
f�evrier 1998 { Journ�ees Francophones des Langages Applicatifs { JFLA98Advanced Programming TechniquesUsing SchemeLuc Moreau1, Daniel Ribbens2, and Pascal Gribomont21: Department of Electronics and Computer Science,University of Southampton,Southampton SO17 1BJ. United Kingdom.E-mail: L.Moreau@ecs.soton.ac.uk.2: Institut d'Electricit�e Monte�ore B28,Universit�e de Li�ege,4000 Li�ege, Belgium.E-mail: (ribbens,gribomon)@montefiore.ulg.ac.be.R�esum�eThere are not many non-trivial examples that can be used ina course on advanced programming concepts. In this paper, wedescribe an interactive reducer for lambda terms that combines�rst-class continuations, macros, delay, and state. We alsodescribe the means by which we induce students to masteradvanced topics.1. IntroductionNumerous articles praise the bene�t of functional programming throughthe curriculum [14], and several textbooks on functional programmingare now widely used in introductory programming courses [2, 4, 10, 24,17]. Since the early seventies, we have based our courses on variousdialects of Lisp [23], and we are now using Scheme. We believe that aScheme-style1 of programming relies on a few but expressive conceptsthat favour abstraction and ease of programming.However, we observe that very few educational texts present di�cultprogramming techniques and their use in non-trivial examples. Toomany authors are satis�ed with giving a sorting algorithm or Hanoitowers. We do not deny that one must start with the basics, but1We focus more on a programming philosophy than a particular programminglanguage. ML is a perfectly suitable candidate; in particular, the implementation ofStandard ML of New-Jersey could be used to program the example described in thispaper (except the macro). 1



Advanced Programming Techniques Using Schemewe believe that an advanced programming course should include moredi�cult topics. Scheme o�ers a range of advanced programming conceptslike continuations, lazy evaluation via delay, engines, or macros. As soonas they are grasped by students, they can be used quickly to programan operating system kernel [7, 25] or an object-oriented extension to alanguage [21, 1].It is still an educational challenge to present di�cult programmingexamples. First, there are few such examples published in the literature:most of them appear as research articles (like the widely cited referencesmentioned above), and very few are published in educational conferences,highlighting the pedagogical di�culties to present them. Second, eventhough we wish to present di�cult examples, length is an importantconsideration, because the material should be presentable in a singlelecture typically. Third, there are advanced examples focusing on a giventechnique, like Henderson's graphic primitives that rely on higher-orderfunctions [15], but few combine several techniques at the same time.In this paper, we present an advanced programming example thatuses �rst-class continuations, macros, delay, and state in a combinedway. This program, which is an interactive reducer for lambda terms,illustrates the level reached by students in the last year of ElectricalEngineering and Computer Science. First, we describe the curriculum inElectrical Engineering and Computer Science at the Monte�ore Institute;second, the example and its subtle aspects are presented; third, adiscussion follows on the qualities of this example and on how studentsperceive it.2. Curriculum in Electrical Engineeringand Computer ScienceIn this section we �rst give a description of the functional programmingpart of the curriculum, and then comment on some aspects of the courseswhich should lead our students to actively master di�cult notions andto use them for solving di�cult programming problems.2.1. The Curriculum in Functional ProgrammingStudents in Electrical Engineering and Computer Science take insequence three courses on functional programming2:1. Elements of programming,2Besides functional programming, the curriculum includes databases, complexity,parallel programming, compilers, operating systems, assembly languages, etc.2



