a page was hit. To this end, they embedin the page an anchor with a url that activates a cgi script whose purpose is to return agraphical representation of a counter. Such an anchor actually represents two di�erent actions:incrementing the counter associated with this url and displaying the counter value. Bothactions can easily be implemented in our uniform programming model.The essence of our solution is to create a \counting place" that maintains a counter withevery requested url. Such a counting place must be inserted in the www transaction path,somewhere between the client and a server. If it is installed as a proxy to the browser, it willcount requests emitted from the browser; on the other hand, if it is attached to a server, it willcount the requests arriving to the server.In a �rst instance, we de�ne a handler for the get request, which is called every time aurl is requested. By default, this handler calls the function get-and-count-handler displayedin Figure 6. It gets the requested document, it returns it to the speci�ed gp (cf. line [1]), itincrements the counter associated with the url (cf. line [2]), and it adds an html epiloguedisplaying the counter value.(de�ne-rsr-handler get-rsr (object gp string . args)(if (default-object? object)(get-and-count-handler gp string args)(other-get-and-count-handler object gp string args)))(de�ne get-and-count-handler(lambda (gp url args)(let ((result (return-url-to-gp url gp))) ;; [1](if (result-error? result)(generate-error-msg gp url args result)(let ((counter (increment-count! url))) ;; [2](if (equal? (result-type result) "text/html")(generate-counter-information gp url counter)(rsr close-rsr gp)))))))(de�ne generate-counter-information(lambda (gp url counter)(let* ((callback-gp (make-gp *table* ))(gp-string (gp->string! callback-gp)))(rsr de�ne-rsr gp gp-string callback-gp) ;; [3](rsr write-rsr gp (make-counter-info-string url counter gp-string))(rsr close-rsr gp))))(de�ne make-callback-url(lambda (url string)(make-anchor (string-append url "?gp=" string)"Click Here to Display Table")))(de�ne other-get-and-count-handler(lambda (table gp url args)(rsr write-rsr gp *accessed-docs-title* )(rsr write-rsr gp (display-table table))(rsr close-rsr gp))) Figure 6: Page Access Counters (1)The function generate-counter-information returns some html code displaying the countervalue. In addition, it embeds in the code a url, generated by make-callback-url , that containsthe gp keyword associated with a string value. The counting place maintains a table associatingglobal pointers with strings; a de�ne rsr is used at line [3] to de�ne the association between10



the string value and the global pointer.When the server gets a request for a url with the gp keyword, the associated string issearched and a get rsr is sent to the corresponding global pointer. The get handler recognisesit is called on a di�erent object, and the function other-get-and-count-handler displays thecounter table.If we are not interested in generating a document containing the number of times it hasbeen requested, we can also use asynchronous noti�cations. Such noti�cations are called inparallel with the retrieval of the document by the server. Figure 7 displays the handler for thenotify remote service request.(de�ne-rsr-handler notify-rsr (object gp string . args)(notify-handler gp string args))(de�ne register-asynchronous-counter(lambda (counting-place-gp default-gp)(let ((table-gp (make-gp *table* )))(rsr de�ne-notify-callback-rsr counting-place-gp default-gp)(rsr de�ne-rsr counting-place-gp "show-table" table-gp))))(de�ne notify-handler(lambda (gp url args)(increment-count! url))) Figure 7: Page Access Counters (2)Again, the counter value (and the table content) can be obtained by following a spe-cial url, created by make-callback-url , containing the keyword gp and the associated string"show-table". The string "show-table" must have been de�ned by a de�ne rsr (cf. line [4]).Figures 6 and 7 show that we can de�ne urls that initiate computations on speci�c objectswhen they are requested by browsers. In the �rst case, the url was generated on-the-
y by thecounting place: such a mechanism provides a customised callback to the user. In the secondcase, the url can be embedded in a document, when the document is authored, and madeaccessible to all users.Page access counters can easily be transformed into reference counters if clients cooperatewith servers. An access counter is the total number of times a document was accessed, whereasa reference counter is the number of times a document is currently held by browsers; in otherwords, the reference counter is the number of users currently viewing the document. By fur-ther cooperation from browsers, we can also maintain a reference counters of users who havebookmarked a url.When a client requests a url, it allocates some space in memory for the document. Asthe user navigates, the client may run out of memory space and therefore decide to free thedocument. At that time, we can envisage that the client informs the server that the space usedby the document is being freed. This can easily be implemented by issuing a remote servicerequest to the http server, requesting it to decrement the counter associated with the url:(rsr decrement-counter-rsr server-gp url).Cooperation between clients and servers, or more generally between any two computationplaces, can be based on remote service requests. However, this mechanism requires one placeto have access to a global pointer pointing at another place in order to be able to send itrequests. Such a bootstrap problem is common to most distributed systems. They usuallyuse a \registry" [40], situated at a well-known location, from which a �rst global pointer may11



