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Abstract

We present the formal semantics of future in a Scheme-like
language which has both side-effects and first-class continu-
ations. Correctness is established by proving that programs
annotated by future have the same observable behaviour as
their non-annotated counterparts, even though evaluation
may be parallel.

1 Introduction

MultiLisp future [1, 8] is an annotation by which the pro-
grammer indicates that some expression may be evaluated
in parallel. By definition, future-based programs have the
same observable behaviour as their non-annotated counter-
parts, i.e. annotated programs return the same result as in
the absence of annotations, even though evaluation may be
parallel.

It is a delicate matter to design a language with futures
and effects, i.e. with side-effects and first-class continua-
tions: as the values of some programs using effects may
depend on the evaluation order, incautiously adding par-
allelism would make them non-deterministic, which would
contradict the idea that future is an annotation.

So far, implementation and efficiency questions [13, 25,
8, 12, 10, 11, 3] have mainly motivated research on annota-
tions for parallelism in Lisp-like languages. Recently only,
two semantics of parallelism by annotations were proposed.
The author of this paper defined a semantic framework for
functional programs with first-class continuations and pcall
annotations [15, 16, 17]. Flanagan and Felleisen [7] formu-
lated the semantics of future in a purely functional language.
However, the issue of future in a language that has side-
effects and first-class continuations remains unaddressed.
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The goal of this paper is to formalise the semantics of
future in a Scheme-like [22] language with side-effects and
first-class continuations. More generally the motivation of
our research is to design a distributed implementation of
Scheme based on a future-like annotation to create remote
computations. This paper presents the semantic foundation
of our language, which serves as a guideline to build our
distributed system. Distribution considerations are beyond
the scope of this paper and will be covered in a forthcoming
report.

The major contributions of this paper are three opera-
tional semantics which highlight different aspects of a pro-
gramming language with future. The first semantics is the
sequential semantics of the language which regards future as
a transparent annotation without parallelism-related mean-
ing. By transparent, we mean that the value of future is
the value of its argument. The second semantics interprets
future as a construct that indicates that some expression
may be evaluated in parallel; it embodies the technique to
coordinate effects in a semantically sound way. The first
two semantics are context-rewriting machines [4, 7], which
are advantageously high-level and concise. The third se-
mantics is a lower-level refinement of the second semantics.
It features an explicit shared memory & la MultiLisp [8],
placeholder data-structures, and a notion of legitimacy [12]
to assess the validity of results and the soundness of side-
effects. All semantics are proved to be equivalent; proofs
can be found in [18].

This paper is organised as follows. The three semantics
are presented in Sections 2, 3, and 4, respectively. Section
5 discusses related work, and is followed by a conclusion.

2 The CS-Machine

The syntax of our idealised Scheme-like language is shown
in Figure 1: Ay is an applied call-by-value lambda calculus
extended with primitives for manipulating first-class boxes
and continuations. In addition, Ay has a future construct
written as (future M). In the sequel, we adopt Barendregt’s
[2] definitions and conventions on the lambda-calculus; we
shall use M [z < V] to denote the substitution of V for the
free occurrences of z in M. Furthermore, as the seman-
tics that we propose generalise Flanagan and Felleisen’s [7]
semantics of future, we try to use their notations and termi-
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Figure 1: Syntax of Ay

nology wherever possible.

The first operational semantics is given by the C'S-machi-
ne, derived from Felleisen, Friedman, Hieb, and Sabry’s [4, 6,
23] Ay-C'S-calculi. Its state space and evaluator specification
are displayed in Figures 2 and 3, respectively. The CS-
machine is a contert-rewriting machine that uses the notion
of evaluation context [4]: an evaluation context £ is a term
with a “hole”, [ ], in place of the next subterm to evaluate.

The transition relation —.s maps states onto states. Sta-
tes are expressions of the type (letref 6 M). The construct
(letref 6 [ ]) corresponds to Felleisen and Hieb’s [6] p-notation,
where the store 0, a finite function represented as a set, maps
box variables to values. The reader should observe right
here and now that the store 6 is local to a state. This detail
will turn out to be essential, when parallelism is added to
the machine. The letref construct accepts mutually referent
boxes, which correspond to circular data-structures in a real
memory.