Advanced Programming Techniques Using Scheme2. Semantic Aspects of Programming,3. Advanced Concepts in Programming Languages.There is a close collaboration between courses 1 and 2. Many conceptsare introduced informally in course 1 and are revised more formally incourse 2. Course 1 is the basic course of functional programming. Themain target is to master abstraction, with both procedures and data. Weespecially emphasize recursion, modularity and higher-order functions.No explicit theory is given, except maybe a semi-formal introduction tothe substitution model for evaluation.Course 2 presents the substitution model in a formal way andillustrates its limitations. The environment model is also introduced,and used to discuss various subtle topics, like free variables, lexicalscoping versus dynamic scoping, evaluation of expressions with sidee�ects and assignments, etc. A meta-circular evaluator is given asa third semantic model. Important programming techniques are alsointroduced, like streams and message-passing serving as an introductionto object-oriented programming.Course 3 introduces continuation-passing style on simple recursiveprocedures. Then, a meta-circular evaluator in continuation-passingstyle is derived. We describe call/cc using the intuitively-de�ned notionof evaluation context, and then we de�ne it precisely in the meta-circular evaluator. Simple and more complex examples of continuationsfollow. Interpretation and compilation techniques are then presented,and parallelism is introduced with the future construct [13].We have adopted the language Scheme in all three courses. Thesmall number of general rules and constructs of Scheme su�ces to obtaina practical programming language, that is 
exible enough to supportmost of the major programming paradigms [22]. As the language issmall and close to the lambda calculus, we can smoothly study moretheoretical topics, like operational semantics or denotational semantics,without becoming too complicated.Examination consists mainly in writing and documenting small pro-grams. More theoretical topics, like evaluation semantics, are examinedby requiring the students to simulate the evaluator behaviour. Studentsget acquainted with medium-sized programs through homeworks, andtheir graduation theses may involve a substantial e�ort in programming.2.2. Building Programming AbilityThe ultimate goal of programming courses is to induce the ability ofsolving problems by writing computer programs. As a result, we try3



Advanced Programming Techniques Using Schemeto avoid a common danger : students learn a lot of concepts, but tendnot to use them, or to use them poorly or reluctantly, when they writeprograms by themselves. As a rule, we try to avoid the situation wherea student has some understanding of a concept or construct, but is notsu�ciently at ease with it and does not use it, or only reluctantly, in hisown programs.The problem usually occurs early, with higher-order functions.Experience shows that a formal introduction of procedures as arguments,and especially of procedures as values, is not an adequate way of inducingstudents to adopt a functional style of programming. In fact, the veryclaim that \functions are �rst-class objects" seems arti�cial to students;calculus courses may have induced quite the opposite idea: objects arenumbers, strings, etc. and functions are simply laws, or mechanisms, bywhich objects are associated with, or obtained from, other objects. Ourapproach is to introduce elementary examples of higher-order functions,like map or �lter ; we delay the general claim \functions really are (�rst-class) objects and should be considered as such" in favour of a moremodest claim like \map iterates on a list and performs on each elementan operation speci�ed by its functional parameter". From the theoreticalpoint of view, we adopt a similar strategy and, in course 1, there is onlya semi-formal introduction to the most elementary computation model,that is, the substitution model. More complete models are introducedin a formal way in course 2.Our main strategy is not to avoid the explicit introduction ofdi�cult concepts, but to delay the formal introduction at a timewhere the concept is likely to be accepted without toil. Similarly, theimportant concepts of functional programming should be combined intodi�cult design, but not to soon. This strategy of delaying the formalintroduction of di�cult notions is compatible with the student masteringdi�cult concepts and constructs, like continuations and call/cc, delayand force, macro writing, assignments and mutable data. We simply gofrom practice to theory; in order to demonstrate this, we describe thelearning steps that may lead a (reasonably skilled) student to use theseconcepts and constructs in his/her own programs.In fact, call/cc, delay and force, macro writing, assignments andmutable data are formally introduced in courses 2 and 3, but are\prepared" in course 1. In the sequel to this paragraph, we commentabout this preparation.2.2.1. Delayed evaluationThere is already a hint at the notion of evaluation order at the verybeginning of course 1, when we show that the \natural" evaluation of4