be retrieved. Nexus also provides such a mechanism in the form of a process listening on aprede�ned port; another process can \attach" itself to the �rst one, resulting in the exchangeof a global pointer.In our context, a Wexus-aware client does not, a priori, know whether a server is alsoWexus-aware. However, if the client requests some data from the server, the latter may embedsome information in the result. The Wexus-aware client keeps watching for such informationby which it may bootstrap a communication with the server, independently of the normal 
owof http requests.At the moment, we are experimenting with two techniques to propagate bootstrap informa-tion.1. Such information may be encoded as meta-data in the returned documents. Even thoughthis solution is simple, it requires the client to parse the resulting document. Furthermore,it is only applicable to data format which have meta information (such as html).2. Another solution is to embed the information in the http header, preceding the returneddocument. In particular, embedding this information into a cookie generated by the serveris an interesting venue, because it allows servers to exercise control on places that try toestablish connections via Nexus.3.2 Webpage SummarizerThis example demonstrates the communication that may occur between servers as a result of auser getting a document. Using an interface to W3C's libwww library [33], we de�ne a functionthat, given a url, fetches the document and extracts all its anchors. This list of anchors isused to generate a summary page, containing a list of all the urls, links to the urls, and ifthe destination url is within our domain, a link to the summary page for that url.The process of summarising a document takes an appreciable time, and to speed up responsetimes, we could speculatively perform this computation. When the request for a documentsummary is made, the summariser �rst checks in its cache of summarised documents. If thedocument is not there, it fetches it in the usual way and constructs the summary page. Inaddition, it takes all the urls in the page, and takes each of the urls that are within ourdomain and noti�es the relevant local webserver for that document. On receipt of such anoti�cation, a webserver starts summarising a document, which it will put in its local cache.The server maintains a vector of global pointers to other webservers and a vector containingthe hostnames of the webservers. The function find-id searches the vector trying to matchthe hostname to the given url. If a match is found, it calls the notify-url rsr using the relevantglobal-pointer. We use a regular expression for the matching, so we could match on morecomplex strings that just the hostname.3.3 Distributed Traversal Enginewww masters often have to perform administrative tasks on http servers belonging to theirdomain. Such tasks are, for instance, �nding dangling links, building statistics on page content,discovering unaccessible islands of information, displaying the graph structure, and so on. Manyof these tasks may be programmed by a single application, which relies on a library such aslibWWW [33] to access remote documents via http servers.A distributed implementation uses several processes running on di�erent servers. It permitsparallel processing and usually provides better performance if the hypergraph is reasonably12



(de�ne notify(lambda (url)(if (html-url? url)(let ((index (�nd-id url)))(if (>= index 0 )(rsr notify-url-rsr (vector-ref vhostgps index ) url))))))(de�ne get-summary-handler(lambda (object gp url)(let* ((cache-structure (�nd-in-cache url cache))(summary (if (null? cache-structure)(summarize url)(return-cached-string cache-structure))))(rsr open-rsr gp "html/text" 0 )(rsr write-rsr gp summary)(rsr close-rsr gp)(for-each notify (extract-urls url)))))(de�ne-rsr-handler notify-url-rsr (object url)(if (null? (�nd-in-cache url cache))(add-summary-to-cache url)))(de�ne add-summary-to-cache(lambda (url)(let* ((entry (create-cache-entry url))(summary (summarize url)))(store-in-entry summary entry))))Figure 8: Summary Serverbalanced between the di�erent servers. Some tasks, such as creating separate link bases [12] orcontent indexes, require local access to the local �le system; these tasks can only be performedby a distributed version, where processes running on each http server have access to localresources, e.g., the local �lesystem.In this Section, we describe a generic distributed