The semantics is defined by a total evaluation function
evalcs, which associates terminating programs with Answers
and non-terminating ones with L. An Answer is a closed
value where A-abstractions, boxes and continuations are re-
placed by tags. The first four rules of Figure 3 deal with
the purely functional subset of the language in a traditional
way. When the functional constant callcc, which stands for
Scheme call-with-current-continuation, is applied on a
value, rule (capture) creates a first-class continuation rep-
resented as an abortive abstraction Av.AE[v], with £ the
current evaluation context. A term A4 M, called an abort-
application [4], is meant to terminate the computation and
to return the value of M; its behaviour is modelled by
(abort) which discards its evaluation context. According
to rule (makeref), the effect of applying makeref on a value
V' is to extend the local store with an association between a
new box variable and the value V. This box can be accessed
by deref and modified by setref!. As we wish to define a
total evaluation function, error situations are detected, for
instance in (8,) when a non-applicable value occurs in op-
erator position. Error situations are reported by using the
abort operator A, which will end the computation with the
distinguished constant error. Rule (future id) [7] guarantees
that future is an annotation by requiring the value of future
to be the value of its body.

We shall consider the C'S-machine as the sequential se-
mantics of the language Ay. Its correctness is established
by the fact that its reduction rules are derived from the A,-
CS-calculi [4, 6, 23]. The C'S-machine defines future as a
transparent operator because the value of future is the value
of its argument. Hence, annotated programs have the same

observable behaviour as their non-annotated counterparts.

3 The P(CS)-Machine

In the C'S-machine, future is regarded as a transparent an-
notation, but the real purpose of future is to indicate that
an expression may be evaluated in parallel. This section
presents the P(CS)-machine in which future is a construct
that can create parallelism. Figure 4 displays the state space
of the P(CS)-machine. We introduce a new kind of value,
called placeholder variable, which “represents the result of
a computation that is in progress [7]”. We also distinguish
proper values from runtime values: the former are like the
runtime values of the C'S-machine, while the latter include
placeholder variables as well.

Whenever the P(CS)-machine interprets future as a con-
struct for parallelism, it creates a new state with its own
local store. Each state of the P(CS)-machine can be viewed
as a task that may be evaluated in parallel with other states.
Newly created states appear inside a construct f-let of the
form (f-let (p M) S). Like a let, f-let binds a placeholder vari-
able p to the value of M in S; its intension is to model the
potential evaluation of S in parallel with the state in which
f-let occurs. The term M is called the primary term and S
is the secondary state. The computations that S generates
are speculative because they are not known to be needed
before M returns a value; they may even be useless if M
escapes by a continuation invocation. On the other hand,
the evaluation of M is mandatory because it contributes to
the value of the state in which f-let occurs.

The evaluator specification of the P(C'S)-machine is dis-
played in Figure 5. The meaning of S; =25 Sa is that
n steps are required in the transition from S; to S», and
among them m < n steps are mandatory.

As indicated by rule (fork), the primary term of a f-let
construct is initially the future body, whose value will be
bound to a new placeholder variable p. The secondary state
evaluates a term composed of the context of future, i.e. its
continuation, to which the placeholder p was passed; the
secondary state' has its own local store (initially empty).
As far as the secondary state is concerned, the store 8 of the
mandatory term is regarded as a remote store.

According to rule (speculative), the P(CS)-machine has
the potential to perform speculative computations: if a state

1 The definition of the evaluation context £ is explained by the fact
that a f-let created by (fork) always appears in the body of a letref.
As rule (capture) is the only rule to create abort-applications, and as
evaluation is not allowed inside abort-applications, the argument of
A is always of the form E[V].
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Figure 2: State space of the C'S-machine
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Transition rules: —.s: State.s — Statecs

(letref 6 E[(V1 V2)])  Hres

(letref 8 E[(car V)])  res

(letref 0 E[(cdr V)]) s

(letref 0 E[(if V My Ms)]) s

—

)

L]
Hes
—

(letref 6 E[(callcc V)])
(letref 6 E[(A M)])
(letref 6 E[(makeref V)])

[}

L]

(letref 6 E[(deref V)])

