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Abstract

In this paper we present an agent architecture to maintain link integrity in the
World-Wide Web. It consists of a community of agents collaborating to provide
services to users, authors and administrators. In summary, agents maintain link in-
tegrity when documents are updated, moved, or when WWW sites are reorganised.
They also provide authors and administrators with usage information such as doc-
uments that are currently bookmarked or documents that are no longer accessed.
The architecture is also able to advertise new versions of documents. At a low-level,
we use a distributed garbage collection algorithm to trace links and maintain their
integrity.

1 Introduction

The World-Wide Web is ubiquitous and is now an essential component of the electronic
desktop as it facilitates the access and publication of documents. Unfortunately, WWW
users will soon become disillusioned should they continually follow links to documents
that no longer exist. A hypertext system is said to have the property of link integrity [10]
if links always point to documents, i.e. the system does not have any dangling links.

The hypertext community has defined other models of hypertexts, such as Hyper-G
[20] or Xanadu [29], which maintain link integrity. Even though these approaches may be
very attractive, they would require us to replace the WWW, which seems quite difficult
due to its widespread use.

In this paper, we present an agent-based technique to maintain link integrity in the
World-Wide Web. The proposed architecture is distributed and uses the collaboration of
user agents, author agents, and administrator agents to offer a spectrum of services that
are so far unavailable in the WWW. The functionality of our agents may be summarised
as follows. (i) Our agency provides users with link integrity, i.e. the guarantee to
be able to follow links (in particular when bookmarked).  (ii) It allows authors to
publish and update documents, or even to reorganise the structure of documents, while



still preserving link integrity. Furthermore, our notion of agency is able to inform authors
about the current usage of documents, such as accessibility or non-accessibility, which in
turn may be used to decide to advertise new document versions. (77 ) Administrators are
also given the opportunity of reorganising WWW servers without breaking link integrity;
they have access to usage information, which may help them to reorganise their servers.

A notion of publication contract [28] is central to our architecture. An author and
his/her administrator agree to publish documents and to maintain their availability for a
given contractual duration®. Similarly, users that adopt the approach are entitled to the
aforementioned services within the contractual conditions. Users, authors and adminis-
trators are free to adopt or not adopt the architecture, which preserves compatibility with
the existing WWW.

From a technical viewpoint, at a low level, the architecture uses garbage collection
techniques [22, 26, 31, 32, 36] to maintain link integrity. Garbage collection is a technique
used in some programming languages to automatically trace objects that are accessible
and to detect those that are garbage. The garbage collection approach is very useful as
it is automatic, and therefore offers autonomy, and it provides information about current
document usage that can be used by a higher-level agent layer.

In this paper, we describe the agent architecture for link integrity (Section 2). Then,
in Section 3, we present three agents for users, authors and administrators, respectively.
In Section 4, we review our current prototype implementation, which can be used in a
corporate intranet. Finally, we discuss the architecture and compare it with related work
in Section 5.

2 The Architecture

The World-Wide Web (WWW) architecture [1] is based on a client-server model, as dis-
played in Figure 1. Entities communicate using the Hypertext Transfer Protocol (HTTP)
[15]. Users have access to browsers, i.e. clients, which send http requests to http servers
via a communication medium that we generically call the Internet. This communica-
tion medium contains proxies, caches, routers, gateways, etc. A request reaches an http
server, which typically retrieves a document and sends it back to the browser on the same
connection. Documents are referred to by Uniform Resource Locators (URLs) [2]

In addition, a hypertext markup language (HTML) is understood by browsers [2].
HTML documents may contain links to other documents; a link consists of a URL to a
document. Browsers display links as buttons that users may follow by simple clicks. The
process of following links is also called navigation. Users may also bookmark documents,
i.e. save their URLs for a later use.

In the initial specification of the WWW, servers are defined as stateless?. As a result,
they do not maintain any information about the documents that are currently accessed
by users, and they do not keep track of documents that are bookmarked by users. In such
a context, it is impossible to maintain any form of link integrity, or even offer any form
of link-related service.

!Nelson, in the Xanalogical Structure [28] introduces the notion of commitment so that people can
rely on continued availability.