traversal engine. We call a search task ,an instance of the traversal engine that solves a speci�c goal. A search task is composed ofone master, where the search is initiated, and slaves cooperating with the master in order tosolve the goal. Several search tasks may run in parallel, may involve di�erent hosts, and maybe initiated by di�erent users. In Figure 9, three nodes are involved in a search. Each noderecursively traverses its local html pages; every time a url pointing to another member of thesearch task is met, a remote service request is sent to the corresponding process, which adds itto its set of urls remaining to be visited.In Figure 10, we display the code of the generic distributed traversal engine. Distributionis visible in the function distributed-graph-search, where a remote service request is issued inthe line before the last, to follow a non-local url. This remote service request activates thehandler follow-rsr that adds the url to the \todo" list, and restarts the search locally, if it wasnot currently active. This algorithm is generic because every time a new url is met or a urlis unde�ned, user-speci�able hooks are called.An interesting problem in this algorithm is to detect the search termination. Indeed, eachnode has temporarily �nished a local search when its \todo" list becomes empty; however, itcan be resumed as soon as it receives a remote service request. The global termination of thesearch only occurs when all participating nodes have terminated their local search and whenthere is no rsr in transit requesting further search.In fact, it was proven that detecting termination of a distributed algorithm was equivalent13



httpserver engine httpservertraversal Search Slave 2follow-rsrfollow-rsrfollow-rsrSearch Slave 1
Search Masterhttptraversalengine servertraversalengineFigure 9: A Search Task Involving One Master and Two Slavesto the problem of distributed garbage collection [41]. We therefore used this theoretical resultto detect termination in this algorithm. When a search is initiated, a new object is allocatedon the master and a �nalizer [21] is installed for this object. When a remote service request issent to a node in order to follow a url, a pointer to the object, called token, is passed. Whena node locally terminates its search, it explicitly loses its reference to the token. Terminationis detected when the garbage collector detects that no reference to the token is active, and theassociated �nalizer is called.3.4 Personal CachingIn this example, we demonstrate how we can program computations that occur close to thebrowser, using the Wexus programming model. The use of caches during web browsing iscommon; browsers typically maintain a cache of recently accessed information in both memoryand disk. To try and reduce both precious bandwidth and user response times, web cachesare deployed amongst groups of people. Typically, these caches communicate with each other.This example combines these two types of caches into a personal cache that communicates withother personal caches. Each user runs a personal cache on his/her machine, and this cacheinterrogates other personal caches for documents before making a request.A cache process attaches to a Wexus server and registers a callback for the get method.First, we establish a rsr that queries the local cache and responds to the supplied globalpointer if the the document is in the local cache. The handler responds by calling the IHavehandler, which will be de�ned further on. Secondly, our other cache operation is to send adocument to a supplied global pointer. This uses the open, write, and close rsrs that we have14



(de�ne distributed-graph-search(lambda (url search-task)(let loop ((seen (search-task-seen search-task))(todo (list url)))(if (null? todo)(let ((val (continue-search? search-task seen)))(if (not (null? val))(loop seen val)))(let ((url (car todo)))(if (member url seen)(loop seen (cdr todo))(let ((gp (get-host-gp url search-task)))(if (local-gp? gp)(loop (cons url seen)(append! (cdr todo)(process-and-extract-urls url search-task)))(begin(rsr follow-rsr gp url (search-task-token search-task)) ;;; sends a RSR and passes token(loop (cons url seen) (cdr todo)))))))))))(de�ne continue-search?(lambda (search-task seen)(nexus-mutex-lock (search-task-lock search-task))(let ((val (search-task-todo search-task)))(set-search-task-todo! search-task '())(if (null? val)(begin(set-search-task-seen! search-task seen)(set-search-task-token! search-task #f) ;;; loses reference to token(set-search-task-restart?! search-task #t)))(nexus-mutex-unlock (search-task-lock search-task))val)))(de�ne-rsr-handler follow-rsr (search-task url token)(nexus-mutex-lock (search-task-lock search-task))(let ((restart? (search-task-restart? search-task)))(if restart?(begin(set-search-task-restart?! search-task #f)(set-search-task-token! search-task token)) ;; gets a reference to the token(set-search-task-todo! search-task (cons url (search-task-todo search-task))))(nexus-mutex-unlock (search-task-lock search-task))(if restart?(distributed-graph-search url search-task))))Figure 10: Generic Distributed Traversal of www documents15