)
@

(letref 8 E[(setref! Vi V3)]) —

[}

E]

(letref 6 E[(future V)])  +oes

(letref 8 E[M[x < V2]]) if Vi = (Az.M)
(letref 0 E[(A error)])  if Vi € AValue
(letref 6 E[V1]) if V= (cons V1 V3)
(letref 6 E[(A error)]) if V # (cons V1 Va)
(letref 6 E[V2]) if V.= (cons Vi V3)
(letref 6 E[(A error)]) if V # (cons V1 Va)
(letref 6 E[M1]) if V # false
(letref 6 E[M3]) if V = false

(letref 8 E[V (Av.A E[v])])

(letref 6 M)

(letref §' £[b]) with b ¢ DOM(8), &' =0 U {(b V)}

{ (letref 6 E[V')) fV=>b0bV)ech
(letref 0 E[(A error)]) if V #b

{ (letref 6" E[void])
(letref 6 E[(A error)])

(letref 6 E[V])

ifVi#b

Evaluator specification: evalcs : A? — Answer U {L}

Unloadcs[V]
eval.s(P) = 1

if (letref () P) 7, (letref 8 V)
if Vi € N, 35, € Statecs such that
(Ietref () P) =50 and S; —es S¢+1

Figure 3: Evaluator specification of the C'S-machine

if 1 = b, be DOM(&), 6 = 6[() = ‘/'2]
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S can be reduced to a state S’, these reductions can also be
performed if S appears inside the body of a f-let, without
waiting for the value of the placeholder. The only rules that
introduce speculative computations are (fork) and (specu-
lative), as indicated by the explicit zero for the number of
mandatory transitions.

We can see that future, interpreted as a task-creation
mechanism, offers a possible concurrent evaluation between
a mandatory term computing the value of a placeholder, and
a speculative state using this value; this clearly refers to a
producer-consumer type of parallelism. In the consumer,
strict operations, i.e. the operations that need the actual
value being computed by the producer, introduce synchroni-
sations. Strict primitives, like car, cdr, deref, and setref! re-
quire their arguments to be pairs or boxes. Similarly, “strict
positions” like the operator position of an application or the
predicate position of a conditional demand values different
from placeholders. For this reason, all strict operations ver-
ify that their argument is not a placeholder as indicated in

rules (By), (car), (cdr), (if), (deref), (setref).

If a primary term has produced a value V, rule (join)
substitutes V for the free occurrences of the placeholder vari-
able in the secondary state. In order to preserve the states
organisation, the stores of the speculative and mandatory
states are merged together, after having substituted V for
the free occurrences of p across the whole speculative store.
In the perspective of a distributed implementation, this rule
may be interpreted as follows: mutable objects allocated by
a mandatory task in its local store can be remotely accessed
by a speculative task, only when the mandatory task has
completed its execution.

By the non-determinism which stems from rules (fork)
and (speculative), the evaluator can elect to perform specu-
lative transitions instead of mandatory ones. As speculative
computations may be infinite, while mandatory ones remain
finite, divergence should be defined with the greatest care.
In the following example,

(callec Mk. ((future (k 1)) Q))

the final result is 1, but an unbounded number of specu-
lative transitions can be performed to evaluate the diverg-
ing term (2. Therefore, we say that the evaluator diverges
for a program P, if P leads to an infinite transition se-
quence that includes mandatory computations regularly of-
ten. Even though the evaluation order can be non-determi-
nistic, eval,cs defines a total function. Based on a modified
Diamond technique [7, 18], the following theorem states that
the observable behaviours of programs are the same in the
CS- and P(CS)- machines.

Theorem 1 eval.s = evalpes O

As a corollary of Theorem 1, future interpreted as a task-
creation operator is a transparent annotation, i.e. future
does not change the final answer of programs with effects
despite parallel evaluation.

Two different techniques are used to ensure that future
remains an annotation in the presence of first-class continua-
tions and side-effects. On the one hand, rule (capture) pack-
ages up the whole continuation £ into a first-class abortive

abstraction which computes a terminal value when applied.
The value will be considered as a final answer if it is pro-
duced by a mandatory state. On the other hand, consis-
tency of side-effects is enforced by prohibiting a speculative
state from accessing the local store of a mandatory one; in
other words, access to a remote store requires synchroni-
sations. This semantics ensures that parallelism can exist
between states that perform effects locally. Practically, it
means that two programs written by two programmers can
run in parallel if each program uses its own boxes locally.
This is precisely the programming style offered by mostly-
functional languages like Scheme.

