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Abstract

Explicit parallelism can be introduced in Scheme by adding the constructs fork, pcall and
future. Katz and Weise gave an implementation where those constructs are transparent even when
first class continuations are used. In this paper, we formalise this work by giving an operational
semantics for a functional language with first class continuations and transparent constructs for
parallelism. We introduce a concept of higher order continuation that we call metacontinuation
which preserves sequential properties of continuations in a parallel language.
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1 Introduction

There are essentially two trends to add parallel constructs to a functional language. On the one hand,
the approach adopted by the ML community [17] consists in adding to the language the notions of
processes, channels and communications as in calculi like CCS [16]. An operational semantics is given
in [15] and several implementations were realised (PFL [11], CML [24]). Its main drawback is that
the language is no longer functional and that it requires another programming methodology to develop
parallel applications. On the other hand, one can preserve the functional features of the language by
adding constructs like future and pcall. These constructs were initially implemented in MultiLisp as
described in [3], [4]. Such operators are said to be transparent since programs using them return the
same results as sequential versions of these programs where those operators were deleted.

The second approach, with transparent constructs, is used to add parallelism to Scheme [23]. One
feature of Scheme is the presence of first class continuations allowing the definition of powerful control
structures; several programming examples with continuations can be found in [9], [8]. However, first
class continuations gave a hard time to researchers to define a transparent future construct ([13], [10],
[12], [14], [5]). An implementation of such a transparent future construct was realised by Katz and
Weise ([12], [14]) but, unlike the ML approach, a formal semantics is not provided. In [20], Queinnec
gives a denotational semantics for a parallel Scheme called PolyScheme. He introduces “symmetric
continuations” to allow a maximal amount of parallelism but PolyScheme is not transparent: a parallel
program may return multiple results, some of them different from the sequential semantics.

In this paper we present an operational semantics for a subset of Scheme extended with transparent
constructs for parallelism fork, pcall and future. We call this language A¢. This operational semantics
is a translation of Ac to a language, called A/, itself specified by an operational semantics. The
operational semantics can be seen as a description of a parallel evaluation on a high level parallel abstract
machine. This translation uses “symmetric continuations” as in PolyScheme. In order to guarantee
results identical to sequential results even for parallel programs using continuations, we introduce higher
order continuations that we call metacontinuations. They ensure that when a captured continuation has
to be applied in a parallel expression, all subexpressions which should be evaluated in the sequential
version of this expression are indeed evaluated. The target language of the translation, A/, is a functional
language without continuations to which CCS-style constructs for parallelism were added. In this paper,
we only comment on some essential transition rules of the operational semantics of A,, but a complete
operational semantics is given in [15] for a parallel ML with similar constructs for parallelism.

This paper is organised as follows. First, the two languages Ac and A, are presented. The second
part is an attempt to define A¢ using the technique of symmetric continuations. The nontransparency
of the pcall operator is highlighted by an example. In the third part, the notion of metacontinuation is
introduced to restore sequential properties of continuations and is used in the translation of Ax. After

an example of a parallel program in A¢, we conclude this paper by related and future work.

2 The source and target languages: A¢ and A,

A¢, the source language of our translation, is a functional subset of the Scheme language. Its syntax is
defined by
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The evaluation is sequential (left to right order) unless parallelism is explicitly introduced by three
constructs.

A process p; evaluating (fork exp) in a sequence creates a process po to evaluate exp, the value of
fork is unspecified and process p; continues evaluating the sequence in parallel with p,.

A process p; evaluating a (pcall M N) creates a process p2 to evaluate M and a process p3 to evaluate
N. When both values are computed, the application is performed by ps or ps, the other one and p; are
killed.

A process p; evaluating (future exp) creates a process ps to evaluate exp, the returned value is
an object called a placeholder. A placeholder is a data structure with a slot for one value aimed at
containing the value of the expression exp when it is computed by process p,. Moreover, there is a
distinction between strict and non strict functions. Strict functions require the value contained in a
placeholder when it is passed in argument and if it is not yet computed, the process is suspended. Non
strict functions do not require this value. There is a strict primitive function touch which can be used
to obtain the value of a placeholder. In this paper, we do not tackle the strict/non-strict distinction, we
will suppose that all functions (except touch) are non strict and that the user has to explicitly touch the
arguments. One can compare future and touch with delay and force except that future argument is
evaluated eagerly. future was initially introduced in MultiLisp [4]; when combined with continuations,
it can cause problems which were exposed in [5], [12].

