
A Community of Agents Maintaining Link Integrityin the World-Wide Web(Preliminary Report)Luc Moreau and Nicholas Gray(L.Moreau,ncg97r)@ecs.soton.ac.ukMultimedia Research GroupDepartment of Electronics and Computer ScienceUniversity of SouthamptonSO17 1BJ Southampton UKAbstractIn this paper we present an agent architecture to maintain link integrity in theWorld-Wide Web. It consists of a community of agents collaborating to provideservices to users, authors and administrators. In summary, agents maintain link in-tegrity when documents are updated, moved, or when WWW sites are reorganised.They also provide authors and administrators with usage information such as doc-uments that are currently bookmarked or documents that are no longer accessed.The architecture is also able to advertise new versions of documents. At a low-level,we use a distributed garbage collection algorithm to trace links and maintain theirintegrity.1 IntroductionThe World-Wide Web is ubiquitous and is now an essential component of the electronicdesktop as it facilitates the access and publication of documents. Unfortunately, WWWusers will soon become disillusioned should they continually follow links to documentsthat no longer exist. A hypertext system is said to have the property of link integrity [10]if links always point to documents, i.e. the system does not have any dangling links.The hypertext community has de�ned other models of hypertexts, such as Hyper-G[20] or Xanadu [29], which maintain link integrity. Even though these approaches may bevery attractive, they would require us to replace the WWW, which seems quite di�cultdue to its widespread use.In this paper, we present an agent-based technique to maintain link integrity in theWorld-Wide Web. The proposed architecture is distributed and uses the collaboration ofuser agents, author agents, and administrator agents to o�er a spectrum of services thatare so far unavailable in the WWW. The functionality of our agents may be summarisedas follows. (i) Our agency provides users with link integrity, i.e. the guarantee tobe able to follow links (in particular when bookmarked). (ii) It allows authors topublish and update documents, or even to reorganise the structure of documents, while



still preserving link integrity. Furthermore, our notion of agency is able to inform authorsabout the current usage of documents, such as accessibility or non-accessibility, which inturn may be used to decide to advertise new document versions. (iii) Administrators arealso given the opportunity of reorganising WWW servers without breaking link integrity;they have access to usage information, which may help them to reorganise their servers.A notion of publication contract [28] is central to our architecture. An author andhis/her administrator agree to publish documents and to maintain their availability for agiven contractual duration1. Similarly, users that adopt the approach are entitled to theaforementioned services within the contractual conditions. Users, authors and adminis-trators are free to adopt or not adopt the architecture, which preserves compatibility withthe existing WWW.From a technical viewpoint, at a low level, the architecture uses garbage collectiontechniques [22, 26, 31, 32, 36] to maintain link integrity. Garbage collection is a techniqueused in some programming languages to automatically trace objects that are accessibleand to detect those that are garbage. The garbage collection approach is very useful asit is automatic, and therefore o�ers autonomy, and it provides information about currentdocument usage that can be used by a higher-level agent layer.In this paper, we describe the agent architecture for link integrity (Section 2). Then,in Section 3, we present three agents for users, authors and administrators, respectively.In Section 4, we review our current prototype implementation, which can be used in acorporate intranet. Finally, we discuss the architecture and compare it with related workin Section 5.2 The ArchitectureThe World-Wide Web (WWW) architecture [1] is based on a client-server model, as dis-played in Figure 1. Entities communicate using the Hypertext Transfer Protocol (HTTP)[15]. Users have access to browsers, i.e. clients, which send http requests to http serversvia a communication medium that we generically call the Internet. This communica-tion medium contains proxies, caches, routers, gateways, etc. A request reaches an httpserver, which typically retrieves a document and sends it back to the browser on the sameconnection. Documents are referred to by Uniform Resource Locators (URLs) [2]In addition, a hypertext markup language (HTML) is understood by browsers [2].HTML documents may contain links to other documents; a link consists of a URL to adocument. Browsers display links as buttons that users may follow by simple clicks. Theprocess of following links is also called navigation. Users may also bookmark documents,i.e. save their URLs for a later use.In the initial speci�cation of the WWW, servers are de�ned as stateless2. As a result,they do not maintain any information about the documents that are currently accessedby users, and they do not keep track of documents that are bookmarked by users. In sucha context, it is impossible to maintain any form of link integrity, or even o�er any formof link-related service.1Nelson, in the Xanalogical Structure [28] introduces the notion of commitment so that people canrely on continued availability.2The HTTP protocol is evolving and can include a state [21], but that mechanism alone does notmaintain link integrity.