Our semantics does not enforce the scheduling strategy,
except that it demands to perform mandatory transitions
regularly often. The rule (fork) models task creation in the
machine, but it is the implementor’s responsibility to choose
the characteristics of the scheduling strategy that suit best
his goal, like for instance eager or lazy task creation [14, 3],
data-centric or task-centric task allocation [21].

4 The F-PCKS-Machine

In MultiLisp [8], an expression (future M) also offers a po-
tential concurrent evaluation between the task computing
the value of M and the task wusing it. In order to syn-
chronise these producer and consumer tasks, MultiLisp uses
placeholder data-structures that can be assigned at most
one value. The process that obtains the value of M stores
this value in the placeholder. Assigning a value to a place-
holder is usually referred to as determining the placeholder
to the value. In the presence of first-class continuations,
the expression M could “return multiple values”, i.e. the
continuation of M could be passed several values, succes-
sively. In order to preserve the “determine once” paradigm
of placeholders, the first value passed to the continuation of
M is stored in the placeholder, while the subsequent ones
re-evaluate the continuation, as if future had not existed [12].

On the contrary, the P(CS)-machine implements place-
holders as variables. By definition of substitution, variables
receive at most one value, but rule (capture) can duplicate
their binders. As a result, the P(C'S)-machine is unsatisfac-
tory in a number of respects:

1. In the state S1 = (letref 6 (f-let (p E[callcc V]) S)), the
continuation to be captured is of the form

v A(f-let (p E[v]) S).

Each invocation of this continuation reinstates the f-let
construct, and possibly gives each instance of p a new
value.

2. In the same state Si, if speculative computations S —
S’ are performed after the continuation is captured,
the invocation of the continuation will restore the state
S and not S’. More generally, rule (abort) erases any
speculative computation that was performed in the
context of A.

3. Even though rule (capture) and the rules that imple-
ment the invocation of continuations (3, followed by
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Figure 4: State space of the P(CS)-machine (Differences with Figure 2)

Transition Rules:

, (letref 0 E[M [z + V3]])  if Vi = (Az. M)
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(letref 6 (f-let (p M) S)) a0 (letref @ (f-let (p M) S")) if S0 S (speculative)
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1

evalpes (P)
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—pes (letref 6 W)
if Vi € N, 3S; € Statepes, ni, mi; € N such that
=50 and S; '—)Zé;ml Si+1 with m; > 0.

Figure 5: Evaluator specification of the P(CS)-machine




abort) are simple and faithful to the semantics of con-
tinuations [4, 6, 23], they are expensive and difficult
to implement. Indeed, rule (capture) takes a snap-
shot of all speculative states running in parallel with
the current state, whereas rule (invoke) restores this
snapshot,.

4. When a primary term provides a value V', rule (join)
substitutes V' for the free occurrences of the place-
holder variable in the f-let body, which involves a sub-
stitution across the whole speculative store. This sub-
stitution fundamentally differs from the one in the (3,-
reduction: the latter corresponds to an environment
extension, while the former is comparable to a side-
effect.

Besides the fact that the P(CS)-machine does not con-
sider placeholders as mutable data-structures, there is an-
other reason that explains its distinct behaviour with re-
gard to MultiLisp implementations: context-rewriting ma-
chines do not distinguish the continuation of a future from
its speculative evaluation, because both are represented by
the same evaluation context. Consequently, rule (capture)
has no other choice but to take snapshots of running states.

Taking these observations into account, we have designed
a lower-level refinement of the P(C'S)-machine, which incor-
porates MultiLisp-like solutions. The F-PCKS-machine ab-
stracts a MIMD architecture with a shared memory in the
tradition of MultiLisp systems [8]. The F-PCKS-machine
generalises the CK and CKS machines [4, 5], by providing
a parallel evaluation mechanism based on a notion of task.
Each task is represented by a CK-configuration (composed
of a control string and a continuation), and has access to a
shared memory.