A/, is the target language of the translation and it is based on the same sequential subset as A but

is extended with a set of low level primitives for concurrency. The four concurrency primitives are

(fork thunk) The function fork takes a thunk (function without argument) in argument and creates

a new process applying this thunk. fork returns an unspecified value after the process creation.

(channel) Processes exchange data on channels. The function channel returns a new object called

channel identifier on which processes can communicate.

(send channel value) Communications are synchronous as in CCS. For a communication, there must
be a process sending a value on a channel and a process waiting for a value on the same channel.

The value of the function send is unspecified.

(receive channel) The value of the function receive is the value transmitted on channel by the

sending process during a synchronous communication.

For readability purpose, we add the usual syntactic sugar let, begin and letrec in both languages.
We illustrate the programming style offered by A/, in figure 1 by a function creating a process modelling
a store. A store is a data structure created by the constructor make-store, accessed by read and
modified by write.

An operational semantics of parallel ML is given in [15] by a set of transition rules similar to those

of CCS ([16]). We illustrate in figure 2 some of them which are suitable for A,,. Those rules concern



(define (make-store c init-value) (define (read c) (define (write c v)

(fork (lambda () (let ((value (receive c))) (begin (receive c)
(letrec ((loop (lambda (v) (begin (send c value) (send c v)))
(begin (send c v) value)))

(loop (receive c))))))
(loop init-value)))))

Figure 1: Definition of a store in A/,

transitions between configurations (X|P). ¥ is composed of a set of channels (K) and a set of process
identifiers (I); P is a set of processes [p; : e;] where each process p; is evaluating expression e;. An
expression such as

Y| Plpn:€]—=X | Plp,: €]

describes a transition from a configuration ¥ | P where process p,, is evaluating expression e’ to another
configuration ¥’ | P’ where the same process pj, is evaluating expression e’’. In figure 2 we have inference

rules like
erpy

erps

meaning “from exp,, infer exps”.

In figure 2, rules 1 to 4 specify the evaluation of a sequential expression in process p, for a given
configuration X: this is a classical left to right evaluation order. Rule 5 is the evaluation rule of the
function channel: it adds a new channel & to the set of channels K. Rule 6 is the evaluation rule of the
function fork: it adds a new identifier ¢ to the set of process identifiers I and creates a new process p,
to evaluate the argument of fork. A communication between two processes proceeds according to rule
6 if a process p, wishes to send a value v on a channel k and a process p,, is ready to receive a value on

the same channel.

S| Plpn €] =% | Plpn : €]

ST Plon: @) =X [ Plpn: (€0)] (1)
S| Pl : €] = S | P[pn : €] @
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2 | Plpn : ((z,e)0)] 2 S| Plpa : efv/a}] (3)
S | Plpn : (Lambda (x) M)] S S | Plpn : (z, M)] (4)
kg K )
(K, I) | P[pn : (channel)] chy (KU{k},I)| Plpn : k]
g g1 (6)
(K,T) | Plpy : (fork((),e)] 5 (K, TU{q}) | Plpn : O]lpq : €]
ke K (7)

Y | Plpn : (send k v)][pm : (receive k)] =" 2| Plpn : O][pm : v]

Figure 2: Reduction rules for A/,



3 Symmetric or asymmetric continuation passing style

In figure 3, we give a translation for the sequential subset of A¢ using the continuation passing style or
CPS for short; such a style is often used for denotational semantics ([2]) and for program transformations
in compilers ([25], [1]). In our notation, a translation consists of a set of translation rules having the
following pattern: [Term]=exp. The left hand side of the rule is a term of A¢ in brackets and the right
hand side is an expression in A,,. Such a rule should be read as “the text of the translation of Term
is exp, in which every occurrence of [e] must be replaced by the text of the translation of e and each

newly introduced variable in exp is supposed not to collide with existing ones”.

