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Résumé

There are not many non-trivial examples that can be used in
a course on advanced programming concepts. In this paper, we
describe an interactive reducer for lambda terms that combines
first-class continuations, macros, delay, and state. We also
describe the means by which we induce students to master
advanced topics.

1. Introduction

Numerous articles praise the benefit of functional programming through
the curriculum [14], and several textbooks on functional programming
are now widely used in introductory programming courses [2, 4, 10, 24,
17]. Since the early seventies, we have based our courses on various
dialects of Lisp [23], and we are now using Scheme. We believe that a
Scheme-style! of programming relies on a few but expressive concepts
that favour abstraction and ease of programming.

However, we observe that very few educational texts present difficult
programming techniques and their use in non-trivial examples. Too
many authors are satisfied with giving a sorting algorithm or Hanoi
towers. We do not deny that one must start with the basics, but

IWe focus more on a programming philosophy than a particular programming
language. ML is a perfectly suitable candidate; in particular, the implementation of
Standard ML of New-Jersey could be used to program the example described in this
paper (except the macro).
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we believe that an advanced programming course should include more
difficult topics. Scheme offers a range of advanced programming concepts
like continuations, lazy evaluation via delay, engines, or macros. As soon
as they are grasped by students, they can be used quickly to program
an operating system kernel [7, 25] or an object-oriented extension to a
language [21, 1].

It is still an educational challenge to present difficult programming
examples. First, there are few such examples published in the literature:
most of them appear as research articles (like the widely cited references
mentioned above), and very few are published in educational conferences,
highlighting the pedagogical difficulties to present them. Second, even
though we wish to present difficult examples, length is an important
consideration, because the material should be presentable in a single
lecture typically. Third, there are advanced examples focusing on a given
technique, like Henderson’s graphic primitives that rely on higher-order
functions [15], but few combine several techniques at the same time.

In this paper, we present an advanced programming example that
uses first-class continuations, macros, delay, and state in a combined
way. This program, which is an interactive reducer for lambda terms,
illustrates the level reached by students in the last year of Electrical
Engineering and Computer Science. First, we describe the curriculum in
Electrical Engineering and Computer Science at the Montefiore Institute;
second, the example and its subtle aspects are presented; third, a
discussion follows on the qualities of this example and on how students
perceive it.

2. Curriculum in Electrical Engineering
and Computer Science

In this section we first give a description of the functional programming
part of the curriculum, and then comment on some aspects of the courses
which should lead our students to actively master difficult notions and
to use them for solving difficult programming problems.

2.1. The Curriculum in Functional Programming

Students in Electrical Engineering and Computer Science take in
sequence three courses on functional programming?:

1. Elements of programming,

?Besides functional programming, the curriculum includes databases, complexity,
parallel programming, compilers, operating systems, assembly languages, etc.
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2. Semantic Aspects of Programming,

3. Advanced Concepts in Programming Languages.

There is a close collaboration between courses 1 and 2. Many concepts
are introduced informally in course 1 and are revised more formally in
course 2. Course 1 is the basic course of functional programming. The
main target is to master abstraction, with both procedures and data. We
especially emphasize recursion, modularity and higher-order functions.
No explicit theory is given, except maybe a semi-formal introduction to
the substitution model for evaluation.

Course 2 presents the substitution model in a formal way and
illustrates its limitations. The environment model is also introduced,
and used to discuss various subtle topics, like free variables, lexical
scoping versus dynamic scoping, evaluation of expressions with side
effects and assignments, etc. A meta-circular evaluator is given as
a third semantic model. Important programming techniques are also
introduced, like streams and message-passing serving as an introduction
to object-oriented programming.

Course 3 introduces continuation-passing style on simple recursive
procedures. Then, a meta-circular evaluator in continuation-passing
style is derived. We describe call/cc using the intuitively-defined notion
of evaluation context, and then we define it precisely in the meta-
circular evaluator. Simple and more complex examples of continuations
follow. Interpretation and compilation techniques are then presented,
and parallelism is introduced with the future construct [13].