BrowserWWW INTERNET serverhttp
Figure 1: The WWW ArchitectureThis phenomenon is further ampli�ed by the nature of publishing itself. Every useris allowed to publish documents simply by storing them in a special directory. The verypresence of a document in this directory makes it accessible via a URL specifying itsaccess path; symmetrically, removing the document makes the URL a dangling link.Our new architecture, displayed in Figure 2, extends the current WWW architecture.There are two new essential components called the client agent and the server agent .They play an active role in the WWW architecture: the client agent is con�gured as aWWW proxy of the user's browser so that it can observe, intercept, transform, or redirectany user's request. The server agent acts as a new http server so that it can also observe,intercept, or transform requests, and then can pass them to a regular http server. Boththe server agent and the http server have access to a database of documents. Furthermore,the client agent and server agent provide agent functionality, which we describe in Section3, for users, authors, and server administrators. The user interface of those agents takesthe form of WWW browsers.

INTERNETAgent
AdministratorAgent InterfaceWWWBrowser

Client httpserver
Agent InterfaceUser ServerWWWBrowser AgentAuthorAgent Interface

Figure 2: The Architecture



As in the traditional WWW architecture, http requests and retrieved documents aretransported by the Internet. In addition, control messages are exchanged between clientagents and server agents. They can be issued by client agents when users bookmark,delete or mail documents, or by server agents when a document is published, updated, ormoved. Client agents have to be persistent across sessions, and therefore they also accessa local store. In the following section, we cover the agent functionality.3 Agents for Users, Authors and AdministratorsThe architecture described in Section 2 is the foundation of three agents respectivelyaimed at users navigating the WWW, authors publishing documents, and administratorsmanaging servers. The functionality of these agents is described in the following sections.Let us note that the services that are made available to users, authors, or administratorsare the result of a collaboration between client agents and server agents over the network,as we shall describe in Section 4. At the centre of our agent architecture is a notion ofcontract that we �rst de�ne.3.1 The Publication ContractIn principle, in a system that maintains link integrity, once a document is bookmarked bya user it should remain accessible as long as the bookmark is alive. Not only would sucha publishing mechanism be impractical but also it would not be 
exible enough. It wouldbe impractical because it would require keeping an amazingly vast amount of documentsconsuming a lot of resources. It would not be 
exible because policies change, institutionsdisappear, and individuals move. Furthermore, some documents have an intrinsic limitedlifetime, e.g. adverts, weather forecast; authors may not be interested in publishing somedocuments longer than a given period of time.Therefore, a publishing system should be based on a notion of contract , which speci�esthe conditions under which a document is made available. We have identi�ed the followingnon-exhaustive list of contract types [28, 29].1. Publish without contract.2. Publish forever.3. Publish for an unknown period, but noti�es removal or update.4. Publish for a speci�c period of time.5. Publish until some conditions on usage is satis�ed.The current WWW does not use any form of contract, and consequently o�ers a min-imal service. At the other end of the spectrum, a \forever contract" would guaranteethat a document remains available forever; such a kind of contract would be useful forbook archives, museum sites, etc. In between these two types of contract, we can imaginemany variations. The third option provides more 
exibility as it allows long publicationduration, but also permits authors to update or reorganise documents; users are guar-anteed to receive an update or removal noti�cation. The fourth type of contract is usedby authors who wish to make a document available for a �xed period of time. Finally,