The state space of the F-PCKS-machine appears in Fig-
ure 6 and its evaluator specification in Figure 7. The set
of values contains a new kind of object (ph a), called place-
holder, which refers to a location « in the shared store.
A placeholder is undetermined if its associated location is
empty; it gets determined to a value V by storing V in
its location. In the F-PCKS-machine, care is taken not to
determine a placeholder more than once. As in the P(CS)-
machine, a strict operation must ensure that its argument is
not an undetermined placeholder. The action of obtaining
the value of a placeholder, called touching the placeholder,
is implemented by the function touch,. Let us notice that
this function is recursive because placeholders can be deter-
mined by other placeholders.

Active tasks are quadruples formed of a term, a continu-
ation code, a legitimacy [12], used to coordinate effects and
validate final values, and a name. A legitimacy (leg ), like
a placeholder?, is a data-structure that refers to a location
in the shared store, but unlike a placeholder, it is not consid-
ered as a value because there exists no primitive to reify it
to the status of value. We shall also use the terms “undeter-
mined” and “determined” for legitimacies. In the P(CS)-
machine, f-let is the construct that distinguishes mandatory

?Katz, Weise, and Feeley [12, 3] suggest to implement legiti-
macy by placeholders. However, as placeholders and legitimacy
have different semantic purposes, we decided to give them different
representations.

from speculative evaluations; legitimacy plays a similar role
in the F-PCKS-machine.

When starting the execution of a program, the initial
task is given the initial legitimacy ¢;. Whenever a task 7
evaluates a future, rule (fork) creates a task 7', and allocates
a new placeholder ph and a new legitimacy ¢1 (both initially
undetermined). After transition (fork), task 7 still has the
same legitimacy, but is now evaluating the future body with
a continuation (k det(ph,¥1)), where ph is the placeholder
to determine and ¢; the legitimacy of 7. Meanwhile, the
task 7’ begins to evaluate the continuation of future with
the new placeholder ph. We know that task 7’ performs a
speculative computation on behalf of 7 because the legiti-
macy of 7' is ¢1, and the continuation of task 7 contains a
code (k det (ph,£1)), where ¢; is explicit.

Rule (determine) has two roles. First, it ensures that a
placeholder is given at most one value: regardless of its le-
gitimacy, the first task producing a value for a given place-
holder has the right to determine the placeholder to that
value, while the other ones continue the evaluation as if no
future had existed. Second, it keeps track of legitimacy as
follows. If the placeholder (ph a) gets determined to a value
V, the task that consumes this placeholder speculatively be-
comes dependent on the value V. This dependency is made
explicit by giving the consuming task the legitimacy of the
producing task. More precisely, the legitimacy of the con-
sumer task is determined to the legitimacy of the producer
task. So, legitimacy is passed between tasks as a token,
whenever a placeholder gets determined.

When a legitimacy (leg o) gets determined, location « re-
ceives a legitimacy, which might also be determined. Hence,
as evaluation proceeds, chains of legitimacies get formed in
memory. We define a relation ¢; ~», ¢, stating that there
is a path from legitimacy ¢; to legitimacy ¢2, which means
that control has flowed from a task with legitimacy ¢» to a
task with legitimacy ¢1. Intuitively, legitimacy models the
fact that a sequential implementation would have performed
the evaluation done by the tasks with legitimacies > to ¢;.
The relation ~» is used to determine whether a final value,
i.e. a value returned to the (init) continuation, is a valid
answer. A valid answer is produced by the task whose le-
gitimacy ¢ is such that ¢ ~, £;. The initial legitimacy ¢; is
a pre-allocated legitimacy which serves as a marker for the
end of legitimacy chains. This legitimacy always remains
undetermined because the initial program does not depend
on any placeholder.