We have adopted the language Scheme in all three courses. The
small number of general rules and constructs of Scheme suffices to obtain
a practical programming language, that is flexible enough to support
most of the major programming paradigms [22]. As the language is
small and close to the lambda calculus, we can smoothly study more
theoretical topics, like operational semantics or denotational semantics,
without becoming too complicated.

Examination consists mainly in writing and documenting small pro-
grams. More theoretical topics, like evaluation semantics, are examined
by requiring the students to simulate the evaluator behaviour. Students
get acquainted with medium-sized programs through homeworks, and
their graduation theses may involve a substantial effort in programming.

2.2. Building Programming Ability

The ultimate goal of programming courses is to induce the ability of
solving problems by writing computer programs. As a result, we try

3



Advanced Programming Techniques Using Scheme

to avoid a common danger: students learn a lot of concepts, but tend
not to use them, or to use them poorly or reluctantly, when they write
programs by themselves. As a rule, we try to avoid the situation where
a student has some understanding of a concept or construct, but is not
sufficiently at ease with it and does not use it, or only reluctantly, in his
own programs.

The problem usually occurs early, with higher-order functions.
Experience shows that a formal introduction of procedures as arguments,
and especially of procedures as values, is not an adequate way of inducing
students to adopt a functional style of programming. In fact, the very
claim that “functions are first-class objects” seems artificial to students;
calculus courses may have induced quite the opposite idea: objects are
numbers, strings, etc. and functions are simply laws, or mechanisms, by
which objects are associated with, or obtained from, other objects. Our
approach is to introduce elementary examples of higher-order functions,
like map or filter; we delay the general claim “functions really are (first-
class) objects and should be considered as such” in favour of a more
modest claim like “map iterates on a list and performs on each element
an operation specified by its functional parameter”. From the theoretical
point of view, we adopt a similar strategy and, in course 1, there is only
a semi-formal introduction to the most elementary computation model,
that is, the substitution model. More complete models are introduced
in a formal way in course 2.

Our main strategy is not to avoid the explicit introduction of
difficult concepts, but to delay the formal introduction at a time
where the concept is likely to be accepted without toil. Similarly, the
important concepts of functional programming should be combined into
difficult design, but not to soon. This strategy of delaying the formal
introduction of difficult notions is compatible with the student mastering
difficult concepts and constructs, like continuations and call/cc, delay
and force, macro writing, assignments and mutable data. We simply go
from practice to theory; in order to demonstrate this, we describe the
learning steps that may lead a (reasonably skilled) student to use these
concepts and constructs in his/her own programs.

In fact, call/cc, delay and force, macro writing, assignments and
mutable data are formally introduced in courses 2 and 3, but are
“prepared” in course 1. In the sequel to this paragraph, we comment
about this preparation.

2.2.1. Delayed evaluation

There is already a hint at the notion of evaluation order at the very
beginning of course 1, when we show that the “natural” evaluation of
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arithmetic expressions involves a partial ordering: expressions are trees,
and the value of a node can be computed only when the values of its
children are known.

A more significant hint is given when the lambda abstraction is
introduced. We simply observe that, when evaluating expressions like

((lambda (w) (* 2 w))
(lambda (v) (— 9 (lambda (u) (+ 3 u)) v))) 5))

there are several reduction orders. We point out that a Scheme evaluator
always uses a call-by-value strategy, but any other reduction ordering
would lead to the same result, although not necessarily consuming the
same amount of time and space.

Further steps are taken in course 2, where call-by-name, normal order
strategy is introduced; we show that the space and time complexity of
the evaluation process may be modified substantially, and go on with
a formal presentation of the normal order with a modified evaluator.
At that time, students are ready to accept that the call-by-value
strategy might be replaced by lazy evaluation for some applications,
using constructs like delay to simulate this strategy in the evaluator.
This allows us to solve interesting problems rather easily with the
stream paradigm and to write, for instance, an interpreter for (non-
deterministic) finite automata, or a solution for the Grune problem
(coroutines).