static void have_document_rsr(globalpointer_t *reply_to, char *url){ if (lookup_cache(url)>-1)call_ihave_rsr(reply_to, &myself);}static void send_document_rsr(globalpointer_t *send_to, char *url){ int doc_id=lookup_cache(url);call_open_rsr(send_to, document_type(doc_id));call_write_rsr(send_to, document_data(doc_id));call_close_rsr(send_to);} Figure 11: Personal Cache (1)de�ned elsewhere. These two handlers are shown in Figure 11.Using these above basic handlers we are able to develop the get handler. This handler �rstchecks if the document is in its local cache and if so, returns the document to the browserby using its own send document handler. If the document is not in the local cache, then thehandler queries the other personal caches using the Have rsr. These handlers may respond viathe IHave rsr. The IHave handler will issue a send document to the �rst response it gets, sincewe only want to send one copy of the document to the user. We create a data structure thatstores whether the document has been sent, the url of the required document, and the globalpointer used to communicate with the browser. The get handler creates a new instantiation ofthis structure and a new global pointer to it. This global pointer is passed as an argument tothe Have queries, which intern may make the IHave rsr call on this global pointer.The interesting feature of our personal cache is that when a document is found in a neigh-bourhood cache, it is transfered directly back to the browser bypassing the original cacheprocess. This demonstrates one of the bene�ts of passing around a global pointer for browsercommunication.The V6 engine [26] is a client proxy, which can act as a cache, but is also able to �lterand redirect urls. Some of their goals are similar to ours such as providing callbacks inresponse to http events. Our model is, however, more general because it supports distributedprogramming, is language independent, and uniformly integrates http transactions with a formof rsr.3.5 Other ApplicationsOur model of computing for the www is language independent. In particular, there is animplementation of Nexus in Java [16], which allows us to program www applications in thislanguage. A major bene�t of Java is its byte-code portability and the availability of the JavaVirtual Machine in many browsers. It is therefore possible to download the java nexus libraryinto a browser and establish communications between any browser and computation places,using our model of www programming.We have built a library that provides a remote window facility over Nexus [34]. Clients areallowed to open a display server, create windows, buttons, and other usual graphical objects,with associated actions. A point that is relevant to our discussion is that the display server is16



typedef struct _doc_request_t{ int sent;char *url;globalpointer_t browser_gp;} doc_request_t;static void get_rsr(global_pointer_t *browser_gp, char *url){ global_pointer_t *local_gp;int i, doc_id;doc_id=lookup_cache(url);if (doc_id>-1) {call_senddoc_rsr(&myself, browser_gp, url);} else {doc_request_t *user_ptr=(doc_request_t *)malloc(sizeof(doc_request_t));user_ptr->sent=FALSE;user_ptr->url=url;global_pointer_copy(&user_ptr->browser_gp, browser_gp);local_gp=make_gp(user_ptr);for(i=0; i<num_other_caches; i++)call_have_rsr(&other_caches[i].gp,url,local_gp);nexus_usleep(TIMEOUT);if (!user_ptr->sent) {insert_cache(url,get_document(url));call_senddoc_rsr(&myself, browser_gp, url);}}}static void ihave_rsr(nexus_endpoint_t *endpoint, globalpointer_t *reply_to){ doc_request_t *user_ptr=nexus_endpoint_get_user_pointer(endpoint);if (!user_ptr->sent) {user_ptr->sent=TRUE;call_senddoc_rsr(reply_to, &user_ptr->browser_gp, user_ptr->url);}} Figure 12: Personal Cache (2)
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written in Java and communications between clients and the display server use Nexus. Thisfacilitates the programming of graphical applications that run on servers and that displayinformation directly in browsers. In particular, agent applications [35] that are developed theMultimedia Research Group at the University of Southampton intercept www requests, andasynchronously return more sophisticated information, in the hope that it will be useful to theuser. The Java graphical layer, combined with the Nexus communication, provide again thesame uniform interface to the programmer.Browsers, with their Java Virtual Machine, have become ubiquitous platforms of computing[2, 16]. An interesting challenge is to program applications that are distributed across severalbrowsers. However, security restrictions usually only allow applets to establish connections withthe server they were downloaded from. At an abstract level, our uniform model of computingprovides peer-to-peer communications facilities via global pointers. In terms of implementation,messages are automatically routed via http servers by our tunnelling layer. Our architecture toprogramming the www allows us to install intermediaries that forward messages to browsers,and the solution described in [2] is readily implemented in our system. In the related worksection, we address the issue of �rewalls and discuss a mechanism for programming routing ofremote service requests, which would even further generalise [2].4 Implementation4.1 Tunnelling of RSRsNexus provides a simple asynchronous communication abstract via the rsr mechanism. Nexushas a 