our architecture provides some very dynamic information about document usage. Thisinformation can be used to determine the end of the publication period; for instance, it ispossible to determine when a document is no longer accessed or even no longer reachableby a given set of users.3.2 User AgentThe user interacts with his/her agent via the WWW browser. The user agent has threegoals:1. Maintaining documents accessibility, i.e. link integrity;2. Managing bookmarks;3. Advertising new document versions.The initial motivation of this paper, that is, maintaining link integrity , explicitlyappears as the �rst goal of the user agent. Once a user has downloaded a document d, theuser agent makes sure that every document directly or indirectly accessible by followinglinks from d will be available if the user decides to do so.Current WWW browsers have no real management of bookmarks: they allow usersto store or delete bookmarks, and simply maintain a �le of URLs that persist acrosssessions. However, there is no point in maintaining bookmarks if they become dangling(for instance because referenced documents were removed). Therefore, real bookmarkmanagement also implies link maintenance.Documents are usually not static entities; they also have a life that takes the form ofa series of revisions. When a user has bookmarked a document, it is the agent's role tokeep track of new versions of the document. Information about document revisions canbe communicated to the user by di�erent ways. (i) On user's demand, the agent mustbe able to show the di�erent revisions that were published since the user bookmarkedthe document. (ii) In some cases, the user might like to be explicitly informed of theavailability of a new document version: the agent has then to contact the user (via emailor popping up a window on the screen). (iii) In other cases, users are only interestedin the latest version of a document. When a user asks for such a document, the agentautomatically retrieves the latest version on behalf of the user.As explained in Section 3.1, some documents can be published for a �xed period oftime. It is then the agent's role to ensure that the user is kept informed of the documentexpiry date. The agent may even pro-actively download a document that is about to beexpired, for instance, in the user's absence.Users frequently exchange documents or URLs by electronic mail. Their agents canagain play an active role by ensuring that a URL sent to a recipient is maintained con-sistent, at least for a given period of time.3.3 Author AgentPublishing documents in the current WWW is very easy as authors simply have to storethem in a dedicated directory. We must ensure that our new architecture does not addextra burden on authors. Our solution is to keep this approach but the author has to



inform his/her agent that a new revision is available and must be exported to the WWW3.However, publishing documents involves more than making them available in a directory.The goals of the author's agent are summarised as follows:1. Publishing documents and maintaining the existence of previously published docu-ments according to the adopted contract.2. Informing authors of the current usage of published documents.Authors have to choose a publication contract and then delegate the task of publishingdocuments to their agent. In general, publishing a new version of a document does notmean that previous versions should be destroyed, unless pre-speci�ed by a contract. Soauthor agents have to keep previous document versions.The author agent informs the author of the current usage of documents. For instance,it is able to inform authors about users4 that are currently accessing a document or thathave bookmarked documents.In some cases, authors want to be told when a document is no longer accessed orbookmarked. More generally, authors can do some processing when such a situationarises: for instance, to re-advertise the existence of a document, to delete the document,or to make it available from another access point. As soon as the author agent detectssuch an event it can initiate a computation, as speci�ed by the author.3.4 Administrator AgentThe administrator agent provides web masters with two new services:� Informing administrators about server usage.� Facilitating reorganisation while maintaining link integrity.The administrator agent is a generalisation of the log �le created by current httpservers. Not only does it maintain the access history of the server, but it also providesmore dynamic information, such as users that are currently accessing a document, or usersthat have bookmarked documents retrieved from this server.The agent provides the administrator with the possibility of reorganising WWW sites,and the architectures ensures that link integrity is preserved. In order to maintain con-sistency our distributed garbage collection algorithm uses forwarding pointers, which in-dicate the position of new documents. However, in the long term, URLs bookmarked byusers should be updated. Changes may be actively propagated to users, or they can belazily propagated as users (or their agent) access documents.3The reader might think that it should be the agent's role to decide to export the new revision. Inprinciple, this could be done by regularly polling the �le system or by periodically exporting new revisions.However, in practice, we felt that that the author was the only one to know when a document was readyto be published, and it was then natural to inform the agent. Similarly, it is only the author who canapprove the use of the new version.4The reader might wonder about user's privacy in our architecture. The user's identity is not revealed,but their agent and its location may be communicated. We consider that this issue is part of the contractbetween publishers and users: a service can only be provided if the user agrees to reveal his/her agentidentity. In an agent architecture, we could also consider a third-party agent acting on behalf of a useragent and preserving its anonymity.