2.2.2. Macro

Macro is clearly an advanced topic, which is only briefly addressed
in course 2, and properly introduced in course 3. Nevertheless, the
preparation and motivation work for macros begins in course 1, when
discussing let as a syntactic but pragmatically useful variant of lambda;
we mention that Scheme programmers may create and use their own
syntactic constructs with macros. We also show early (in an elementary
case) that Scheme functions can be used to produce Scheme code, by
writing a function describe, such that (describe '(1 ((a) 2))) evaluates
into (cons 1 (cons (cons (cons ’a’()) (cons 2 °())) ’()))-

The preparation and motivation work goes on in course 2, where
object-oriented programming is introduced through message-passing.
We adopt the “Tiny Object-Oriented Language” [1], a meta-circular
evaluator extended for object-oriented style. At this point, we mention
that macros would allow us to define such an object-oriented extension
without resorting to an evaluator.
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2.2.3. Continuation and call/cc

The call/cc construct is also an advanced topic we introduce only in
course 3, but whose preparation and motivation begin in course 1. In
fact, our first encounter with the concept of continuation occurs when
we program simple functions in continuation-passing style.

A further step allows us to introduce contexts. For some recursive
functions, we can encode the recursion context, i.e. the continuation,
into an explicit argument. In some interesting cases, the encoding does
not increase as fast as the size of the stack, which allows us to derive
iterative functions using an accumulator, in a similar way to Wand [26].

Last but not least, we also address in course 1 the classical example
of list multiplication when occurrences of 0 are likely, using CPS to avoid
any unnecessary multiplication. This is a first hint that continuation can
be a useful concept for non-local exits.

More direct examples of continuation handling can be considered in
course 3, when students know more about environment and evaluation
process. A nice example is the implementation of coroutines.

Non-local exits and coroutines are considered again in course 3, when
call/cc is properly introduced. Other previously encountered concepts
are revisited, and used to illustrate the usefulness of both the concept of
continuation, and the new construct call/cc. At this time, the student
is ready to assimilate call/cc, and to use it for more advanced notions,
backtracking, and engines.

2.2.4. Assignments and Mutable Data

Course 1 is an introduction to functional programming, for students
who already have written (elementary) PASCAL programs. An early
introduction of set! and the like might impair the assimilation of the
functional paradigm and of the substitution model of evaluation, but
completely ignoring assignment might induce the wrong feeling that
“pure functional programming” is the universal solution. We choose
to mention and use assignments only twice, at the end of the course, in
very specific circumstances.

One of them is when we show that a naive approach of recursion
can lead to inefficient programs and that the memoization technique can
be used to improve them. The memo structure can be an a-list, but a
mutable vector, updated with vector-set!, is also an appropriate solution.

The other use of assignment in course 1 is when the distinction
between let and letrec is discussed. It seems worth mentioning that the
behaviour of letrec can be simulated with let and set!. So assignments
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are used sparingly, and only when they are really useful.

Any less “encapsulated” use of assignment is delayed to courses 2
and 3 where, as usual, concepts only “hinted” in course 1 are considered
again, in more depth and also more formally. The environment model
introduced in course 2 is used to explain in detail the evaluation of
forms containing assignments, and problems where mutable data are the
natural choice are solved. Delayed evaluation is revised by describing
the implementation of delay using assignment.

At this point, students are ready for more advanced examples, like
engines, an operating-system kernel [7, 25], or the example given below.
By adopting the language Scheme, we are able to reach advanced topics
rather quickly, using a single programming framework that allows us to
concentrate on concepts.

3. Example

The program that we present in this section is an interactive reducer for
lambda terms. It reads a lambda term (represented as an S-expression),
displays the different redices of the term, waits for the user’s selection,
replaces the selected redex by its contractum, and repeats this process
until it reaches a normal form.