lambda (k) (k x))

lambda (k) (k (lambda (x c¢) ([M] ¢))))

lambda (k) ([M] (lambda (vm) (vm (lambda (v k') (kK v)) K))))
lambda (x) ([M] (lambda (vm) ([N] (lambda (vn) (vm vn k))))))

[x]

[(lambda (x) M)]
[(call/cc M)]
[ ]

nmnouwn
~N A A~ A

Figure 3: Continuation passing style translation

In order to completely specify A, we still have to add translation rules for the parallel constructs
pcall, fork and future. Let us initially consider the first one. In [20], Queinnec gives a semantics for
PolyScheme, a parallel dialect of Scheme. Let us use the same technique to define the pcall operator for
which a verbose translation can be found in figure 4. For each application (pcall M N), two processes
are created to evaluate M and N in parallel and two new memory cells intended to contain the values of
M and N are allocated. This translation is also a continuation passing translation: the continuation for
M stores the value of M in the data structure cm; if N is already computed, the continuation applies the

value of M to the value of N with the continuation x otherwise the process dies.

[(pcall M M)] = (lambda (k)
(let ((cn a new memory cell) (ecm a new memory cell))
(begin (fork (lambda () ([M] (lambda (vm)
(begin store vm in cm
(if (computed? <walue of N>)
(vm <walue of N> k)
(die))))))N)
(fork (lambda () ([N] (lambda (vn)
(begin store vn in cn
(if (computed? <walue of M>)
(<value of M> vn K)
(die))))))))))

Figure 4: Verbose translation for a PolyScheme-style pcall

In figure 5, we give the translation rule for the parallel application. There are a few differences:
(1) We must be sure that processes evaluating M and N do not both evaluate (vm vn k). Hence, the
memory cells cm and cn must be considered as a critical section which is implemented by a semaphore
sem. In order to enter the critical section, a value should be received on the channel representing the
semaphore, and to exit the critical section a value should be sent. (2) The action die and the test

computed? are implicit: the data structures cm and cn are initialised with an empty body function and



they are modified by functions applying vm to vn and k. When the functions contained in those data
structures are applied, if the body is empty, there is no more code to evaluate and the process dies else
(vm vn &) is evaluated. (3) The data structures cm and cn and the semaphore sem are stores for which

a code is illustrated in figure 1.

[(pcall M N)] = (lambda (k)
(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (fork (lambda () ([M] (lambda (vm)
(begin (receive sem)
(write cm (lambda (vn x) (vm vn x)))
(let ((fn (read cn)))
(begin (send sem ’any)
(fn vm K)))IN))
(fork (lambda () ([N] (lambda (vn)
(begin (receive sem)
(write cn (lambda (vm x) (vm vn x)))
(let ((fm (read cm)))
(begin (send sem ’any)
(fm vn K)))IN))
(make-store cm (lambda(vn k) ’()))
(make-store cn (lambda(vm k) ’()))
(make-store sem ’any))))

Figure 5: Translation for a PolyScheme-style pcall

In the continuation passing style translation (figure 3), the continuation of M, (lambda (vm) ([N]
(lambda (vn) (vm vn k)))) and the continuation of N, (lambda (vn) (vm vn k)) are asymmetric
since they force M evaluation before N evaluation. They define a left to right total order of evaluation of
expressions. In the pcall definition (figure 5), the continuation of M stores a value in store cm, reads store
cn and applies this value to vm and the continuation k. We see that the continuation of N is symmetric
to the continuation of M. They define a partial order of evaluation of expressions: the body of a function
is always evaluated after the subexpressions of a parallel application but there is no order between those
subexpressions.

In this paper we use the term symmetric continuations to denote PolyScheme style continuations
and we use asymmetric continuations to denote continuations such as those from the CPS translation
and, by extension, we use the terms symmetric and asymmetric continuation passing styles (SCPS or
ACPS).

While the ACPS total order of evaluation forbids parallelism, the partial order defined by the sym-
metric continuation passing style allows parallel evaluation of subexpressions in an application. Unfor-
tunately, with such a meaning of pcall, an expression of A does not always return the same value
as the same expression where the pcall operator is deleted: in other words, the pcall operator is not
transparent.