The information about the usage of sites can help administrators to change the geo-graphic organisation of their sites. This is particularly useful for companies which havemirror sites on di�erent continents: mirrors can now be designed on document usage.3.5 Agent CollaborationThe collaboration of agents can even o�er more services. The current architecture is ableto determine which users have currently bookmarked a document. Such information canbe used by agents to help users to meet other users that access the same documents.This facility is similar to the Mbone architecture, which advertises the users which arecurrently using the multicast channel [4]. This facility also bears some resemblance withthe project Memoir [30], which helps to foster user's collaboration, by analysing theiraccess trails.4 ImplementationIn this Section, we describe the prototype that we have implemented using Java [16] andNeXeme [27], a distributed implementation of Scheme. It is based on a distributed garbagecollection algorithm described in another report [26]. In the current implementation weconsider one http server only, but the algorithm is designed to support multiple servers.We now concentrate on the issue of maintaining link integrity of bookmarked and currentlyaccessed documents.Figure 3 summarises the information 
ow between a browser and a http server. Theclient agent is set as a http proxy for the WWW browser; all requests issued by the WWWbrowser are intercepted and analysed by the client agent (Arrow 1). In the simplest case,the request is sent to the server speci�ed by the URL (Arrow 2). The server agent actsas a http server, and receives requests. It passes requests to a regular http server (Arrow3), after transforming their URLs. The http server interprets the transformed URL as acall to a CGI script (Arrow 4), which retrieves a document from the document repository,in our case managed by the revision control system CVS [5]. The document is returnedto the server agent (Arrow 6), which sends it back on the connection to the client agent(Arrow 7), which in turn passes it to the WWW browser (Arrow 8).When a server agent delivers a document to a client agent, it also provides the clientagent with information about the document; the message notify-hold gives the client abrief description of the received document, including a unique document identi�er and aversion number amongst others (Arrow 9)5.Both the client and server agents maintain a table of visited documents. Documentssent by the server are entered in the server agent table; similarly, documents passed tothe user are entered in the client agent table. A document remains in the server table, aslong as there is a client agent that contains it in its table.When a document d is downloaded by a WWW browser, d becomes the current focus,and users are allowed to follow links and download other documents. However, the docu-ment d stays in memory for a while, and it remains accessible via the history mechanism,5In terms of implementation, this document description could be encoded in the document itself asmeta information; however, it is more convenient to pass it as a separate request, for the prototypedevelopment.



httpserver
CVS

1: GET URL 3: GET URL2
E-mail 10: notify-release, notify-bookmark

2: GET URL17: DOC9: notify-hold, notify-version 12. PublishLifecycle 4:5:6: DOC8: DOCApplet 11: Document
ServerAgentVisited DocsBookmarkedAgentWWWBrowser CGI

Client
and Visited DocsBookmarkedand

Figure 3: Implementationuntil the browser decides to reclaim its space. The user agent keeps the document d (infact its document identi�er) in its table of visited documents for the same length of time,at least. Once the document is released by the WWW browser, it can be removed fromthe client agent table. Then, using the message notify-release (Arrow 10), the clientagent informs the server agent who served the document d, that d was released by theWWW browser. It is the client agent's role to detect when browsers release documents.A correct implementation, though not very e�cient, is to wait until the browser termi-nates its session; then, all visited documents are released at once. Another solution is toassociate a Java applet [16] with each document sent to the browser; the applet lifecycleis related to the lifecycle of documents, and the applet can inform the client agent whendocuments are released (Arrow 11), using the destroy and finalize methods.As far as bookmarks are concerned, we use a similar mechanism as for visited docu-ments: a bookmarked document is stored in a table by the client agent, which informsthe server agent using a message bookmark-notify (Arrow 10). Having no access to theinternals of browsers, we have de�ned our own bookmark mechanism: the applet attachedto a document also provides a button, which sends a message to the client agent whenactioned.The server agent maintains tables6 of documents being visited or bookmarked. Inaddition, it maintains a reference to each user agent that is visiting or has bookmarkedone of these documents. When the server agent is informed that a new version of adocument is published (Arrow 12), it propagates this information to the agents that hadbookmarked the document, using the message notify-version (Arrow 9). In addition tobookmark tables, client agents maintain information about new versions of bookmarkeddocuments. In Figure 4, we can see the information shown by the agent when the userdisplays his/her bookmarks. Here, two documents are bookmarked. For the �rst one, theuser agent shows that two other new versions are currently available. For each document,the user can register his/her interest in the latest version of a document (as it is for the�rst bookmark). When the user retrieves a URL (Arrow 1), the agent can automaticallytransform it into URL1, which is the latest version (Arrow 2). When the user agentreceives information about new document versions, it also has the ability to advertise6Caches that maintain similar tables can reduce the server load.