3.1. Lambda terms

In this paper, we shall assume that the reader is familiar with the
basic principles of the A-calculus, and in particular of the call-by-
value A-calculus [19] that we adopt here. During course 2, we take
the opportunity to introduce the syntax of the A-calculus, the notion
of (call-by-value) 8 and d-reductions, and the definition of terms like
redex, contractum, context, and normal form; this material is thoroughly
studied in course 3.

Terms are represented by S-expressions satisfying the following
grammar:

M == (M M) | (lambdavM) | v | n | p (Term)
v u= a symbol (Variable)
n € {0,1,...} (Number)
p € {+,—/x...} (Primitive)

A value is a lambda term, a variable, a primitive, or a number.

7
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(define value?
(lambda (z)
(or (symbol? z) (number? z) (and (pair? z) (eq? (car z) ’lambda)))))
We define® the function components, which returns the list of
subterms of a term. The function constructor-of is a higher-order
function: given a term z, it produces a function that constructs a term
of the same type as z for some given subterms.

(define components (define constructor-of
(lambda (z) (lambda (z)
(match z (match z
((? number?) ’()) ((¢? symbol?) (lambda () z))
((2 symbol?) ’()) ((? number?) (lambda () z))
(Clambda v body) (list body)) (Clambda v body) (lambda (b)
((a d) (list a d))))) (list ’lambda v b)))

((a b) (lambda (new-a new-b)
(list new-a new-b))))))

The predicate redex? determines whether its argument is a redex; the
function contractum returns the contractum of a redex. The functions
implementing the beta and delta reductions are not given in this paper.

(define redez? (define contractum
(lambda (applic) (lambda (applic)
(match applic (match applic
((Clambda z body) V) (value? V)) ((Clambda z body) V)
(((? primitive?) V) (number? V)) (substitution body V z))
C #0))) (¢ primitive? p) V)
(define primitive? (delta-reduction p V)))))

(lambda (p)
(and (symbol? p)
(memq p '(+ * / — addl subl)))))

3.2. Searching and Constructing

The interactive program is composed of two phases: the search phase
finds all the redices of a lambda term, and the construction phase returns
a new lambda term where the user-selected redex is replaced by its
contractum. A naive implementation of the program would alternate the
search and constructing phases, performing a complete search for every
new term and reconstructing a complete term after each reduction. The

3We believe that pattern matching is a useful programming technique. As the
language Scheme [22] does not support it, we use Wright and Duba’s [27] match
macro. A brief explanation of match appears in Section A.
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efficiency of such a program can be improved by taking into account the
following observations:

1. As the redex and contractum appear in the same context (cf.
Figure 1), the search and constructing phases for the context are
the same before and after transition.

2. The search and constructing phases use the same recursion schema
based on the grammar of terms.

N N

/AI\ /\ A /

Az 10 a 20 xi 10 a 20
/\‘\ |
>\‘17 2

x

Figure 1: Redex replaced by a contractum in the same context

The function search+ construct combines the search and construction
phases. It takes a term and a predicate as arguments, and returns two
results: (i) a copy of the term passed in argument, (i) the list of
subterms satisfying the predicate.  Both results are combined into a
datastructure result. In the program, we use the predicate redez? to
select the list of redices of a term. For the time being, let us assume that
the function map!! is defined as map.

(define search+ construct
(lambda (term pred)
(let-values ((k term) (call/cc (lambda (k)
(values k term))))
(match (merge-results (constructor-of term)
(map!! (lambda (z)
(search+construct = pred))
(components term)))
((and res ($ result new-term success))
(if (pred new-term)
(make-result new-term (cons (list k new-term) success))

res))))))
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(define-structure (result term success))

Multiple values can be returned by the primitive values and matched
using let-values [6]. If the Scheme implementation does not support
multiple values, these constructs can be defined in terms of lists as
follows:

(define values list)

(define-syntax let-values
(syntax-rules ()
((let-values ((var vars ...) wal) bodyl bodyn ...)
(apply (lambda (var vars ...) bodyl bodyn ...) wval))))

Let us observe that the recursion schema of search+ construct is
implicit as we use the generic accessor components and the higher-order
function constructor-of. In the success slot of a structure result, the
function search+ construct associates each term satisfying the predicate
with the continuation that existed when search+ construct was called on
that term.