exible communications model which is built upon a number of protocol modules. Thesemodules provide a common interface to a number of di�erent communication mechanisms, suchas tcp, udp and Shared Memory. This enables Nexus processes to communicate by the moste�ective means available between them. For example, Nexus may have a protocol modulefor the high performance communications backbone found on a parallel machine; any Nexusapplication run on the machine would take advantage of the faster messaging. The model alsoprovides for heterogeneity in the communications protocols, by allowing a number of di�erentprotocol modules with the library. So for example, an application may consist of a number ofprocesses running on a supercomputer and a remote process running on a user's workstation.The processes running on the supercomputer can communicate between themselves using thehigh performance protocol, but when communicating with a workstation, they would use adi�erent protocol, such as tcp.Nexus requires that delivery of messages is both reliable and preserves order. The asyn-chronous nature of the rsr means that two processes need not maintain a connection to commu-nicate. As a result, communications can be easily mapped onto http and cgi-bin mechanisms.We have implemented an http protocol module for Nexus. Hence, when a Nexus processeswishes to send a message to another, via http, it packages up the message into a form, andmakes a http request to the webserver. This request launches a cgi-bin script which decodesthe form and passes the block of data to the destination Nexus process. The binary data isencoded using base64 encoding. Figure 13 shows this process.For this operation to occur, two pieces of information are required. The sending Nexusprocess needs to know which webserver to contact, and the cgi-bin script needs to know whereto pass the information onto. Both of these pieces of information are encoded in the globalpointer. A global pointer contains a block of data that contains information about how tocommunicate with the process that the global pointer points to. This block of data is generated18



cgihttpdwebserver:port OBA hostname:portFigure 13: The http protocol module for Nexus.by querying each of the protocol modules that the Nexus process is using. Each module encodesin an array of bytes the information required to communicate with that process. When a globalpointer is passed to a process, the communicated data is extracted from the the global pointerand a string of each bytes is sent to each communication protocol. The protocol module thendecodes the data and recreates the relevant information. In the case of tcp and udp, the dataconsists of a hostname and port number on which the source process is listening. In the caseof http, we include the host:port of the webserver as well as the host:port of the sourceprocess. For example, in Figure 13, process B created a global pointer to a local object. Thehttp protocol module encoded webserver:port and hostname:port in the global pointer.Let us assume that this global pointer was passed to process A, which extracted the protocolinformation. When process A performs an rsr on the global pointer, its http protocol moduleconnects to the correct webserver for process B and speci�es the hostname:port that processB's http protocol module is listening on.On the receiving end, the protocol module awaits for connections on a port. When thecgi-bin script is called, it decodes the base64 encoding of the Nexus message, connects to therelevant host:port and writes the Nexus message. We chose to decode the message in the cgiscript because we wanted to minimise the time spent by the protocol module in a critical section.The receiving process also needs to know how much data it should expect. This information issent by the cgi script as a header to the actual data, and is another �eld in our form. Figure14 shows the complete http request of a Nexus message. The cgi-bin script is written in Perland uses the cgi-lib package to extract the �elds in the form.In order to preserve order of messages, the protocol module maintains an outgoing queue foreach destination host:port. A new message is not sent until the process receives an indicationfrom the cgi-bin script that the previous message was delivered to the Nexus process.Although we have used http as our transport layer, the textual representation of Nexusmessage and asynchronous communications enable the use of other transport mechanisms, suchas Email. Using Email as a transport layer would allow Nexus processes to communicate a muchwider variety of environments, and in situations where a process or machine is not permanentlyattached to a network. The Email transport layer is both connection-less and unreliable, so someform of sequence numbering would have to be used to maintain reliable delivery of messages inorder. 19