Figure 4: Bookmarks



them to the user.The author and administrator agent functionality relies on tables of bookmarked andvisited documents. At every moment, they indicate what the accessed and bookmarkeddocuments are. It is then very easy to de�ne a function that has to be activated when adocument is no longer referenced or bookmarked.When a user emails a document to another user, his/her user agent should make surethat the sent document is considered as \accessed" by the server agent. Figure 5 displaysthe exchange of messages when an email is sent. First, each client agent maintains a tableof sent documents; when a document is sent by an agent, it is also stored in the tableof sent document. When the receiver's agent receives the document, it then registers tothe server, which adds the document and the agent to its table of visited documents. Inturn, the server informs the emitter's agent that the document was successfully sent; thelatter can then remove it from its table of sent documents. This mechanism is describedin detail in [26]. ClientAgent 2
Server 2. Register3. NotifyRegistered1. Email DocumentClientAgent 1

Figure 5: Emailing DocumentsAn author can publish documents by activating the author agent that will take care ofmaking their public WWW directory available. The current content of the public WWWdirectory is tagged by a unique version id and stored in the current document repository.Let us consider two documents d1 and d2 that were published under version v; let l be alink between d1 and d2. As the link l implicitly refers to version v of these documents,it must be instantiated to the version v. We have the choice to instantiate links whendocuments are stored or when they are retrieved from the repository. We chose the latteroptions as it allows us to share documents across versions.5 Related WorkWooldridge and Jennings [37] distinguish weak agents from strong agents. The agentarchitecture described in this paper is of the former category. Weak agents enjoy thefollowing properties: autonomy , social ability , reactivity , and pro-activeness. Our agentsare autonomous as they can operate without the direct intervention of humans; theyobserve user's behaviour, and collect or exchange related information. They have a socialability as they interact with users (via browsers), but also with other agents: �rst, theservices provided by the architecture result from agent collaboration; second, we plan tomake those services available to other agents. Agents enjoy the property of reactivity