The function merge-results combines the structures result obtained
for the components of a term into a new structure result:

(define merge-results
(lambda (constructor args)
(let ((terms (map result-term args))
(success (mapcan result-success args)))
(make-result (apply constructor terms) success))))

Remark In order to reduce the allocation cost, we can avoid
to reconstruct a new term, and we could do some sharing in
the function constructor-of.

3.3. Interactive Loop

The entry point of the program is the function driver-loop; it reads a
term, displays its redices, reduces the user-selected redex, and repeats
the process until a normal form is reached or until the user closes the
input stream. In the latter case, a non-local exit is performed by calling
the continuation abort, initialised by with-abort.

(define abort ’any)
(define with-abort
(lambda (thunk)
(call/cc (lambda (k)
(set! abort k)

(thunk)))))
10
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The interactive loop driver-loop calls search+construct and then
return-redex, whose role is to display the list of redices and to return
the one chosen by the user.

(define driver-loop
(lambda ()
(with-abort (lambda ()
(match (search+construct (initial-prompt) redex?)
(($ result term 1)
(display-term term)
(if (null? 1)
term
(let ((the-redezx (return-redez 1)))
(match the-redex
((n k tree)
(k (values k (contractum tree)))))))))))))
(define return-redex
(lambda (1)
(let ((el (enumerate-terms 1)))
(let ((val (let loop ((val (begin (prompt el)
(read))))
(if (eof-object? wal)
(abort ’end-of-computation))
(if (not (and (number? val)
(> val 0)
(<= wal (length el))))
(loop (begin (display "Invalid number")
(newline)
(prompt el)
(read)))
val))))
(let loop ((el el))
(cond ((null? el) (error ’driver-loop "Did not find redex " wal))
((= (caar el) val) (car el))
(else (loop (cdr el)))))))))
(define enumerate-terms
(lambda (1)
(let loop ((n 1)
(1D)
(if (null? 1)
0
(cons (cons n (car 1))

(loop (+ n 1) (cdr 1)))))))

11
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(define prompt
(lambda (1)
(display "Which redex do you want to reduce?")

(newline)
(for-each (lambda (z)
(match z
((n k tree) (display n)
(display " : ")
(pp tree))))  3; pretty-print

D))

Iterating is done by calling the continuation associated with a
redex on the continuation and the contractum. FEvaluation resumes
in search+construct as if the call/cc expression was returning the
continuation and the contractum. Then, the contractum obtained after
reduction is recursively searched by the function search+construct in
order to obtain its redices. A crucial point in the program is when to
check when a term satisfies the predicate pred. If we do it on term when
entering search+construct, we will not take into account that subterms
might have been reduced. Instead, we call pred on new-term, the term
returned as part of the result. This guarantees that we check whether the
current term satisfies the predicate by taking into account all reductions.

With our teaching experience, we are aware that some students
have difficulties to understand where the function search+construct is
resumed when a redex is selected. We observe it is convenient to add
debugging information to the function search+ construct:

(define search+ construct
(lambda (term pred)

(let-values ((k term) (call/cc ...))
(display-trace "Searching: " term)
(match (merge-results ...)

((and res ($ result new-term success))
(display-trace "Constructing: " new-term)
(Gf ..)))
(define display-trace
(lambda (str term)

(display str)

(display term)

(newline)))

This debugging information is even more helpful if the trace is
indented: the expression nesting being represented by its indentation
on the screen. We do not show the code in the paper, but it presents
an extra difficulty as the indentation level has a dynamic nature (like
dynamic binding [16]), and its definition in the presence of first-class
continuations is an instance of the state-space problem [11].