POST /cgi-bin/nexus-send.pl HTTP/1.0Content-type: multipart/form-data; boundary=----PPPContent-Length: 478------PPPContent-Disposition: form-data; name="host"roobarb.ecs.soton.ac.uk:1107------PPPContent-Disposition: form-data; name="size"184------PPPContent-Disposition: form-data; name="data"ALgAAAAEUPb/vwEAAAAAAAEAAAABAAAAFwAAAHJvb2JhcmIuZWNzLnNvdG9uLmFjLnVrAQAAAAAAAAACAAAAAQEABAAAALTVBwhmAAAAAAAAAQAAFgpyb29iYXJiLmVjcy5zb3Rvbi5hYy51awAADAAoAAAEVXJvb2JhcmIuZWNzLnNvdG9uLmFjLnVrAAAAAFByb29iYXJiAAABAAUAAARXAAAJAA0AAAAIAACzBAAAAAAAAAAAAA==------PPP-- Figure 14: http form data.4.2 Server and Proxy ImplementationIn this section, we describe the implementation of our Wexus-aware webserver. The server mustrespond to http requests as well as Nexus rsr calls. The Nexus library provides a standardinterface to threads, mutexs and callbacks. Nexus is optimised for fast communications andhas a number of functions for registering threaded callbacks on I/O operations. Using thesefacilities, we are able to build a high performance server.Firstly, the server establishes the port on which it will service http requests. Nexus providesa facility to listen on a port and to call a function when a connect is received. This functionreads the http request and parses the url from it. If there is no registered global pointer forsynchronous computation, then the document requested must be served. If the document islocal to the machine, then the server can access the �le directly, but in the case of the serveracting as a proxy, then we use libWWW to get the speci�ed document. If there is a registeredglobal pointer, then a Nexus bu�er is constructed containing the path component of the url,followed by key and value pairs if these were present in the url. A data structure containing the�le descriptor of the socket to the browser and a global pointer pointing to it are created. Thisglobal pointer is put in the bu�er and the bu�er is sent to the registered get global pointer. Thisbu�er is also sent to all the global pointers that were registered using the de�ne-notify-callbackrsr which are stored in an array.The server registers the three RSR handlers that perform operations on sockets to thebrowsers. These handlers use the given endpoint to �nd the local data structure. The operationsthat these handlers perform are very simple; namely write header information, write data andclose socket. The close operation also disposes of the datastructure and endpoint.The server must respond to handlers for registering callbacks; namely for the get and notifycallbacks. In the case of get this simply copies the global pointer because there can only be oncallback registered for get. For notify we have an array of global pointers, and so the handler20



simple adds the supplied global pointer to the array. To improve performance and 
exibility,we intend investigating the extension of the registering process to include a regular expressionfor those urls of interest.The other operation that the server must perform is to convert string representations toactual global pointers. This facility enables browsers to specify global pointers in the argumentsof the request. A mapping must be registered in the webserver which takes a string and returnsa global pointer. The mapping in the server is stored in a hash table for fast lookup. Twohandlers to de�ne and unde�ne strings manage the table. The strings are mapped to globalpointers when the server parses the url and comes across a gp=string key value pair. In thecase where the url contains such a pair, the server uses the global pointer of the last pair tosend a get to.5 Related WorkJava appears to many as the language for programming the www and indeed has strongcredentials in its favour. The applet mechanism provides transparent execution of Java code inbrowsers and the byte-coded architecture is platform independent; combined with RMI, it alsoo�ers a platform for distributed computing, which also contains a distributed garbage collectoras in our approach.First, let us also mention that Java is not only the language to provide transparent codeexecution when www pages are downloaded: for instance, CAML and its camlets [37] o�ersimilar facilities, but the widespread usage of the Java virtual machine makes Java the languageof choice. More importantly, we believe that Java and RMI do not provide a satisfactoryanswer to our problem of programming the www. (i) We prefer a language independentprogramming paradigm, which gives us the freedom to choose the language most adapted toour use. (ii) Remote method invocation is a two-way kind of communication, where a requestis expected to be followed by an answer in the opposite direction; remote service requests, likecommunication channels, are one-way operations, which are more e�cient in some situations(cf. Figure 3): if the receiver decides to delegate the handling of a message, to a third process,the latter can answer directly to the emitter, hereby short-cutting the receiver. (iii) Java andRMI do not provide the routing mechanism described in this paper, even though Java methodinvocations can also be tunnelled into http. (iv) Java and RMI do not provide any callbackmechanism to interact with the 