A first-class continuation (co k) is a pair composed of
tag co and a continuation code k. A box (bx «,£) is a triple
composed of a tag bx, a location, and the legitimacy of the
task which performed the transition (makeref). As legiti-
macy represents the sequential flow of control, it is used to
coordinate side-effects soundly. Read and write operations
on boxes are allowed if they are performed in the same order
as a sequential implementation would have done them; i.e.,
the task that wishes to access a box should have a legitimacy
determined (possibly through a chain) to the legitimacy of
the task that created it. Said differently, a task is not al-
lowed to access a box if it is more speculative than the one
that created it, as in the P(C'S)-machine.
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te T <M7 HﬂZ)T | <i7 (Stop)) i)T
MeAfpck’s = \4 | (M M)

(f M M M)

(future M)

W € PValuefpers = c| x| (Ax.M)
(cok) | (bxa,f)
(cons V' V) | fe

V € Valuepeks = W | ph

(Proper Value)

(Runtime Value)

(State) Mandatory descendant:
(Task)
(Term)

Zo ] 41 lf
f() = 51, or
o(ao) ~o b1 if by = (leg o) and o(ap) # L

Touch function:

h : cks cks
Kk € CCode n= (init) (Continuation code) toue Vﬂuﬁ{/pa];u:f Szoﬁ{{p_l_k}
pcks
gz fa":‘z ]‘/\2) touch, (V) = V if V #ph
touch, ({ph a)) = touch,(c(a)) if o(a) # L
(x cond(M, M)) touch, ((ph a)) = Lifo(a)=L

(k det (ph,£))

ph € Placeholder  := (ph a) (Placgl}older) Initial Legitimacy: ¢; = (leg a;)

{ € Legitimacy = (leg @) (Legitimacy) [ .40 Store: o; = Aav. L

o € Storespcks Loc — Contents (Store)

O € Contents BES Vi]e| L (Store Content) (711024 function (differences):

a € Loc = {ao,a1,...} (Location)

T €Tid = {r0,71,...} (Task Identifier) Unload pers[(bx a,8)] = box
Unloadspers[{co k)] = procedure

Figure 6: State space of the F-PCKS-machine

The correctness of the third semantics comes from Theo-
rem 2 which states that the evaluators of the F-PCKS- and
P(CS)- machines define identical functions. The proof of
Theorem 2 [18] involves a translation of any F-PCKS-state
into the P(CS) state space. A Lemma establishes that any
reachable state of the F-PCKS-machine corresponds to a
state that the P(CS)-machine can reach.

Theorem 2 evalfpcks = evalpes O

The F-PCKS-machine is a formalisation of Katz and
Weise’s implementation schema [12]. If we consider the func-
tional subset with first-class continuations, it avoids syn-
chronisations and resorts to speculative computations as
much as possible. It is well-known that speculative com-
putations may lead to unintended computations, and a pro-
grammer might wish to have more control on their genera-
tion. There exist two opposite views concerning this prob-
lem: we can restrict either futures or continuations. Both
approaches can be easily described from the current seman-
tic framework. Figure 8 displays two proposed variants; in
contrast, the semantics of Figures 6 and 7 will be referred
to as “the unrestrictive semantics”.

The essence of future is to initiate a computation that
speculatively uses a placeholder while its actual value is be-
ing computed. The “future-restrictive” solution authorises
a task 7 to determine a placeholder allocated when evalu-
ating an expression (future M), only if 7 is the mandatory
task that evaluated M. This approach restricts speculation
because it forbids a task speculatively spawned by e to take
advantage of the speculative computation performed with
the placeholder. We implement this solution by adding a le-
gitimacy to placeholders, and by modifying rules (fork) and
(determine). Every newly allocated placeholder receives the

legitimacy of the task that executes (fork). Rule (deter-
mine) is added a new side-condition so that placeholders can
now be determined only when the legitimacy chain guaran-
tees that the current task is not more speculative that the
one that created the placeholder. Though placeholders look
very similar to boxes, they remain different from them, be-
cause they can be mutated at most once, and because read-
ing their content is not conditioned by the speculativeness
of the task.

The “continuation-restrictive” solution, proposed in [16,
18], allows a task 7 to invoke a continuation, if 7 is not
more speculative than the task that created the first-class
continuation. As far as the implementation is concerned, a
legitimacy is added to each first-class continuation; the legit-
imacy of a continuation is the one of the task that executes
(capture). Similarly, rule (invoke) can be fired according to
the legitimacy added to continuation points.