12
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3.4. Continuations and State

So far, we assumed that the function map!! was defined as map, but
the program would not behave as expected. Figure 2 displays a sample
execution if map was used. The user has successively selected the third
and second redices. Then, the reducer amazingly tells us that ((lambda
a a) 20) is still a possible redex. At this point, the term to reduce
should have been ((lambda u ((lambda x x) 10)) 20), instead of
((lambda u ((lambda x x) 10)) ((lambda a a) 20)). Intuitively,
the reducer has forgotten that ((lambda a a) 20) had already been
reduced. It is as if we wanted to mutate a data structure (the term to
reduce), but the implementation with map was stateless.

Enter a lambda term
((lambda u ((lambda z ((lambda x x) z)) 10)) ((lambda a a) 20))

((lambda u ((lambda z ((lambda x x) z)) 10))
((lambda a a) 20))

Which redex do you want to reduce?

1 : ((lambda z ((lambda x x) z)) 10)
2 : ((lambda x x) z)

3 : ((lambda a a) 20)
3

((lambda u ((lambda z ((lambda x x) z)) 10)) 20)

Which redex do you want to reduce?

1 : ((lambda u ((lambda z ((lambda x x) z)) 10)) 20)
2 : ((lambda z ((lambda x x) z)) 10)

3 : ((lambda x x) z)
2

((lambda u ((lambda x x) 10)) ((lambda a a) 20))
Which redex do you want to reduce?

1 : ((lambda x x) 10)
2 : ((lambda a a) 20) ;333 *%kkkkkx was already reduced

Figure 2: Stateless implementation with map

The search+ construct function traverses lambda terms in the order
defined by the Scheme implementation. For our purpose, let us assume
that this order is from left to right. When the continuation associated
with a redex is called, it resumes the search on the contractum and on
the part of the tree that appears to the right of the contractum. This

13
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explains, why selecting redex 2 in Figure 2 makes the redex ((lambda a
a) 20) available again: when the continuation associated with redex 2
was captured, ((lambda a a) 20) was a subexpression that remained
to be traversed.

Our first attempt to correct this problem is to define a function map-
boz!! which uses the box!! macro and a box datastructure, i.e. a
single-field mutable structure.

(define map-boz!!
(lambda (f 1)
(if (null? 1)
0
(box!! cons (f (car 1)) (map-boz!! f (cdr 1))))))

(define (make-boz) (cons 'box ’()))
(define (boz-ref z) (cdr ))
(define (set-box! z v) (set-cdr! z v))

The box!! macro is defined using Dybvig’s syntax-case [5].

(define-syntax box!!
(lambda (z)
(syntax-case z ()
((-M M1 ...)
(with-syntax (((bozM bozM1 ...)
generate-temporaries (syntax (M M1 ...))))
((tmpM tmpM1 ...)
generate-temporaries (syntax (M M1 ...)))))
(syntax (let ((bozM (make-box))
(bozM1 (make-boz))

(let '('('tmpM (begin
(set-boz! bozM M)
(lambda (bozM1 ...)
((boz-ref bozM) (boz-ref boxM1) ...))))
(tmpM1 (begin (set-boz! boxM1 M1) bozM1))
(tmpM tmpM1 ...)))))))))

For each operand of an application, the macro box!! introduces a box
in which the operand value can be stored. Unfortunately, this function
produces exactly the same behaviour as in Figure 2, assuming a left to
right evaluation order. Indeed, in the expression (box!! M M1 ...) a
continuation captured in M also re-evaluates M1, whereas we want the
continuation captured in M to use the latest value returned by M1.

Our solution is the following map!! function which uses the macro !!
in the inductive case.