Advanced Programming Techniques Using Schemearithmetic expressions involves a partial ordering : expressions are trees,and the value of a node can be computed only when the values of itschildren are known.A more signi�cant hint is given when the lambda abstraction isintroduced. We simply observe that, when evaluating expressions like((lambda (w) (* 2 w))((lambda (v) (� 9 ((lambda (u) (+ 3 u)) v))) 5))there are several reduction orders. We point out that a Scheme evaluatoralways uses a call-by-value strategy, but any other reduction orderingwould lead to the same result, although not necessarily consuming thesame amount of time and space.Further steps are taken in course 2, where call-by-name, normal orderstrategy is introduced; we show that the space and time complexity ofthe evaluation process may be modi�ed substantially, and go on witha formal presentation of the normal order with a modi�ed evaluator.At that time, students are ready to accept that the call-by-valuestrategy might be replaced by lazy evaluation for some applications,using constructs like delay to simulate this strategy in the evaluator.This allows us to solve interesting problems rather easily with thestream paradigm and to write, for instance, an interpreter for (non-deterministic) �nite automata, or a solution for the Grune problem(coroutines).2.2.2. MacroMacro is clearly an advanced topic, which is only brie
y addressedin course 2, and properly introduced in course 3. Nevertheless, thepreparation and motivation work for macros begins in course 1, whendiscussing let as a syntactic but pragmatically useful variant of lambda;we mention that Scheme programmers may create and use their ownsyntactic constructs with macros. We also show early (in an elementarycase) that Scheme functions can be used to produce Scheme code, bywriting a function describe, such that (describe '(1 ((a) 2))) evaluatesinto (cons 1 (cons (cons (cons 'a '()) (cons 2 '())) '())).The preparation and motivation work goes on in course 2, whereobject-oriented programming is introduced through message-passing.We adopt the \Tiny Object-Oriented Language" [1], a meta-circularevaluator extended for object-oriented style. At this point, we mentionthat macros would allow us to de�ne such an object-oriented extensionwithout resorting to an evaluator. 5



Advanced Programming Techniques Using Scheme2.2.3. Continuation and call/ccThe call/cc construct is also an advanced topic we introduce only incourse 3, but whose preparation and motivation begin in course 1. Infact, our �rst encounter with the concept of continuation occurs whenwe program simple functions in continuation-passing style.A further step allows us to introduce contexts. For some recursivefunctions, we can encode the recursion context, i.e. the continuation,into an explicit argument. In some interesting cases, the encoding doesnot increase as fast as the size of the stack, which allows us to deriveiterative functions using an accumulator, in a similar way to Wand [26].Last but not least, we also address in course 1 the classical exampleof list multiplication when occurrences of 0 are likely, using CPS to avoidany unnecessary multiplication. This is a �rst hint that continuation canbe a useful concept for non-local exits.More direct examples of continuation handling can be considered incourse 3, when students know more about environment and evaluationprocess. A nice example is the implementation of coroutines.Non-local exits and coroutines are considered again in course 3, whencall/cc is properly introduced. Other previously encountered conceptsare revisited, and used to illustrate the usefulness of both the concept ofcontinuation, and the new construct call/cc. At this time, the studentis ready to assimilate call/cc, and to use it for more advanced notions,backtracking, and engines.2.2.4. Assignments and Mutable DataCourse 1 is an introduction to functional programming, for studentswho already have written (elementary) Pascal programs. An earlyintroduction of set! and the like might impair the assimilation of thefunctional paradigm and of the substitution model of evaluation, butcompletely ignoring assignment might induce the wrong feeling that\pure functional programming" is the universal solution. We chooseto mention and use assignments only twice, at the end of the course, invery speci�c circumstances.One of them is when we show that a na��ve approach of recursioncan lead to ine�cient programs and that the memoization technique canbe used to improve them. The memo structure can be an a-list, but amutable vector, updated with vector-set! , is also an appropriate solution.The other use of assignment in course 1 is when the distinctionbetween let and letrec is discussed. It seems worth mentioning that thebehaviour of letrec can be simulated with let and set!. So assignments6