because they constantly react to their environment (http requests, document publication,or server reorganisation). Finally, they exhibit a form of pro-activity as user agents maytake the initiative to act on user's behalf (for instance to retrieve documents that becomeexpired).The agent architecture presented in this paper is part of a more general researchactivity on Distributed Information Management. In the Multimedia Research Group,at the University of Southampton, we are using similar notions of weak agency in var-ious projects. In the project Memoir [30], agents are used to perform data-mining andresource-discovery tasks. These agents collect trails recording the documents that arebeing viewed, the time spent to view documents, and whether documents are printed orbookmarked. Using these trails agent use matching algorithms to �nd other users access-ing the documents or other relevant documents. DeRoure et al. [14] describe how agentscan be used to help navigation, resource discovery, or integration with legacy systems.Dale [7] present a mobile agent architecture to solve a similar problem.We can also regard our architecture as belonging to the class of \personal agents" suchas Maes' interface agents [25], Davies' Jasper [8], Voorhees' InfoScout [35], Lieberman'sLetizia [24], and so on. The services that we o�er are however di�erent because they arebased on the information used to maintain link integrity. The so-called \push technology"[34] pushes requested information to users desktop computer. In our architecture, we donot propagate new document versions, but we inform user agents that new versions areavailable. This service also comes from the availability of tables of sent documents, whichthemselves originate from a publishing contract.The technique that we have described to maintain links is based on distributed garbagecollection algorithms. Tables of visited or bookmarked documents is a variant of dis-tributed reference counting called directory listing [3, 31]. The rerooting technique usedwhen mailing documents or when moving documents is based on a recently developedalgorithm [26]. Reference counting garbage collection is not able to collect distributedcycles. Such cycles occur frequently in the World-Wide Web, as it is quite common tohave a set of documents mutually referring to each other. However, in our case, docu-ments only reside on WWW servers or temporarily in WWW browsers. We can easilyuse timestamping [23] or marking [22] to detect unused distributed cycles. In the lattercase, groups of servers can decide to cooperate to detect unused cycles between them; thisapproach is promising as it involves a negotiation phase, which perfectly �ts into the agentframework. Let us mention that the ability to start some processing when a documentis unused or unreferenced is called �nalization [18] in the garbage collection community.Search engines are interesting components to be modelled in our approach; they maintaintables of documents collected by robots, launched periodically from a set of roots. If notdesigned properly, such engines would keep references to documents, which would appearto be used all the time; such a phenomenon also appears in programming languages, andthe solution is to use a notion of weak pointer [36].The initial Dexter hypertext model [17] enforces link integrity, but does not de�neany way of implementing it. Davis [10, 12] surveys the issue of link integrity in hypertextsystems. The techniques discussed by Davis are not automatic and usually rely on post-mortem repairs. Our approach relies on garbage collection technique to ensure that linksare never dangling. He also studies the editing problem where the update of a documentmight make a link inconsistent because the document no longer contains the informationthat it contained when the link was created. Such a phenomenon could occur in our



architecture when the user agent decides to retrieve the latest version of a document.Techniques that analyse the contents of documents should be used to inform authorsthat some links may be semantically incorrect, even though they are not dangling; ourarchitecture provides the mechanism to inform authors.An interesting extension of our approach is to deal with separate link bases as inMicrocosm [11] or the distributed link service [13]. Both systems introduce \generic links"which computes the source anchor of a link at navigation time. Our agent architecturecomputes the destination anchor of a document at retrieval time: both the user agentand the server agent use the navigation context to determine the version of documentspointed by links.Ingham, Caughey and Little [19] present a solution to solve the \broken link" problem.They mention distributed garbage collection technique but no implementation detail isprovided. They use an algorithm [32] to short-cut forwarding pointers, but they do notdescribe the garbage collection algorithm. They call bind and unbind methods to updatereference counters, but without precaution, this implementation su�ers from causalityproblems. Our approach is based on a simple algorithm [26] and is able to deal withemail and document moves. The WWW community also provides mechanism to publishURLs permanently, e.g. Uniform Resource Names [33], similar to ISBN for books. Theseapproaches are complementary to our architecture as they guarantee that the root of adocument will always be available via a URL, but they do not provide any solution formaintaining inner-link integrity.Creech [6] discusses author-oriented link management. In particular, he provides amechanism by which links are automatically updated, whenever possible; if automaticupdate is not possible, he delivers the appropriate information to make reasonable deci-sion on how to update these links. We believe that his robot-based mechanism to collectinformation is not as sound as our garbage collection technique: new updates may inval-idate the information even before robots return it. However, his techniques that analysethe contents of documents and provides authors with information on how to update linkscan be integrated in our approach.Hyper-G [20] maintains link consistency by propagating document changes using aprobabilistic broadcast algorithm. Our approach does not rely on broadcast to propagatechanges. Document updates are propagated in two di�erent cases: (i) If an authorpublishes a new version of a document, it is advertised to users who have bookmarkedit. (ii) When a document is moved. In the former case, advertising may be delayedas much as we want, as it is not a mandatory computation; in particular, advertising canbe lazily propagated as users read documents. Changes resulting from document movesmay also be propagated lazily as described in [26].6 ConclusionWe have presented an agent architecture to maintain links in the World-Wide Web. At alow level, it uses garbage collection techniques to trace links and to maintain their integrity.At a higher-level, it provides three agents aimed at users, authors and administrators,respectively.We envisage to pursue our work in two directions. The current architecture is suitablefor a corporate intranet. However, if we wish to support a world wide network such asthe Internet, techniques to reduce server load have to be investigated. In particular, we