14
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(define map!!
(lambda (f 1)
(if (null? 1)
§0)
(! cons (f (car 1)) (map!! f (cdr 1))))))

(define-syntax !!
(lambda (z)
(syntax-case z ()
((-M M1...)
(with-syntax (((bozM bozM1 ...)
(generate-temporaries (syntax (M M1 ...))))
((tmpM tmpM1 ...)
(generate-temporaries (syntax (M M1 ...)))))
(syntax
(let ((bozM (make-box))
(bozxM1 (make-boz))

(le.t.((tmpM (delay (begin
(set-boz! bozM M)
(lambda (bozM1 ...)
((boz-ref bozxM) (boz-ref bozM1) ...)))))
(tmpM1 (delay (begin (set-boz! bozM1 M1) bozM1)))
(force tmpM) (force tmpM1) ... )))))))

The macro !! differs from box!! by the delay* and force expressions,
which guarantee that if (force tmpM1) is evaluated several times, its
value is always a box, but it evaluates M1 only once.

Remark An application “annotated” by !! is an embedding
of a sequential version of Queinnec’s semantics of applications

in ICSLAS [20].

4. Discussion

Mostly-functional languages such as Scheme and ML rely on a
functional core but also use imperative features for very specific purpose.
Imperative features in these languages are used for a different reason
than in imperative languages. This single example uses several of these
programming techniques:

e continuations are used for resuming and aborting computations;

e side-effects are used explicitly to program mutable data structures;

4As in [22], delay guarantees that only one value is computed for a promise.
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e the imperative behaviour of the program is abstracted in the macro
! so that the function map!! can have the same recursion schema
as map;

e delay ensures that some expressions are evaluated once at most.

The most controversial issue in this solution is probably the usage of
continuations. The reader might think that this example was artificially
created to use such a programming technique. This is not the case. We
chose this example because the problem is not trivial and its explanation
is short. Could we have programmed the solution differently? We could
have avoided first-class continuations by using an explicit continuation-
passing style; such a solution essentially presents the same difficulty,
only adding the burden of passing extra continuation arguments. The
key reason for using continuations in this example is to share the search
and construction of a subtree between two reduction steps. In addition,
the continuation implicitly encodes various information that would have
to be made explicit in their absence, such as the position of the redex in
the tree, the associated list of redices that are no longer valid, i.e. those
that were found when searching the redex.

If the programmer decides to abandon the use of continuation in
this example, the idea of maintaining a state as reduction proceeds
still remains valid. Macros could also be used to separate the state-
mutating functionality from the recursion schema for data structure
traversal. A state can also be represented in a functional manner
by a stream [2, 3]; such a solution would further rely on the delay
construct. The coroutining effect between the construction phase and
the interactive loop would be implemented using lazy evaluation instead
of continuations. This might be an interesting alternative using a purely
functional style, but it also offers pedagogical difficulties as it relies on
mutually recursive implicit streams. Let us mention here that our goal
was not to present an efficient reduction technique for lambda terms;
there exist some techniques that are more appropriate for this purpose,
like abstract machines or graph reduction [18].

Our teaching experience is that there are three categories of students.
Very few students were unable to understand the program; our
interpretation is that they had not managed to build their own intuition
of continuations, and therefore were unable to understand the key idea of
this program. The vast majority of the students were able to understand
the program. We believe that the interactive nature of the program,
the possibility of displaying debugging traces, and the small number
of functions were important reasons in their understanding. We still
believe that the most difficult problem for them is to understand the
use of continuations in the function search+construct. However, we
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observed that only the best students are able to reproduce a similar style
of programming. This requires the ability to deduce that a common set of
operations, i.e. reconstructing a result for the context, can be abstracted
into a continuation.

This example can also be used for a series of homework: the trace
indentation mentioned above, extension of the language with other
constructs like if or datastructures like pairs, use of a Felleisen’s style
of semantics for non-functional features [9], other parameter-passing
conventions.