Advanced Programming Techniques Using Schemeare used sparingly, and only when they are really useful.Any less \encapsulated" use of assignment is delayed to courses 2and 3 where, as usual, concepts only \hinted" in course 1 are consideredagain, in more depth and also more formally. The environment modelintroduced in course 2 is used to explain in detail the evaluation offorms containing assignments, and problems where mutable data are thenatural choice are solved. Delayed evaluation is revised by describingthe implementation of delay using assignment.At this point, students are ready for more advanced examples, likeengines, an operating-system kernel [7, 25], or the example given below.By adopting the language Scheme, we are able to reach advanced topicsrather quickly, using a single programming framework that allows us toconcentrate on concepts.3. ExampleThe program that we present in this section is an interactive reducer forlambda terms. It reads a lambda term (represented as an S-expression),displays the di�erent redices of the term, waits for the user's selection,replaces the selected redex by its contractum, and repeats this processuntil it reaches a normal form.3.1. Lambda termsIn this paper, we shall assume that the reader is familiar with thebasic principles of the �-calculus, and in particular of the call-by-value �-calculus [19] that we adopt here. During course 2, we takethe opportunity to introduce the syntax of the �-calculus, the notionof (call-by-value) � and �-reductions, and the de�nition of terms likeredex, contractum, context, and normal form; this material is thoroughlystudied in course 3.Terms are represented by S-expressions satisfying the followinggrammar: M ::= (M M) j (lambda v M) j v j n j p (Term)v ::= a symbol (Variable)n 2 f0; 1; : : :g (Number)p 2 f+;�; =; �; : : :g (Primitive)A value is a lambda term, a variable, a primitive, or a number.7



Advanced Programming Techniques Using Scheme(de�ne value?(lambda (x )(or (symbol? x ) (number? x ) (and (pair? x ) (eq? (car x ) 'lambda)))))We de�ne3 the function components , which returns the list ofsubterms of a term. The function constructor-of is a higher-orderfunction: given a term x , it produces a function that constructs a termof the same type as x for some given subterms.(de�ne components(lambda (x )(match x((? number? ) '())((? symbol?) '())(('lambda v body) (list body))((a d) (list a d)))))
(de�ne constructor-of(lambda (x )(match x((? symbol?) (lambda () x ))((? number?) (lambda () x ))(('lambda v body) (lambda (b)(list 'lambda v b)))((a b) (lambda (new-a new-b)(list new-a new-b))))))The predicate redex? determines whether its argument is a redex; thefunction contractum returns the contractum of a redex. The functionsimplementing the beta and delta reductions are not given in this paper.(de�ne redex?(lambda (applic)(match applic((('lambda x body) V ) (value? V ))(((? primitive? ) V ) (number? V ))( #f))))(de�ne primitive?(lambda (p)(and (symbol? p)(memq p '(+ * / � add1 sub1)))))

(de�ne contractum(lambda (applic)(match applic((('lambda x body) V )(substitution body V x ))(((? primitive? p) V )(delta-reduction p V )))))
3.2. Searching and ConstructingThe interactive program is composed of two phases: the search phase�nds all the redices of a lambda term, and the construction phase returnsa new lambda term where the user-selected redex is replaced by itscontractum. A na��ve implementation of the program would alternate thesearch and constructing phases, performing a complete search for everynew term and reconstructing a complete term after each reduction. The3We believe that pattern matching is a useful programming technique. As thelanguage Scheme [22] does not support it, we use Wright and Duba's [27] matchmacro. A brief explanation of match appears in Section A.8



Advanced Programming Techniques Using Schemee�ciency of such a program can be improved by taking into account thefollowing observations:1. As the redex and contractum appear in the same context (cf.Figure 1), the search and constructing phases for the context arethe same before and after transition.2. The search and constructing phases use the same recursion schemabased on the grammar of terms.
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Figure 1: Redex replaced by a contractum in the same contextThe function search+construct combines the search and constructionphases. It takes a term and a predicate as arguments, and returns tworesults: (i) a copy of the term passed in argument, (ii) the list ofsubterms satisfying the predicate. Both results are combined into adatastructure result . In the program, we use the predicate redex? toselect the list of redices of a term. For the time being, let us assume thatthe function map!! is de�ned as map.(de�ne search+construct(lambda (term pred)(let-values ((k term) (call/cc (lambda (k)(values k term))))(match (merge-results (constructor-of term)(map!! (lambda (x )(search+construct x pred))(components term)))((and res ($ result new-term success))(if (pred new-term)(make-result new-term (cons (list k new-term) success))res)))))) 9