need to introduce levels of caches, with tables of accessed or bookmarked documents,which can reduce the tra�c and the size of tables to maintain. Even though the agentfunctionality that we provide is new and unavailable in the current WWW, we believethat more content-based processing would be useful to users and authors: both need tobe informed of content changes in documents.7 AcknowledgementsThis research was supported in part by the Engineering and Physical Sciences ResearchCouncil, grant GR/K73060 and by the European Union's ESPRIT programme, MEMOIRproject, grant 22153. The authors wish to thank John Dale, Hugh Davis, David DeRoure,and Sigi Reich for their useful comments.References[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The World-Wide Web. Communications of the ACM, 37(8):76{82, 1994.[2] Tim Berners-Lee and D. Connolly. Hypertext Markup Language Speci�cation 2.0.Technical Report RFC 1866, MIT/LCS, November 1995.[3] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber.Distributed Garbage Collection for Network Objects. Technical Report 116, DigitalSystems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1993.[4] Syngen Brown and Mick Kahn. Janet mbone service. Technical report, The JNTassociation, 1996. Available from http://www.ja.net/documents/mbone.html.[5] Per Cederqvist. Version Management with CVS. Signum Support, November 1993.[6] Michael L. Creech. Author-oriented link management. In Fifth International WorldWide Web Conference, pages 6{10, Paris, France, May 1996.[7] Jonathan Dale. A Mobile Agent Architecture for Distributed Information Manage-ment. PhD thesis, University of Southampton, January 1998.[8] John Davies, Richard Weeks, and Mike Revett. JASPER: CommunicatingInformation Agents for WWW. In Proceedings of the Fourth InternationalWorld-Wide Web, pages 473{482, Boston, USA, 1995. Also available athttp://www.w3.org/pub/Conferences/WWW4/Papers/180/.[9] N. J. Davies and R. Weeks. Jasper: Communicating inforamtion agents. In Pro-ceedings of the Fourth Word Wide Web Conference, pages 473{482, Boston, USA,December 1995.[10] Hugh Davis. Data Integrity Problems in an Open Hypermedia Link Service. PhDthesis, University of Southampton, 1995.



[11] Hugh Davis, Wendy Hall, Ian Heath, Gary Hill, and Rob Wilkins. Towards anIntegrated Environment with Open Hypermedia System. In Proceeding of the SecondEuropean Conference of Hypertext (ECHT'92), pages 181{190, 1992.[12] Hugh C. Davis. Referential integrity in open hypermedia link service systems. Tech-nical report, University of Southampton, 1997.[13] David DeRoure, Les Carr, Wendy Hall, and Gary Hill. A Distributed Hyperme-dia Link Service. In Third International Workshop on Services in Distributed andNetworked Environments (SDNE'96), pages 156{161, Macao, June 1996.[14] David DeRoure, Wendy Hall, Hugh Davis, and Jonathan Dale. Agents for distribytedmultimedia information management. In Pratical Application of Intelligent Agentsand Multi-Agent Systems, pages 91{102, London, UK, April 1996.[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transferprotocol { http/1.1. Rfc2068, World Wide Web Consortium, January 1997. Availablefrom http://www.w3.org/Protocols/Specs.html.[16] J. Gosling, Guy Lewis Steele, Jr, and B. Joy. The Java Language Speci�cation.Addison-Wesley, 1996.[17] Frank Halasz and Mayer Schwartz. The Dexter Hypertext. Communications of theACM, 37(2):31{39, February 1994.[18] Barry Hayes. Finalization in the Collector Interface. In Proc. 1992 InternationalWorkshop on Memory Management, pages 277{298, Saint-Malo (France), September1992. Springer-Verlag.[19] D.B. Ingham, S.J. Caughey, and M.C. Little. Fixing the Broken-Link Problem: TheW3Objects Approach. In Proceedings of the Fifth International World Wide WebConference, volume 28 of Computing Networks & ISDN System, pages 1255{1268,Paris, France, May 1996.[20] Frank Kappe. A Scalable Architecture for Maintaining Referential Integrity in Dis-tributed Information Systems. J. of Universal Computer Science, 1(2):84{104, 1995.[21] D. Kristol and L. Montulli. Http state management mechanism. TechnicalReport rfc2109, World Wide Web Consortium, February 1997. Available fromhttp://www.w3.org/Protocols/Specs.html.[22] Bernard Lang, Christian Queinnec, and Jos�e Piquer. Garbage Collecting the World.In Proceedings of the Nineteenth Annual ACM SIGACT-SIGPLAN Symposium onPrinciples of Programming Languages, pages 39{50, Albuquerque, New Mexico, 1992.[23] F. Le Fessant, Ian Piumarta, and Marc Shapiro. A Detection Algo-rithm for Distributed Cycles of Garbage. In OOPSLA'97 Garbage Collec-tion and Memory Management Workshop. http://www.dcs.gla.ac.uk/�huw/oopsla97/gc/papers.html, 1997.[24] Henry Lieberman. Letizia: An agent that assists web browsing. In Proceedings of theInternational Joint Conference on Arti�cial Intelligence, Montreal, Canada, 1995.