Let us examine the evaluation of a simple program using the translations from figures 3 and 5:

(pcall f1 (call/cc (lambda (k)
(pcall (pcall f2 (k 1)) (8)
(k 2)))))



The resulting computation tree appears in figure 6 in which each node is associated to an expression
and a process evaluating it. Node C is the capture point: i.e. it is the node where call/cc binds k to
the current continuation. Nodes A; and A, are application points of this continuation. Node T is the

top of the computation tree.

/T\
f1 C
ny
Ay A,
£2 k1) (k2

Figure 6: Computation tree of (pcall f£1 (call/cc (lambda (k) (pcall (pcall £2 (k 1)) (k 2)))))

In expression (8), k is applied to 1 and k is applied to 2. Indeed, in the symmetric continuation passing
style, a reified continuation' is a function (lambda (v ') (x v)); it discards the current continuation
which is local to a process but does not suspend processes executing in parallel. As explained in [20],
this multiple application of k can lead to single or multiple final results. The different solutions are the
application of £1 to 1, the application of £1 to 2, the application of £1 to 1 followed by the application
of £1 to 2 or the application of £1 to 2 followed by the application of £1 to 1.

We can sequentialise expression (8) by replacing parallel applications by sequential applications. We

obtain

(f1 (call/cc (lambda (k)
(2 (k 1)) k 2)))))

where the continuation k is only applied to 1 since the evaluation order is left to right.

We can summarise the properties of the current definition of A¢ by:

e every program not using call/cc or not applying a continuation always returns the same result

as the sequentialised program,

e when continuations are used, multiple answers can be returned; the solution returned by the

sequentialised version of a program is always a solution that this program can return,

e the number of returned solutions is not always determinate.

4 Left expressions and metacontinuations

The semantics presented in the previous section is suitable for programs not using continuations; it
allows a maximal amount of parallelism thanks to symmetric continuations. Since we must restore some
sequentiality when captured continuations are applied, we introduce higher order continuations that we

call metacontinuations.

I'We use the term reified continuation to denote the object returned by a call/cc. This reified continuation captures a
continuation k, called the captured continuation or the implicit continuation which is the continuation resulting from the

continuation passing style translation.



Before defining this notion, we introduce the concept of left ezpression. If we wish a transparent
pcall construct, the expression (8) should return the same result as expression (9). Therefore, we must
prevent the application of k to 2 since k is applied to 1 in the sequential expression and (k 1) is evaluated
before (k 2) in a left to right evaluation order.

Let e be an expression (k v) applying a continuation k to a value v and let e be a subexpression
of E; we call left expressions of e in E, all expressions of E which must be evaluated before we can
safely apply the continuation k to v without departing from the sequential semantics. We define this
notion of left expressions only for a continuation application since we know that the semantics is correct
for expressions not using continuations. The set of left expressions can be defined inductively on the
structure of E. If E is equal to e, i.e. e is a toplevel expression, the set of left expressions is empty. Let
us suppose that the set of left expressions of e in E is a, which we write Le(E) = a and let us examine

the structure of expressions of Ac.

([ze

0 if kis captured by call/cc = (eq? k x)

Le((call/cc (lambda (x) E))) :{

\ (07

While a sequential application (M N) does not change the set of left expressions, a parallel application
(pcall M E) adds the expression M to the set of left expressions of e in E. The last rule limits the set
of left expressions to the dynamic scope of the call/cc which captured the continuation applied in e:
indeed, if e=(k v) is in the dynamic scope of a call/cc and if the continuation k applied in e is the
continuation captured by this call/cc then the set of left expressions of e is empty. For example, in
expression (8), we do not require £1 to be evaluated in order to apply k. This property allows a function
to use an internally reified continuation without having to synchronise with the rest of the program.

Those rules are only based on the structure of E. The set of left expressions is also dependent of the

application rule: the body of a function is evaluated after the argument. Therefore, we can write

Le(((lambda (x) E) M) =« D Le(E) =

Le((pcall (lambda (x) E) M)) =a D Le(E) =«

Now, we can state the condition of a continuation application using the notion of left expression: a
continuation k can be applied in subexpression e = (k v) of E if all left expressions Le(E) are already
evaluated and have returned a value.