Advanced Programming Techniques Using Scheme(de�ne-structure (result term success))Multiple values can be returned by the primitive values and matchedusing let-values [6]. If the Scheme implementation does not supportmultiple values, these constructs can be de�ned in terms of lists asfollows:(de�ne values list)(de�ne-syntax let-values(syntax-rules ()((let-values ((var vars . . . ) val) body1 bodyn . . . )(apply (lambda (var vars . . . ) body1 bodyn . . . ) val))))Let us observe that the recursion schema of search+construct isimplicit as we use the generic accessor components and the higher-orderfunction constructor-of . In the success slot of a structure result , thefunction search+construct associates each term satisfying the predicatewith the continuation that existed when search+construct was called onthat term.The function merge-results combines the structures result obtainedfor the components of a term into a new structure result :(de�ne merge-results(lambda (constructor args)(let ((terms (map result-term args))(success (mapcan result-success args)))(make-result (apply constructor terms) success))))Remark In order to reduce the allocation cost, we can avoidto reconstruct a new term, and we could do some sharing inthe function constructor-of .3.3. Interactive LoopThe entry point of the program is the function driver-loop; it reads aterm, displays its redices, reduces the user-selected redex, and repeatsthe process until a normal form is reached or until the user closes theinput stream. In the latter case, a non-local exit is performed by callingthe continuation abort, initialised by with-abort .(de�ne abort 'any)(de�ne with-abort(lambda (thunk)(call/cc (lambda (k)(set! abort k)(thunk))))) 10



Advanced Programming Techniques Using SchemeThe interactive loop driver-loop calls search+construct and thenreturn-redex , whose role is to display the list of redices and to returnthe one chosen by the user.(de�ne driver-loop(lambda ()(with-abort (lambda ()(match (search+construct (initial-prompt) redex?)(($ result term l)(display-term term)(if (null? l)term(let ((the-redex (return-redex l)))(match the-redex((n k tree)(k (values k (contractum tree)))))))))))))(de�ne return-redex(lambda (l)(let ((el (enumerate-terms l)))(let ((val (let loop ((val (begin (prompt el)(read))))(if (eof-object? val)(abort 'end-of-computation))(if (not (and (number? val)(> val 0 )(<= val (length el))))(loop (begin (display "Invalid number")(newline)(prompt el)(read)))val))))(let loop ((el el))(cond ((null? el) (error 'driver-loop "Did not �nd redex " val))((= (caar el) val) (car el))(else (loop (cdr el)))))))))(de�ne enumerate-terms(lambda (l)(let loop ((n 1)(l l))(if (null? l)'()(cons (cons n (car l))(loop (+ n 1) (cdr l)))))))
11



Advanced Programming Techniques Using Scheme(de�ne prompt(lambda (l)(display "Which redex do you want to reduce?")(newline)(for-each (lambda (x )(match x((n k tree) (display n)(display " : ")(pp tree)))) ;;; pretty-printl)))Iterating is done by calling the continuation associated with aredex on the continuation and the contractum. Evaluation resumesin search+construct as if the call/cc expression was returning thecontinuation and the contractum. Then, the contractum obtained afterreduction is recursively searched by the function search+construct inorder to obtain its redices. A crucial point in the program is when tocheck when a term satis�es the predicate pred . If we do it on term whenentering search+construct , we will not take into account that subtermsmight have been reduced. Instead, we call pred on new-term, the termreturned as part of the result. This guarantees that we check whether thecurrent term satis�es the predicate by taking into account all reductions.With our teaching experience, we are aware that some studentshave di�culties to understand where the function search+construct isresumed when a redex is selected. We observe it is convenient to adddebugging information to the function search+construct :(de�ne search+construct(lambda (term pred)(let-values ((k term) (call/cc . . . ))(display-trace "Searching: " term)(match (merge-results . . . )((and res ($ result new-term success))(display-trace "Constructing: " new-term)(if . . . ))))))(de�ne display-trace(lambda (str term)(display str)(display term)(newline)))This debugging information is even more helpful if the trace isindented: the expression nesting being represented by its indentationon the screen. We do not show the code in the paper, but it presentsan extra di�culty as the indentation level has a dynamic nature (likedynamic binding [16]), and its de�nition in the presence of �rst-classcontinuations is an instance of the state-space problem [11].12