2The HTTP protocol is evolving and can include a state [21], but that mechanism alone does not
maintain link integrity.
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This phenomenon is further amplified by the nature of publishing itself. Every user
is allowed to publish documents simply by storing them in a special directory. The very
presence of a document in this directory makes it accessible via a URL specifying its
access path; symmetrically, removing the document makes the URL a dangling link.

Our new architecture, displayed in Figure 2, extends the current WWW architecture.
There are two new essential components called the client agent and the server agent.
They play an active role in the WWW architecture: the client agent is configured as a
WWW proxy of the user’s browser so that it can observe, intercept, transform, or redirect
any user’s request. The server agent acts as a new http server so that it can also observe,
intercept, or transform requests, and then can pass them to a regular http server. Both
the server agent and the http server have access to a database of documents. Furthermore,
the client agent and server agent provide agent functionality, which we describe in Section
3, for users, authors, and server administrators. The user interface of those agents takes
the form of WWW browsers.
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As in the traditional WWW architecture, http requests and retrieved documents are
transported by the Internet. In addition, control messages are exchanged between client
agents and server agents. They can be issued by client agents when users bookmark,
delete or mail documents, or by server agents when a document is published, updated, or
moved. Client agents have to be persistent across sessions, and therefore they also access
a local store. In the following section, we cover the agent functionality.

3 Agents for Users, Authors and Administrators

The architecture described in Section 2 is the foundation of three agents respectively
aimed at users navigating the WWW | authors publishing documents, and administrators
managing servers. The functionality of these agents is described in the following sections.
Let us note that the services that are made available to users, authors, or administrators
are the result of a collaboration between client agents and server agents over the network,
as we shall describe in Section 4. At the centre of our agent architecture is a notion of
contract that we first define.

3.1 The Publication Contract

In principle, in a system that maintains link integrity, once a document is bookmarked by
a user it should remain accessible as long as the bookmark is alive. Not only would such
a publishing mechanism be impractical but also it would not be flexible enough. It would
be impractical because it would require keeping an amazingly vast amount of documents
consuming a lot of resources. It would not be flexible because policies change, institutions
disappear, and individuals move. Furthermore, some documents have an intrinsic limited
lifetime, e.g. adverts, weather forecast; authors may not be interested in publishing some
documents longer than a given period of time.

Therefore, a publishing system should be based on a notion of contract, which specifies
the conditions under which a document is made available. We have identified the following
non-exhaustive list of contract types [28, 29].

1. Publish without contract.

2. Publish forever.

3. Publish for an unknown period, but notifies removal or update.
4. Publish for a specific period of time.

5. Publish until some conditions on usage is satisfied.

The current WWW does not use any form of contract, and consequently offers a min-
imal service. At the other end of the spectrum, a “forever contract” would guarantee
that a document remains available forever; such a kind of contract would be useful for
book archives, museum sites, etc. In between these two types of contract, we can imagine
many variations. The third option provides more flexibility as it allows long publication
duration, but also permits authors to update or reorganise documents; users are guar-
anteed to receive an update or removal notification. The fourth type of contract is used
by authors who wish to make a document available for a fixed period of time. Finally,



our architecture provides some very dynamic information about document usage. This
information can be used to determine the end of the publication period; for instance, it is
possible to determine when a document is no longer accessed or even no longer reachable
by a given set of users.

3.2 User Agent

The user interacts with his/her agent via the WWW browser. The user agent has three
goals:

1. Maintaining documents accessibility, i.e. link integrity;
2. Managing bookmarks;
3. Advertising new document versions.

The initial motivation of this paper, that is, maintaining link integrity, explicitly
appears as the first goal of the user agent. Once a user has downloaded a document d, the
user agent makes sure that every document directly or indirectly accessible by following
links from d will be available if the user decides to do so.

Current WWW browsers have no real management of bookmarks: they allow users
to store or delete bookmarks, and simply maintain a file of URLs that persist across
sessions. However, there is no point in maintaining bookmarks if they become dangling
(for instance because referenced documents were removed). Therefore, real bookmark
management also implies link maintenance.