The “continuation-restrictive” solution bears a strong re-
semblance to the technique that coordinates side-effects in
the F-PCKS-machine. Parallelism is still allowed between
modules that do not share continuations or boxes, which is a
reasonable assumption for mostly-functional languages like
Scheme. The “future-restrictive” solution is more permissive
because it still allows speculative invocations of continua-
tions. The following example illustrates how it differs from
the unrestricted semantics of the F-PCKS-machine:

Er[future (callcc Ak.
(cons (future(k 1)) (future(k 2))))]

In the unrestricted semantics, the outermost future allocates
a placeholder phi, and creates a task to evaluate & [phi]
speculatively. The innermost futures allocate two placehold-
ers phsa, phs, and create two additional tasks, so that (k 1),



Transition rules: —cps: (T'ask x Storefpers) = (Tasks”

(M N),k,0)-

(V, (k arg N), {)~
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—cks ((cons Vi V), k,£), (cons)
5 (Vi,k, L)~ if touchs (V') = (cons Vi V2) (car)

cks \ {error, (x fun (co (init))),£), if touch, (V) % (cons Vi Va), touch, (V)#L car
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Figure 7: Evaluator specification of the F-PCKS-machine




future-restrictive solution:

ph € Placeholder := (ph a, ) (Placeholder)

(future M, k,0)r —crs { (M, (x det (ph,t1)), ), (ph,k,l1); };o[on + L][a + 1] (fork)
with £; = (leg a1),ph = (ph , ), a fresh a1 € Loc,

a fresh o € Loc, anew 7' € Tid

(1, (stop), riolar  bolla ¢ V] if o(a) = L, b~ £

(V, (k det ({ph , £), (leg 1)), €2)r Frcks { (V. k, £2), if o) # L (determine)
continuation-restrictive solution:
W € PValuefpers = | (cok,£) | (Proper Value)
(V,(k fun callcc),£); —ers ({co &, ), (k fun V), {), (capture)
(V, (k" fun (co ,01)),£); +ers (VK £)r if Loy by (invoke)

Figure 8: Speculation controlling variants

(k 2), and (cons phz phs) are all returning values for the out-
ermost future body, in parallel. Regardless of its legitimacy,
the first task that returns a value (1, 2, or (cons p2 p3)) stores
it in phi, and dies; the following ones keep on evaluating the
context &;.

On the contrary, the future-restricted semantics allows
the placeholder phi to be determined by 1 only; the other re-
sults, which are more speculative than 1, requires re-evalua-
ting the context £1. This implementation of future favours
programs using continuations in a downward way, by avoid-
ing the speculative computation performed on &1 [phi] being
“stolen” by a non-legitimate result (2 or (cons p2 ps)). This
solution particularly makes sense when side-effects should be
performed in &;. Indeed, as side-effects appearing in £; can
only be performed by the legitimate task, it is a reasonable
assumption to only let the mandatory task take advantage
of the speculative computation already performed.

5 Related Work and Discussion

Previously, the author [15, 16, 17, 19] studied the semantics
of a functional language extended with first-class continu-
ations, side-effects, and pcall annotations. The annotation
pcall indicates that subexpressions of an application may be
evaluated in parallel before applying the value of the oper-
ator on the values of the arguments. Parallelism generated
by pcall is said to be of the type “fork and join”, while the
one generated by future, more speculative, is of the type
“producer consumer”. The following translation suffices to
define pcall in terms of future:

(pcall M N) = ((future M) N)

In [17, 18], the semantics proposed for pcall-based programs
relied on the PCKS-machine. The F-PCKS-machine gen-

eralises the PCKS-machine by the language accepted and
simplifies the architecture.

According to the nomenclature proposed in this paper,
the semantics of pcall [15, 16, 17, 18] can be categorised as
“continuation-restrictive”. This means that a notation pcall
based on the unrestricted future would be more speculative
than in [15, 16, 17, 18].

The only other work concerning the formal semantics of
annotation-based parallelism is Flanagan and Felleisen’s [7]
semantics of future in a purely functional language. They
proposed several abstract machines with varying degrees of
intensionality. Our CS- and P(CS)- machines extend their
C- and P(C)- machines with side-effects and first-class con-
tinuations. Interestingly, no extra constraint is added to the
functional core in order to support effects.