Advanced Programming Techniques Using Scheme3.4. Continuations and StateSo far, we assumed that the function map!! was de�ned as map, butthe program would not behave as expected. Figure 2 displays a sampleexecution if map was used. The user has successively selected the thirdand second redices. Then, the reducer amazingly tells us that ((lambdaa a) 20) is still a possible redex. At this point, the term to reduceshould have been ((lambda u ((lambda x x) 10)) 20), instead of((lambda u ((lambda x x) 10)) ((lambda a a) 20)). Intuitively,the reducer has forgotten that ((lambda a a) 20) had already beenreduced. It is as if we wanted to mutate a data structure (the term toreduce), but the implementation with map was stateless .Enter a lambda term((lambda u ((lambda z ((lambda x x) z)) 10)) ((lambda a a) 20))======================================================================((lambda u ((lambda z ((lambda x x) z)) 10))((lambda a a) 20))Which redex do you want to reduce?1 : ((lambda z ((lambda x x) z)) 10)2 : ((lambda x x) z)3 : ((lambda a a) 20)3======================================================================((lambda u ((lambda z ((lambda x x) z)) 10)) 20)Which redex do you want to reduce?1 : ((lambda u ((lambda z ((lambda x x) z)) 10)) 20)2 : ((lambda z ((lambda x x) z)) 10)3 : ((lambda x x) z)2======================================================================((lambda u ((lambda x x) 10)) ((lambda a a) 20))Which redex do you want to reduce?1 : ((lambda x x) 10)2 : ((lambda a a) 20) ;;;; ******* was already reducedFigure 2: Stateless implementation with mapThe search+construct function traverses lambda terms in the orderde�ned by the Scheme implementation. For our purpose, let us assumethat this order is from left to right. When the continuation associatedwith a redex is called, it resumes the search on the contractum and onthe part of the tree that appears to the right of the contractum. This13



Advanced Programming Techniques Using Schemeexplains, why selecting redex 2 in Figure 2 makes the redex ((lambda aa) 20) available again: when the continuation associated with redex 2was captured, ((lambda a a) 20) was a subexpression that remainedto be traversed.Our �rst attempt to correct this problem is to de�ne a function map-box!! which uses the box!! macro and a box datastructure, i.e. asingle-�eld mutable structure.(de�ne map-box!!(lambda (f l)(if (null? l)'()(box!! cons (f (car l)) (map-box!! f (cdr l))))))(de�ne (make-box ) (cons 'box '()))(de�ne (box-ref x ) (cdr x ))(de�ne (set-box! x v) (set-cdr! x v))The box!! macro is de�ned using Dybvig's syntax-case [5].(de�ne-syntax box!!(lambda (x )(syntax-case x ()(( M M1 . . . )(with-syntax (((boxM boxM1 . . . )(generate-temporaries (syntax (M M1 . . . ))))((tmpM tmpM1 . . . )(generate-temporaries (syntax (M M1 . . . )))))(syntax (let ((boxM (make-box ))(boxM1 (make-box )). . . )(let ((tmpM (begin(set-box! boxM M )(lambda (boxM1 . . . )((box-ref boxM ) (box-ref boxM1 ) . . . ))))(tmpM1 (begin (set-box! boxM1 M1 ) boxM1 )). . . )(tmpM tmpM1 . . . )))))))))For each operand of an application, the macro box!! introduces a boxin which the operand value can be stored. Unfortunately, this functionproduces exactly the same behaviour as in Figure 2, assuming a left toright evaluation order. Indeed, in the expression (box!! M M1 . . . ) acontinuation captured in M also re-evaluates M1 , whereas we want thecontinuation captured in M to use the latest value returned by M1 .Our solution is the following map!! function which uses the macro !!in the inductive case. 14