Documents are usually not static entities; they also have a life that takes the form of
a series of revisions. When a user has bookmarked a document, it is the agent’s role to
keep track of new versions of the document. Information about document revisions can
be communicated to the user by different ways. (i) On user’s demand, the agent must
be able to show the different revisions that were published since the user bookmarked
the document. (77) In some cases, the user might like to be explicitly informed of the
availability of a new document version: the agent has then to contact the user (via email
or popping up a window on the screen).  (iii) In other cases, users are only interested
in the latest version of a document. When a user asks for such a document, the agent
automatically retrieves the latest version on behalf of the user.

As explained in Section 3.1, some documents can be published for a fixed period of
time. It is then the agent’s role to ensure that the user is kept informed of the document
expiry date. The agent may even pro-actively download a document that is about to be
expired, for instance, in the user’s absence.

Users frequently exchange documents or URLs by electronic mail. Their agents can
again play an active role by ensuring that a URL sent to a recipient is maintained con-
sistent, at least for a given period of time.

3.3 Author Agent

Publishing documents in the current WWW is very easy as authors simply have to store
them in a dedicated directory. We must ensure that our new architecture does not add
extra burden on authors. Our solution is to keep this approach but the author has to



inform his/her agent that a new revision is available and must be exported to the WWW3.
However, publishing documents involves more than making them available in a directory.
The goals of the author’s agent are summarised as follows:

1. Publishing documents and maintaining the existence of previously published docu-
ments according to the adopted contract.

2. Informing authors of the current usage of published documents.

Authors have to choose a publication contract and then delegate the task of publishing
documents to their agent. In general, publishing a new version of a document does not
mean that previous versions should be destroyed, unless pre-specified by a contract. So
author agents have to keep previous document versions.

The author agent informs the author of the current usage of documents. For instance,
it is able to inform authors about users* that are currently accessing a document or that
have bookmarked documents.

In some cases, authors want to be told when a document is no longer accessed or
bookmarked. More generally, authors can do some processing when such a situation
arises: for instance, to re-advertise the existence of a document, to delete the document,
or to make it available from another access point. As soon as the author agent detects
such an event it can initiate a computation, as specified by the author.

3.4 Administrator Agent

The administrator agent provides web masters with two new services:
e Informing administrators about server usage.
e Facilitating reorganisation while maintaining link integrity.

The administrator agent is a generalisation of the log file created by current http
servers. Not only does it maintain the access history of the server, but it also provides
more dynamic information, such as users that are currently accessing a document, or users
that have bookmarked documents retrieved from this server.

The agent provides the administrator with the possibility of reorganising WWW sites,
and the architectures ensures that link integrity is preserved. In order to maintain con-
sistency our distributed garbage collection algorithm uses forwarding pointers, which in-
dicate the position of new documents. However, in the long term, URLs bookmarked by
users should be updated. Changes may be actively propagated to users, or they can be
lazily propagated as users (or their agent) access documents.

3The reader might think that it should be the agent’s role to decide to export the new revision. In
principle, this could be done by regularly polling the file system or by periodically exporting new revisions.
However, in practice, we felt that that the author was the only one to know when a document was ready
to be published, and it was then natural to inform the agent. Similarly, it is only the author who can
approve the use of the new version.

4The reader might wonder about user’s privacy in our architecture. The user’s identity is not revealed,
but their agent and its location may be communicated. We consider that this issue is part of the contract
between publishers and users: a service can only be provided if the user agrees to reveal his/her agent
identity. In an agent architecture, we could also consider a third-party agent acting on behalf of a user
agent and preserving its anonymity.



The information about the usage of sites can help administrators to change the geo-
graphic organisation of their sites. This is particularly useful for companies which have
mirror sites on different continents: mirrors can now be designed on document usage.

3.5 Agent Collaboration

The collaboration of agents can even offer more services. The current architecture is able
to determine which users have currently bookmarked a document. Such information can
be used by agents to help users to meet other users that access the same documents.
This facility is similar to the Mbone architecture, which advertises the users which are
currently using the multicast channel [4]. This facility also bears some resemblance with
the project Memoir [30], which helps to foster user’s collaboration, by analysing their
access trails.