A metacontinuation v is used when applying a captured continuation k in order to test all the
left expressions Le(E) of the continuation application e (a subexpression of E). In our translation, a
metacontinuation is a function of one argument: a continuation. A reified continuation k is represented

as
(lambda (v & 7) ((y k') v))

where k' is the captured continuation and « is the current metacontinuation. When a reified continuation

is applied, (v k') is evaluated executing the following sequence:



1. the leftmost expression of e is searched; let 1 be this expression; let N be its immediate right

expression in (pcall 1 N) and let v; be the current metacontinuation of (pcall 1 N),

2. if 1 is evaluated and has returned a value, the same sequence is executed with (vy; k'), i.e. the

following left expression is searched,

3. if 1 is not evaluated, the application of the captured continuation is suspended by storing in the
cell cn associated to N the value (lambda (vm k ) ((71 ') v)). When 1 is evaluated, its

continuation reads cn and resumes the application of k by evaluating (71 &),
4. if there is no left expression, the continuation ' can be safely applied.

We said previously that the Asymmetric-CPS translation defines a total order of evaluation between
expressions and that Symmetric-CPS translation defines a partial order. With our notion of metacon-
tinuation, we have introduced a stronger partial order of evaluation: not only all subexpressions of a
parallel application must be evaluated before the function body but all left expressions of a continuation

application must be evaluated before applying this continuation as well.

5 Operational semantics of A¢

The operational semantics of A¢ is given by a translation of Ac to A, and an operational semantics
of A;, was briefly described in section 2. The translation is presented in figure 7; it is a “continuation
passing and metacontinuation passing” translation. Hence, the translation of an expression is a two
arguments function: k the implicit continuation and v the metacontinuation. In figure 7, the first four
rules define the sequential subset of the language A¢. In the translation of a one argument function,
the implicit continuation & is applied to a three arguments function: the initial argument, & and ~. In
the translation of a variable, the implicit continuation x is applied to this variable. The translation of
a sequential application is the classical ACPS translation where v is added as a second parameter and
is simply transmitted; v has no role in the semantics of sequential expressions. In the translation of a

call/cc expression, f is bound to the reified continuation as described before:
(lambda (v c ) ((y k) Vv))

which checks left expressions before applying « to v.

The last rule is the translation of a parallel application: the implicit continuations are more or less
the same as symmetric continuations of figure 5. A small asymmetry is introduced: on the one hand,
the implicit continuation of M modifies the semaphore and on the other hand, the implicit continuation
of N does not modify the semaphore (the received value is sent back to the semaphore). Therefore, the
semaphore associated to a parallel application (pcall M N) shows whether M is evaluated.

If v is the metacontinuation of expression (pcall M N), then « is the metacontinuation of M: indeed,
Le(E) = a D Le((pcall E N)) = a. According to the rule Le(E) = a D Le((pcall M E)) = a U {M},
the leftmost expression of N is M. The metacontinuation of N checks whether M is evaluated. If it is the
case, the metacontinuation v is applied to the captured continuation. If not, (lambda (vm & ) ((vy
cont) v)) is stored in cn as value of N. Therefore, when M is evaluated, its continuation applies the

value stored in cn and applies the metacontinuation - to the captured continuation. The action to be



[x]
[(lambda (x) M)]
[(call/cc M)]

(lambda (kK 7v) (K x))
(lambda (k ) (k (lambda (x & 7) ([M] & ¥))))
(lambda (k 7)
(let ((f (lambda (v c v) ((y &) W)
(7' (lambda (cont) (if (eq? cont k) cont (v cont))))))
([M] (lambda (vm) (vm £ & 7')) 7))