Advanced Programming Techniques Using Scheme(de�ne map!!(lambda (f l)(if (null? l)'()(!! cons (f (car l)) (map!! f (cdr l))))))(de�ne-syntax !!(lambda (x )(syntax-case x ()(( M M1 . . . )(with-syntax (((boxM boxM1 . . . )(generate-temporaries (syntax (M M1 . . . ))))((tmpM tmpM1 . . . )(generate-temporaries (syntax (M M1 . . . )))))(syntax(let ((boxM (make-box ))(boxM1 (make-box )). . . )(let ((tmpM (delay (begin(set-box! boxM M )(lambda (boxM1 . . . )((box-ref boxM ) (box-ref boxM1 ) . . . )))))(tmpM1 (delay (begin (set-box! boxM1 M1 ) boxM1 ))). . . )((force tmpM ) (force tmpM1 ) . . . )))))))))The macro !! di�ers from box!! by the delay4 and force expressions,which guarantee that if (force tmpM1 ) is evaluated several times, itsvalue is always a box, but it evaluates M1 only once.Remark An application \annotated" by !! is an embeddingof a sequential version of Queinnec's semantics of applicationsin ICSLAS [20].4. DiscussionMostly-functional languages such as Scheme and ML rely on afunctional core but also use imperative features for very speci�c purpose.Imperative features in these languages are used for a di�erent reasonthan in imperative languages. This single example uses several of theseprogramming techniques:� continuations are used for resuming and aborting computations;� side-e�ects are used explicitly to program mutable data structures;4As in [22], delay guarantees that only one value is computed for a promise.15



Advanced Programming Techniques Using Scheme� the imperative behaviour of the program is abstracted in the macro!! so that the function map!! can have the same recursion schemaas map;� delay ensures that some expressions are evaluated once at most.The most controversial issue in this solution is probably the usage ofcontinuations. The reader might think that this example was arti�ciallycreated to use such a programming technique. This is not the case. Wechose this example because the problem is not trivial and its explanationis short. Could we have programmed the solution di�erently? We couldhave avoided �rst-class continuations by using an explicit continuation-passing style; such a solution essentially presents the same di�culty,only adding the burden of passing extra continuation arguments. Thekey reason for using continuations in this example is to share the searchand construction of a subtree between two reduction steps. In addition,the continuation implicitly encodes various information that would haveto be made explicit in their absence, such as the position of the redex inthe tree, the associated list of redices that are no longer valid, i.e. thosethat were found when searching the redex.If the programmer decides to abandon the use of continuation inthis example, the idea of maintaining a state as reduction proceedsstill remains valid. Macros could also be used to separate the state-mutating functionality from the recursion schema for data structuretraversal. A state can also be represented in a functional mannerby a stream [2, 3]; such a solution would further rely on the delayconstruct. The coroutining e�ect between the construction phase andthe interactive loop would be implemented using lazy evaluation insteadof continuations. This might be an interesting alternative using a purelyfunctional style, but it also o�ers pedagogical di�culties as it relies onmutually recursive implicit streams. Let us mention here that our goalwas not to present an e�cient reduction technique for lambda terms;there exist some techniques that are more appropriate for this purpose,like abstract machines or graph reduction [18].Our teaching experience is that there are three categories of students.Very few students were unable to understand the program; ourinterpretation is that they had not managed to build their own intuitionof continuations, and therefore were unable to understand the key idea ofthis program. The vast majority of the students were able to understandthe program. We believe that the interactive nature of the program,the possibility of displaying debugging traces, and the small numberof functions were important reasons in their understanding. We stillbelieve that the most di�cult problem for them is to understand theuse of continuations in the function search+construct . However, we16