4 Implementation

In this Section, we describe the prototype that we have implemented using Java [16] and
NeXeme [27], a distributed implementation of Scheme. It is based on a distributed garbage
collection algorithm described in another report [26]. In the current implementation we
consider one http server only, but the algorithm is designed to support multiple servers.
We now concentrate on the issue of maintaining link integrity of bookmarked and currently
accessed documents.

Figure 3 summarises the information flow between a browser and a http server. The
client agent is set as a http proxy for the WWW browser; all requests issued by the WWW
browser are intercepted and analysed by the client agent (Arrow 1). In the simplest case,
the request is sent to the server specified by the URL (Arrow 2). The server agent acts
as a http server, and receives requests. It passes requests to a regular http server (Arrow
3), after transforming their URLs. The http server interprets the transformed URL as a
call to a CGI script (Arrow 4), which retrieves a document from the document repository,
in our case managed by the revision control system CVS [5]. The document is returned
to the server agent (Arrow 6), which sends it back on the connection to the client agent
(Arrow 7), which in turn passes it to the WWW browser (Arrow 8).

When a server agent delivers a document to a client agent, it also provides the client
agent with information about the document; the message notify-hold gives the client a
brief description of the received document, including a unique document identifier and a
version number amongst others (Arrow 9)°.

Both the client and server agents maintain a table of visited documents. Documents
sent by the server are entered in the server agent table; similarly, documents passed to
the user are entered in the client agent table. A document remains in the server table, as
long as there is a client agent that contains it in its table.

When a document d is downloaded by a WWW browser, d becomes the current focus,
and users are allowed to follow links and download other documents. However, the docu-
ment d stays in memory for a while, and it remains accessible via the history mechanism,

5In terms of implementation, this document description could be encoded in the document itself as
meta information; however, it is more convenient to pass it as a separate request, for the prototype
development.
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Figure 3: Implementation

until the browser decides to reclaim its space. The user agent keeps the document d (in
fact its document identifier) in its table of visited documents for the same length of time,
at least. Once the document is released by the WWW browser, it can be removed from
the client agent table. Then, using the message notify-release (Arrow 10), the client
agent informs the server agent who served the document d, that d was released by the
WWW browser. It is the client agent’s role to detect when browsers release documents.
A correct implementation, though not very efficient, is to wait until the browser termi-
nates its session; then, all visited documents are released at once. Another solution is to
associate a Java applet [16] with each document sent to the browser; the applet lifecycle
is related to the lifecycle of documents, and the applet can inform the client agent when
documents are released (Arrow 11), using the destroy and finalize methods.

As far as bookmarks are concerned, we use a similar mechanism as for visited docu-
ments: a bookmarked document is stored in a table by the client agent, which informs
the server agent using a message bookmark-notify (Arrow 10). Having no access to the
internals of browsers, we have defined our own bookmark mechanism: the applet attached
to a document also provides a button, which sends a message to the client agent when
actioned.

The server agent maintains tables® of documents being visited or bookmarked. In
addition, it maintains a reference to each user agent that is visiting or has bookmarked
one of these documents. When the server agent is informed that a new version of a
document is published (Arrow 12), it propagates this information to the agents that had
bookmarked the document, using the message notify-version (Arrow 9). In addition to
bookmark tables, client agents maintain information about new versions of bookmarked
documents. In Figure 4, we can see the information shown by the agent when the user
displays his/her bookmarks. Here, two documents are bookmarked. For the first one, the
user agent shows that two other new versions are currently available. For each document,
the user can register his/her interest in the latest version of a document (as it is for the
first bookmark). When the user retrieves a URL (Arrow 1), the agent can automatically
transform it into URL;, which is the latest version (Arrow 2). When the user agent
receives information about new document versions, it also has the ability to advertise

6Caches that maintain similar tables can reduce the server load.