[m ] = (lambda (k 7)
([M] (lambda (vm) ([N] (lambda (vn) (vm vn & 7))
02D
02D

[(pcall M M)] =
(lambda (k 7)
(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (fork (lambda () ([M] (lambda (vm)
(begin (receive sem)
(write cm (lambda (vn x ) (vm vn x 7)))
(let ((fn (read cn)))
(begin (send sem (lambda (cont s f)
(lambda (s)
(begin (s v) ((y cont) v)))))
(fn vm K v)))))
Y)))
(fork (lambda () ([N] (lambda (vn)
(let ((f (receive sem)))
(begin (write cn (lambda (vm x <) (vm vn x 7)))
(let ((fm (read cm)))
(begin (send sem f)
(fm vn K ¥))))))
(lambda (cont)
(let ((f (receive sem)))
(f cont
(lambda (v) (send sem f))
(lambda (v)
(begin (write cn (lambda (vm x 7y) ((y cont) v)))
(send sem £)))))))))
(make-store cm (lambda(vn x ) ’()))
(make-store cn (lambda(vm k 7v) *()))
(make-store sem (lambda (cont s f) £)))))

Figure 7: Translation of A¢

executed by the metacontinuation of N depends on the value of M. It is implicit in the code: the function
stored in the semaphore is applied in the metacontinuation of N but the content of the semaphore is

changed by the continuation of M.

fork is a parallel construct which must appear in a sequence, it creates a process to evaluate its ar-
gument, it returns an unspecified value. In the sequence (begin (fork expl) exp2), expl is evaluated
in parallel with exp2 and the value of expl is discarded. Thus, our semantics must guarantee that if
a continuation is applied in exp2, it can escape from exp2 if and only if it is applied in the sequential
definition, i.e. if exp1l is evaluated and has returned a value.

fork can easily be defined thanks to pcall. fork must appear in a sequence which is syntactic sugar
for a lambda application. The translation in figure 8 prevents any escape from N unless M is computed

and the sequence value is returned after M is evaluated.

The reader might wonder why we gave a translation for pcall and fork while they can be defined

as macro expansions of future. A natural solution for pcall comes from the PolyScheme technique of



[(begin (fork M) N)] = [((lambda (x) N) (fork M))]

[(call/cc (lambda (k) (pcall (let ((x M)) (lambda (u) u)) (k N))))]

Figure 8: Translation rule for fork

symmetric continuations extended with metacontinuations for transparency reasons. With a few changes,
the translation of pcall can be transformed in a translation for the future construct, essentially by
introducing the notion of placeholder.

We give in figure 9 the translation of (M (future N)) which slightly differs from the translation
of (pcall M N). We translate (M (future N)) and not (future N) alone because we need to explic-
itly have the two threads evaluating in parallel in order to introduce synchronisations between them.

Occurrences of future in different contexts reduce to (pcall M N) or (M (future N)):

((touch (future M)) (future N)) (M (future N))
((touch (future M)) N) (pcall M N)
(pcall M (future N)) (M (future N))
(pcall (touch (future M)) (future N)) (M (future N))
(pcall (touch (future M)) N) (pcall M N)

As opposed to (pcall M N), it is always the continuation of M in (M (future N)) which performs
the application to either the value of N or a placeholder if N is not yet computed. The placeholder holds
a function receiving a value from channel val and the function touch forces the reception of a value on
this channel. Values are only sent on this channel by the process emitter indefinitely sending the first
value received on vali, the other values sent by the continuation of N are received by the process sink
discarding them. The definitions of emitter and sink are given in figure 10. Therefore, it is guaranteed
that the placeholder holds the first value returned by N. If N returns more than once, the continuation of
N applies the value of M to the value of N and not to the placeholder. This semantics was given by Katz
and Weise in [12].

The value of an expression E of A¢ is given by the value of expression

(let ((cO(channel)))
(begin (fork (lambda () ([E] &i 7i))) (10)

(receive c0)))

according to transition rules given in figure 2, where +;, the initial metacontinuation, is the identity

function and k;, the initial continuation, is defined by
k; = (lambda (v) (send cO v))

The value of an expression E is the value received on channel c0 in expression 10.