Our F-PCKS-machine is a lower-level refinement of their
Cpr-machine. Indeed, as continuations were part of the lan-
guage, we considered that it was crucial to understand when
placeholders were allocated and determined. To that end, we
have provided the F-PCKS-machine with an explicit shared
memory & la MultiLisp [8]. The F-PCKS-machine is still
too abstract to be considered as a real implementation. We
could easily get rid of the substitution model by introduc-
ing an environment [4]. Furthermore, the level of atomicity
assumed by transitions is still too high; a solution based on
explicit critical sections could be derived from [16].

In addition, in order to keep the semantics as simple as
possible, we have not included queues in the representation
of placeholders. As a result, a task which touches an un-
determined placeholder is not allowed to fire a transition
rule. In order to avoid busy-waiting, it is common practice
[12, 3, 8] to suspend such a task, to put it in a queue asso-
ciated with the placeholder, and to resume it as soon as the
placeholder gets determined.



The collection of tasks is an issue that can have a seri-
ous impact on the practicality and performance of a parallel
implementation. Halstead’s MultiLisp [8] does not reclaim
any runnable task. The collection of tasks in Miller’s Mul-
tiScheme [13] is solved during garbage collection: indeed, a
task can be collected if the placeholder that it determines is
accessible from the gc roots.

From their semantics of future, Flanagan and Felleisen
derive a set-based analysis [9] to perform a “touch optimi-
sation”, removing provably-unnecessary touch operations.
There is no doubt that such an analysis would be useful for
our language. However, we feel that a major difficulty is
to design an analysis which provides safe and accurate ap-
proximations of expressions, when side-effects and continua-
tions are used. Other analysis and associated optimisations
are conceivable to improve evaluation. For instance, every
access to a box (read or write) requires to check the legiti-
macy of the running task. A static analysis and a program
transformation, in the spirit of the touch optimisation, could
reduce the costs of theses checks; set-based analysis [9] or
inference of regions and effects [24] would be two interesting
approaches to design the analysis.

The annotation future had never been studied in the pres-
ence of both side-effects and first-class continuations. Katz
and Weise [12, 3] described an implementation for future and
continuations, and Tinker and Katz [25] designed Paratran
to deal with futures and side-effects. Our “unrestricted” se-
mantics is based on Katz and Weise’s solution. However, we
are much more conservative than Paratran for side-effects.
Indeed, in Paratran, side-effects are performed optimisti-
cally: a run-time system detects data dependency violations
and is able to correct them by restoring a previous state by
a roll-back mechanism. Unfortunately, the run-time system
is so expensive that it penalises sequential programs too
much. Katz and Weise also suggest a synchronising vari-
ant of future, which seems closer to our “future-restrictive”
semantics; however, it permits less speculation because it
requires killing illegitimate tasks.

Feeley’s thesis [3] is a deep study of the performance of
Katz and Weise’s implementation schema. He observes that
the implementation of this semantics of future requires cap-
turing the continuation of each future, so that it can be called
when multiple returns occur. Feeley shows that by using a
lazy task creation mechanism [14], i.e. delaying the creation
of the task until it needs to be transferred to another proces-
sor, the capture of continuations can be postponed until the
time of steal, where it has to be done anyway. Hence, good
performance can be achieved by combining the semantics
with lazy task creation.

Feeley discusses the cost of supporting legitimacy. He
distinguishes legitimacy propagation (rule determine) and
legitimacy testing (£ ~ ¢;), and proposes techniques to re-
duce their costs. He also addresses the issue of the runtime
cost of touching placeholders; variants that avoid recursive
touching are proposed.
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6 Conclusion

The design of a parallel language based on future with side-
effects and first-class continuations has been a long-standing
open problem. We present the first semantics of such a lan-
guage and prove its correctness. Such a semantics is useful
for the derivation of a proven-correct compiler and for static
analysis of parallel programs. The lower-lever framework
presented is also suitable to express less speculative variants
of the semantics.

A distributed implementation of Scheme based on the
proposed semantics is being developed using Queinnec’s DMe-
roon [20], a library offering facilities to distribute objects,
and to maintain their coherency over the network.
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