E Metscape - [Chent Agent]

File Edt “iew Go Bookmarksz Optionz Directory “Window  Help

ﬁ Location: htt i/ fagent systemnsbookmark.s j

Client Agent
Title Latest? URL Other
Yersions
Luz
Lioreaw's |latest = | hitpdfbedrock 7779 lavmow html e
= Dec-03-97
Home Page
Publication _ _
current | hitpifbedrock 779 ~lavmipapers himl
Page —
oawve Changes
Iiore Debuzming Information
Luc Morean atd HNicholas Gray
=8| | Document: Done 7

Figure 4: Bookmarks




them to the user.

The author and administrator agent functionality relies on tables of bookmarked and
visited documents. At every moment, they indicate what the accessed and bookmarked
documents are. It is then very easy to define a function that has to be activated when a
document is no longer referenced or bookmarked.

When a user emails a document to another user, his/her user agent should make sure
that the sent document is considered as “accessed” by the server agent. Figure 5 displays
the exchange of messages when an email is sent. First, each client agent maintains a table
of sent documents; when a document is sent by an agent, it is also stored in the table
of sent document. When the receiver’s agent receives the document, it then registers to
the server, which adds the document and the agent to its table of visited documents. In
turn, the server informs the emitter’s agent that the document was successfully sent; the
latter can then remove it from its table of sent documents. This mechanism is described
in detail in [26].

Client 1. Email Document Client
Agent 1 > Agent 2

2. Register
Registered

Server

Figure 5: Emailing Documents

An author can publish documents by activating the author agent that will take care of
making their public WWW directory available. The current content of the public WWW
directory is tagged by a unique version id and stored in the current document repository.
Let us consider two documents d; and d, that were published under version v; let [ be a
link between d; and ds. As the link [ implicitly refers to version v of these documents,
it must be instantiated to the version v. We have the choice to instantiate links when
documents are stored or when they are retrieved from the repository. We chose the latter
options as it allows us to share documents across versions.

5 Related Work

Wooldridge and Jennings [37] distinguish weak agents from strong agents. The agent
architecture described in this paper is of the former category. Weak agents enjoy the
following properties: autonomy, social ability, reactivity, and pro-activeness. Our agents
are autonomous as they can operate without the direct intervention of humans; they
observe user’s behaviour, and collect or exchange related information. They have a social
ability as they interact with users (via browsers), but also with other agents: first, the
services provided by the architecture result from agent collaboration; second, we plan to
make those services available to other agents. Agents enjoy the property of reactivity



because they constantly react to their environment (http requests, document publication,
or server reorganisation). Finally, they exhibit a form of pro-activity as user agents may
take the initiative to act on user’s behalf (for instance to retrieve documents that become
expired).

The agent architecture presented in this paper is part of a more general research
activity on Distributed Information Management. In the Multimedia Research Group,
at the University of Southampton, we are using similar notions of weak agency in var-
ious projects. In the project Memoir [30], agents are used to perform data-mining and
resource-discovery tasks. These agents collect trails recording the documents that are
being viewed, the time spent to view documents, and whether documents are printed or
bookmarked. Using these trails agent use matching algorithms to find other users access-
ing the documents or other relevant documents. DeRoure et al. [14] describe how agents
can be used to help navigation, resource discovery, or integration with legacy systems.
Dale [7] present a mobile agent architecture to solve a similar problem.

We can also regard our architecture as belonging to the class of “personal agents” such
as Maes’ interface agents [25], Davies’ Jasper [8], Voorhees’ InfoScout [35], Lieberman’s
Letizia [24], and so on. The services that we offer are however different because they are
based on the information used to maintain link integrity. The so-called “push technology”
[34] pushes requested information to users desktop computer. In our architecture, we do
not propagate new document versions, but we inform user agents that new versions are
available. This service also comes from the availability of tables of sent documents, which
themselves originate from a publishing contract.