10



[(M (future N))] =
(lambda (kK 7v)
(let ((cn (channel)) (cm (channel)) (sem (channel))
(val (channel)) (vali (channel)))
(begin (fork (lambda () ([M] (lambda (vm)
(begin (receive sem)
(write cm (lambda (vn x 7) (vm vn x 7)))
(let ((fn (read cn)))
(begin (send sem (lambda (cont s f)
(lambda (s)
(begin (s v)((vy cont) v)))))
(fn vm K ¥)))))
Y)))
(fork (lambda () ([N] (lambda (vn)
(let ((f (receive sem)))

(begin (send vali vn) T
(write cn (lambda (vm x 7) (vm vn x 7)))
(if (not(eq? (receive val) vn)) HE L

(let ((fm (read cm)))
(begin (send sem f)
(fm vn K v)))
(send sem £)))))
(lambda (cont)
(let ((f (receive sem)))
(f cont
(lambda (v) (send sem f))
(lambda (v)
(begin (write cn (lambda (vm k 7) ((y cont) v)))
(send sem £)))))))))
(make-store cm (lambda(vn k ) *()))
(make-store cn (lambda(vm x 7) (vm (make-placeholder (lambda () (receive val))) k 7)))
(make-store sem (lambda (cont s f) f))
(let ((the-future-value (receive vali))) HER L
(begin (fork (lambda () (emitter val the-future-value)))
(fork (lambda () (sink vali))))))))

(define (touch object) (if (placeholder? object) (touch ((cdr object))) object)))

Figure 9: Translation of (M (future N)) and definition of touch

6 Example

In a previous paper [18], we explained which programming methodology could be adopted in Ac. We
showed that programs written in a coroutine style (see [9], [8]) could be parallelised by adding parallel
annotations such as pcall, fork or future. This approach has the advantage that the same program-
ming style can be used to develop sequential and parallel applications. Moreover, the parallel code where
annotations for parallelism are deleted gives the sequential version of the program.

For example, let us consider the producer and consumer problem. We define a producer coroutine

(define (emitter c v) (define (sink c)
(begin (send c v) (begin (receive c)
(emitter c v))) (sink ¢)))

Figure 10: Functions emitter and sink
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computing integer values from 0, transmitting them to a consumer, and a consumer receiving values
from a consumer and executing an operation on them. Unlike [9], [8], we do not use the function
make-coroutine since assignment is not existent in Ac. When a coroutine calls another coroutine with
the function resume, it transmits a value and its current continuation to enable the called coroutine to

resume the calling one.

(define producer
(lambda (producer-job)
(lambda (consumer-value)
(letrec ((loop (lambda (n pair)
(let* ((pair (future (resume (car (touch pair)) n)))
(new-value (producer-job n)))
(loop new-value pair)))))
(loop O consumer-value)))))

(define consumer
(lambda (producer consumer-job)
(letrec ((loop (lambda (producer)
(let* ((pair (resume producer ’any))

(producer (car pair))
(n (cadr pair)))

(consumer-job n)

(loop producer)))))

(loop producer))))

(define (resume coroutine value)
(call/cc (lambda (k)
(coroutine (list k value)))))

The coroutine system is launched by the function run:

(define (run)
(consumer (producer (lambda (n) (+ n 1)))
(lambda (n) (display n) (newline))))

In the function producer we underlined the annotations for parallelism. If they are removed, we
obtain a sequential version. Those annotations allow a producer to compute the next value in parallel
with the transmission of a value to the consumer. This process is clearly speculative since it allows to
compute values before they are needed.

According to the operational semantics, several processes will be created:

e a process pp waiting for the final value. Since the function run applies the coroutine consumer

which is an infinite loop, no final result is returned,
e 3 process p; evaluating the application of run and the coroutine consumer,

e processes created by each instance of future in each recursive call of the coroutine producer,

processes representing memory cells.

This example shows that an infinite number of processes might be created: this raise the question
of scheduling. We do not studied this problem in this paper but some solutions have previously been

suggested like the sponsors in [5] and [19].
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7 Related work

PolyScheme was initially proposed by Queinnec in [20] and [21]. The translation given in figure 5 uses the
same technique of symmetric continuations; figures 7, 8 and 9 are enhancements of it. In [20] and [21],
PolyScheme unfairness is outlined when returning multiple results. Queinnec’s solution to this problem
is to add conditions on continuations applications to insure that the number of results is execution
independent although possibly greater than one. Our approach is totally opposite, we add constraints
on continuations applications in order to ensure only one result, the same as in the sequential version.