[25] Pattie Maes. Agents that Reduce Work and Information Overload. Communicationsof the ACM, 37(7):31{40, July 1994.[26] Luc Moreau. A Distributed Garbage Collector with Di�usion Tree Reorganisationand Object Mobility. Technical Report M97/2, University of Southampton, October1997.[27] Luc Moreau, David DeRoure, and Ian Foster. NeXeme: a Distributed Scheme Basedon Nexus. In Third International Europar Conference (EURO-PAR'97), volume 1300of Lecture Notes in Computer Science, pages 581{590, Passau, Germany, August1997. Springer-Verlag.[28] Theodor Nelson. Xanalogical structure: its paradigms and its renascence. Availablefrom the author, 1997.[29] Theodor Holm Nelson. Literary Machines. Project Xanadu, 1987.[30] Aggelos Pikrakis, Tilemahos Bitsikas, Stelios Sfakianakis, Mike Hatzopoulos, DaveDeRoure, Wendy Hall, Sigi Reich, Gary Hill, and Mark Stairmand. Memoir | soft-ware agents for �nding similar users by trails. In The Third International Conferenceand Exhibition on The Practical Application of Intelligent Agents and Multi-Agents(PAAM'98), London, UK, March 1998.[31] David Plainfoss�e and Marc Shapiro. A Survey of Distributed Garbage CollectionTechniques. In Henry G. Baker, editor, International Workshop on Memory Manage-ment (IWMM95), number 986 in Lecture Notes in Computer Science, pages 211{249,Kinross, Scotland, 1995.[32] Marc Shapiro, Peter Dickman, and David Plainfoss�e. SSP Chains: Robust, Dis-tributed References Supporting Acyclic Garbage Collection. Rapport de Recherche1799, INRIA-Rocquencourt, November 1992.[33] K. Sollins and L. Masinter. Functional requirements for uniform resource names.Technical Report rfc1737, World Wide Web Consortium, December 1994. Availablefrom http://www.ics.uci.edu/pub/ietf/uri/.[34] Wes Thomas, Angus Davis, and Paul Dreyfus. NETCASTER: Push Technology Ev-erywhere. Technical report, Nestcape, inc., 1997. Available from www.netscape.com.[35] Ellen M. Voorhees. Agent Collaboration as a Resource Discovery Technique. In CIKMWorkshop on Intelligent Information Agents, Gaithersburg, Maryland, December1994. Also available from http://www.cs.umbc.edu/ cikm/1994/iia/papers/.[36] Paul R. Wilson. Uniprocessor Gargage Collection Techniques. In Internatinal Work-shop on Memory Management, Lecture Notes in Computer Science, Saint-Malo,France, September 1992.[37] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowl-edge Engineering Review, 10(2), June 1995.