With this example, we have killed two birds with one stone: we
have described a program with advanced programming techniques, but
also we have illustrated the reduction semantics of the lambda-calculus.
Some might argue that this example is a functional program about a
functional program, and it does not deal with the real world. In fact, this
program has some features that go beyond this specific application: it is
interactive and it is presenting and reorganising information according
to the user’s choice. We are considering other alternative application to
this program. Currently, we are investigating the problem of navigating
a hypertext system: users are offered a choice of links to follow, and
selecting a link results in displaying a new document itself containing
links.

5. Conclusion

This single example highlights various advanced programming tech-
niques: first-class continuations in a coroutine-style, non-local exits, de-
layed evaluation, syntactic abstraction, and mutable datastructures.

It also forces the student to understand interpretation techniques; it
shows how evaluation order determines program behaviour, and it helps
to distinguish control from state.
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A. Appendix: Pattern Matching

In this paper, we are using a subset of Wright and Duba’s [27] match
macro. The syntax of a match expression is as follows:

(match ezp (pat . body) ...)

The value of exp is matched against the first pattern pat. If the
matching succeeds, then the body of the clause is evaluated in the scope
of the variables appearing in the pattern. Otherwise, the process is
repeated with the following pattern. If no pattern matches the value of
erp the match has an unspecified value.

A pattern can be:

(), ##t, #f, strings, numbers, quoted sexpressions: these constants
match themselves.

e variable: such a pattern matches any value, and results in binding
the variable with the value.

e (pat! ... patn) matches a list of n elements, and each pati must
match the ith element of the list.

o (? predicate pat! ... patn): In this pattern predicate must
evaluate to a unary function. The pattern matches a value if the
predicate applied to the value returns true and all pati also match
the value.

e (§ struct pat! ... patn) matches a structure struct defined
by define-structure, and each component is matched by a
subpattern pati.

Let us consider the function redez?:

(define redex?
(lambda (applic)
(match applic
((Clambda z body) V') (value? V))
(((? primitive?) V) (number? V))
(- #6)))

The value bound to applic matches the first pattern if it is a list of
two elements, and if the first element is itself a list of three elements
starting with the symbol lambda. In addition, the body of the clause
will be evaluated in the scope of three new bindings for z, body, and V.
Let us assume the value of applic does not match the first pattern. It
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matches the second one if it is a list of two elements, whose first element
satisfies the predicate primitive?.

The structure constructor define-structure has the following
syntax:

(define-structure (struct argl ... argn))

It defines a constructor make-struct and accessors struct-argi.

B. Auxiliary Functions

A few auxiliary functions were not defined in the core of the paper.

(define mapcan
(lambda (f 1)
(f (null? 1)
0
(append (f (car 1))
(mapcan f (cdr 1))))))

The function display-term is called after every reduction and displays
the reduced term.

(define display-term
(lambda (term)
(newline)
(display " ")
(newline)
(pp term)
(newline)))
(define initial-prompt
(lambda ()
(display "Enter a lambda term™")
(newline)

(read)))

The substitution takes care of renaming bound variables in exp that
belong to the set of free variables of new. In this definition, we look for
simplicity and not efficiency.

(define substitution
(lambda (ezp new id)
(match ezp

((? symbol?) (if (eq? exp id) new ezxp))

((Clambda id2 body)

(if (eq? id2 id)
erp
(if (member 1d2 (free-variable new))
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(let ((id3 (gensym)))
(list lambda

1d3

(substitution (substitution body id3 id2)
new
id)))

(list ’lambda id2 (substitution body new id)))))
((operator operand) (list (substitution operator new id)
(substitution operand new id)))
((? number?) ezxp))))
(define free-variable
(lambda (ezp)
(match ezp
((? symbol?) (list exp))
((? number?) ’())
(Clambda id body) (remove id (free-variable body)))
((operator operand) (append (free-variable operator)
(free-variable operand))))))

Finally, we define delta reduction on the functional constants addi
and square.

(define delta-reduction
(lambda (p V)
(cond ((eq? p ’addl) (+ V 1))
((eq? p 'square) (* V V)))))
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