The technique that we have described to maintain links is based on distributed garbage
collection algorithms. Tables of visited or bookmarked documents is a variant of dis-
tributed reference counting called directory listing [3, 31]. The rerooting technique used
when mailing documents or when moving documents is based on a recently developed
algorithm [26]. Reference counting garbage collection is not able to collect distributed
cycles. Such cycles occur frequently in the World-Wide Web, as it is quite common to
have a set of documents mutually referring to each other. However, in our case, docu-
ments only reside on WWW servers or temporarily in WWW browsers. We can easily
use timestamping [23] or marking [22] to detect unused distributed cycles. In the latter
case, groups of servers can decide to cooperate to detect unused cycles between them; this
approach is promising as it involves a negotiation phase, which perfectly fits into the agent
framework. Let us mention that the ability to start some processing when a document
is unused or unreferenced is called finalization [18] in the garbage collection community.
Search engines are interesting components to be modelled in our approach; they maintain
tables of documents collected by robots, launched periodically from a set of roots. If not
designed properly, such engines would keep references to documents, which would appear
to be used all the time; such a phenomenon also appears in programming languages, and
the solution is to use a notion of weak pointer [36].

The initial Dexter hypertext model [17] enforces link integrity, but does not define
any way of implementing it. Davis [10, 12] surveys the issue of link integrity in hypertext
systems. The techniques discussed by Davis are not automatic and usually rely on post-
mortem repairs. Our approach relies on garbage collection technique to ensure that links
are never dangling. He also studies the editing problem where the update of a document
might make a link inconsistent because the document no longer contains the information
that it contained when the link was created. Such a phenomenon could occur in our



architecture when the user agent decides to retrieve the latest version of a document.
Techniques that analyse the contents of documents should be used to inform authors
that some links may be semantically incorrect, even though they are not dangling; our
architecture provides the mechanism to inform authors.

An interesting extension of our approach is to deal with separate link bases as in
Microcosm [11] or the distributed link service [13]. Both systems introduce “generic links”
which computes the source anchor of a link at navigation time. Our agent architecture
computes the destination anchor of a document at retrieval time: both the user agent
and the server agent use the navigation context to determine the version of documents
pointed by links.

Ingham, Caughey and Little [19] present a solution to solve the “broken link” problem.
They mention distributed garbage collection technique but no implementation detail is
provided. They use an algorithm [32] to short-cut forwarding pointers, but they do not
describe the garbage collection algorithm. They call bind and unbind methods to update
reference counters, but without precaution, this implementation suffers from causality
problems. Our approach is based on a simple algorithm [26] and is able to deal with
email and document moves. The WWW community also provides mechanism to publish
URLs permanently, e.g. Uniform Resource Names [33], similar to ISBN for books. These
approaches are complementary to our architecture as they guarantee that the root of a
document will always be available via a URL, but they do not provide any solution for
maintaining inner-link integrity.

Creech [6] discusses author-oriented link management. In particular, he provides a
mechanism by which links are automatically updated, whenever possible; if automatic
update is not possible, he delivers the appropriate information to make reasonable deci-
sion on how to update these links. We believe that his robot-based mechanism to collect
information is not as sound as our garbage collection technique: new updates may inval-
idate the information even before robots return it. However, his techniques that analyse
the contents of documents and provides authors with information on how to update links
can be integrated in our approach.

Hyper-G [20] maintains link consistency by propagating document changes using a
probabilistic broadcast algorithm. Our approach does not rely on broadcast to propagate
changes. Document updates are propagated in two different cases: (i) If an author
publishes a new version of a document, it is advertised to users who have bookmarked
it. (ii) When a document is moved. In the former case, advertising may be delayed
as much as we want, as it is not a mandatory computation; in particular, advertising can
be lazily propagated as users read documents. Changes resulting from document moves
may also be propagated lazily as described in [26].

6 Conclusion

We have presented an agent architecture to maintain links in the World-Wide Web. At a
low level, it uses garbage collection techniques to trace links and to maintain their integrity.
At a higher-level, it provides three agents aimed at users, authors and administrators,
respectively.

We envisage to pursue our work in two directions. The current architecture is suitable
for a corporate intranet. However, if we wish to support a world wide network such as
the Internet, techniques to reduce server load have to be investigated. In particular, we



need to introduce levels of caches, with tables of accessed or bookmarked documents,
which can reduce the traffic and the size of tables to maintain. Even though the agent
functionality that we provide is new and unavailable in the current WWW, we believe
that more content-based processing would be useful to users and authors: both need to
be informed of content changes in documents.
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