ow of information of www transactions.Other groups have integrated distributed object approaches with the www. Amongst oth-ers, CorbaWeb [27] provides gateway between http servers and CORBA objects, which allowsbrowsers to navigate through CORBA object links using dynamically generated urls for eachobject. They do not however provide a uniform programming approach as we do; furthermore,we believe that our solution is bound to be lightweight because it relies on Nexus which wasdesigned for high performance computing. W3objects [22] is an object-based www infrastruc-ture that provides support for naming, sharing, mobility, and referencing. Wexus is lower-levelabtraction than W3objects because it is only concerned with starting remote computations,communications, and interaction with www transactions.Wexus provides mechanisms for coordinating distributed computations, and as such can becompared with coordination architectures such as PageSpace [10]. The PageSpace architecturehas broadly similar goals to Wexus and is also asynchronous and decentralised; it emphasises in-teractive applications. It is based on a library which enhances Java with the Linda coordinationmodel. 21



Other languages for programming the World Wide Web have been designed but they havedi�erent goals. Cardelli and Davies' www combinators [8] and Kistler and Marais [25] WebLshare a common goal: they provide a set of constructs that can be used to program applicationsthat emulate the behaviour of a user interacting with his/her browser.Barret and Maglio [3] reach similar conclusions to ours: they observe that http is notalways well suited for all types of applications, in particular wireless links. They use theirintermediaries to provide a conversion to and from other protocols. Our approach generalisestheirs because we adopt a general, language-independent model of distributed computing, whichabstracts from the communication layer. We can then easily convert between protocols, andlet the transport layer automatically choose the most suitable protocol available at the time ofexecution. Intermediaries [3] also provide a programming interface that seems rather orthogonaland complementary to ours; we therefore see no di�culty in implementing it in our framework.Cardelli and Gordon's Mobile Ambients [9], and Vitek and Castagna's seal-calculus [42] aretwo calculi for explicitly modelling and reasoning about �rewalls and mobile agents. On theother hand, our uniform approach to programming abstracts away from the heterogeneity issuedfrom �rewalls. In fact, we regard the two approaches as complementary: �rewall-related calculiare useful to model the interaction, negotiation, authentication between agents and �rewalls.Once this phase has been completed, our abstract model provides a convenient abstraction thathides the routing that may have to take place during each communication.This discussion about �rewalls naturally lead to the general question of security. Ourprimary goal was to develop societies of agents interacting on the www. Therefore, we havehardly addressed the issue of security as we run our processes on trusted hosts inside a singledomain. However, we plan to take this important issue into account. Again, our assumptionis that the communication layer can already provide important security properties. Nexus, isin fact, part of a more general system, called Globus [20], which aims at providing resourcemanagement and negotiation, trusted host authentication, and encryption. We intend to makeuse of these services in order to provide dynamic and secure con�gurability of the system. Inaddition, Abadi's [1] secure tunnelling would be an interesting route to investigate to allow ourcomputations to cross �rewalls.6 ConclusionsExperience in building a number of distributed web applications has established clear require-ments for a model supporting arbitrary peer-to-peer communication and ease of coordinationof distributed computations. The Wexus model was designed to address these needs, throughremote service requests, global pointers, http integration and a reference counting mechanism.In this paper we have presented the model and described an implementation based onNexus. The implementation provides a language-independent layer and we have presented ex-amples in two programming languages. We believe the model will extend naturally to the largerdistributed web applications which motivated this work, and we plan to investigate its appli-cation as an infrastructure for agents in complex applications and in support of collaborativeapplications.7 AcknlowedgmentsThis research was supported in part by the Engineering and Physical Sciences Research Council,grants GR/K30773 and GR/K73060, and by the Joint Information Systems Committee, grant22
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