Advanced Programming Techniques Using Schemeobserved that only the best students are able to reproduce a similar styleof programming. This requires the ability to deduce that a common set ofoperations, i.e. reconstructing a result for the context, can be abstractedinto a continuation.This example can also be used for a series of homework: the traceindentation mentioned above, extension of the language with otherconstructs like if or datastructures like pairs, use of a Felleisen's styleof semantics for non-functional features [9], other parameter-passingconventions.With this example, we have killed two birds with one stone: wehave described a program with advanced programming techniques, butalso we have illustrated the reduction semantics of the lambda-calculus.Some might argue that this example is a functional program about afunctional program, and it does not deal with the real world. In fact, thisprogram has some features that go beyond this speci�c application: it isinteractive and it is presenting and reorganising information accordingto the user's choice. We are considering other alternative application tothis program. Currently, we are investigating the problem of navigatinga hypertext system: users are o�ered a choice of links to follow, andselecting a link results in displaying a new document itself containinglinks.5. ConclusionThis single example highlights various advanced programming tech-niques: �rst-class continuations in a coroutine-style, non-local exits, de-layed evaluation, syntactic abstraction, and mutable datastructures.It also forces the student to understand interpretation techniques; itshows how evaluation order determines program behaviour, and it helpsto distinguish control from state.6. AcknowledgementLuc Moreau was partially supported by EPSRC GR/K30773 and ECproject reference ERB 4050 PL 930186. Thanks to the anonymousreferees for their useful comments.
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Advanced Programming Techniques Using SchemeA. Appendix: Pattern MatchingIn this paper, we are using a subset of Wright and Duba's [27] matchmacro. The syntax of a match expression is as follows:(match exp (pat . body) . . . )The value of exp is matched against the �rst pattern pat . If thematching succeeds, then the body of the clause is evaluated in the scopeof the variables appearing in the pattern. Otherwise, the process isrepeated with the following pattern. If no pattern matches the value ofexp the match has an unspeci�ed value.A pattern can be:� (), #t, #f, strings, numbers, quoted sexpressions: these constantsmatch themselves.� variable: such a pattern matches any value, and results in bindingthe variable with the value.� (pat1 . . . patn) matches a list of n elements, and each pati mustmatch the ith element of the list.� (? predicate pat1 . . . patn): In this pattern predicate mustevaluate to a unary function. The pattern matches a value if thepredicate applied to the value returns true and all pati also matchthe value.� ($ struct pat1 . . . patn) matches a structure struct de�nedby de�ne-structure, and each component is matched by asubpattern pati .Let us consider the function redex? :(de�ne redex?(lambda (applic)(match applic((('lambda x body) V ) (value? V ))(((? primitive? ) V ) (number? V ))( #f))))The value bound to applic matches the �rst pattern if it is a list oftwo elements, and if the �rst element is itself a list of three elementsstarting with the symbol lambda. In addition, the body of the clausewill be evaluated in the scope of three new bindings for x , body , and V .Let us assume the value of applic does not match the �rst pattern. It18



Advanced Programming Techniques Using Schemematches the second one if it is a list of two elements, whose �rst elementsatis�es the predicate primitive? .The structure constructor de�ne-structure has the followingsyntax:(de�ne-structure (struct arg1 . . . argn))It de�nes a constructor make-struct and accessors struct-argi .B. Auxiliary FunctionsA few auxiliary functions were not de�ned in the core of the paper.(de�ne mapcan(lambda (f l)(if (null? l)'()(append (f (car l))(mapcan f (cdr l))))))The function display-term is called after every reduction and displaysthe reduced term.(de�ne display-term(lambda (term)(newline)(display "======================")(newline)(pp term)(newline)))(de�ne initial-prompt(lambda ()(display "Enter a lambda term")(newline)(read)))The substitution takes care of renaming bound variables in exp thatbelong to the set of free variables of new . In this de�nition, we look forsimplicity and not e�ciency.(de�ne substitution(lambda (exp new id)(match exp((? symbol?) (if (eq? exp id) new exp))(('lambda id2 body)(if (eq? id2 id)exp(if (member id2 (free-variable new))19
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