Katz and Weise in [12] suggest to use a notion of legitimacy to give a functional program a parallel
semantics equivalent to the sequential one. A process is legitimate if the code it is executing would have
been executed by a sequential implementation in the absence of future. When the evaluation begins the
initial process is said to be legitimate. This notion is not formally defined in [12] and an implementation
with unification variables associated to processes is given in [14]. A process is legitimate if there is a
unification chain existing between this process and the initial one.

Our notion of metacontinuation is the device we use to restore sequential semantics but it behaves

differently from Katz and Weise’s notion of legitimacy:

e We also have a kind of legitimacy notion but it is related to continuations applications and not to
processes, so we have to check legitimacy only when a program explicitly applies a continuation
(by checking all left expressions), and not when two processes have to synchronise through a

placeholder.

e It is sufficient to test the legitimacy of an application of a continuation between the application
point and call/cc if applied in its scope. In [12], there must be a legitimacy path between an

expression and the initial expression (the top of the computation tree).

e It seems that the notion of legitimacy defined in [12] refers to a total order of evaluation as opposed
to v which is a representation of a partial order. With the legitimacy notion, one can say that an
expression is legitimate only when the computation has ended while metacontinuations guarantee

the legitimacy during evaluation.

However our approach is probably more conservative when applying a continuation outside the dy-
namic scope of the call/cc which captured it: we apply a continuation if we know that it is legitimate.
In [12], continuations are applied independently of the legitimacy testing. Nevertheless, in the corou-
tine style examples we give in [18] and in section 6, continuations are applied to transmit a result to a
coroutine; thus, there is no point to transmit another result if it is not needed although the next result
can be searched speculatively.

In [10], Hieb and Dybvig introduced a spawn operator to control tree-based concurrency. They do
not tackle the transparency problem since they define a parallel-or operator among others.

In [6], [7] Hammond defined a semantics of ML exceptions which could be preserved in a parallel
implementation. If expression e, in application e;(e2) returns an exception, it can only be raised if
e; returns a value. If e; returns an exception, it will be raised. This is a definition at the level of
evaluation rules a la ML without description of process interactions. Exceptions can be seen as a special

case of continuations but they differ in two aspects. First, there is only one left expression to test since
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exceptions (at the semantic level) are transmitted from expression to expression. Secondly, speculative
computation cannot be obtained without introducing non strict operators because exceptions have a
dynamic extend.

As far as we know, this is the first attempt to give a formal semantics of a functional language
with continuations and transparent parallel constructs. We use a notion of higher order continuation: a
metacontinuation receives a continuation in argument and returns a continuation if all left expressions
are evaluated else the continuation application is suspended. We saw in the translation that a metacon-
tinuation results from the composition of a function and the previous metacontinuation. Some related
concepts were already introduced in a sequential context to define “functional jumps”. In [2], Danvy
and Filinski define a hierarchy of continuations allowing to abstract, as functions, contexts delimited by
shift and reset operators. In [22], Queinnec and Serpette define partial continuations which can be

composed.

8 Conclusion and future work

In this paper, we formalised the implementation given by Katz and Weise of a parallel functional language
with first class continuations and transparent constructs for parallelism. After introducing a new concept
of higher order continuation for parallelism, we gave an operational semantics for such a language.

Continuation semantics is usually used to express sequentiality. When this can be relaxed and when
parallelism can be introduced, metacontinuations seem to be suitable to keep some sequential properties
in a parallel framework.

Future work will follow several directions. On the theoretical side, we still have to provide a proof
that each expression of A¢ returns the same result as the same expression where parallel operators are
deleted. Several steps will compose this proof: it must be proved that each expression returns only one
result and that this result is the same for all execution. Then it must be shown that this result is the
same as result returned by the sequentialised expression. On the practical side, we will try to apply
metacontinuations to other examples where parallelism can be introduced although some sequential
features should be maintained. It would also be interesting to implement a parallel system using this

method and compare it with Katz and Weise’s notion of legitimacy.
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