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Abstract

Observationally equivalent programs are programs which are
indistinguishable in all contexts, as far as their termination
property is concerned. In this paper, we present rules pre-
serving observational equivalence, for the parallel evaluation
of programs using call/cc. These rules allow the capture
of continuations in any applicative context and they prevent
from aborting the whole computation when a continuation is
applied in the extent of the call/cc by which it was reified.
As a consequence, these results prove that one can design a
functional language with first-class continuations which has
transparent constructs for parallelism.

1 Introduction

Some programming languages, like Scheme and Standard
ML of New Jersey, provide a control operator call/cc which
gives the programmer the possibility to reify the current con-
tinuation as a first-class object. When such a reified con-
tinuation is applied to a value v, the current computation
is aborted and the execution resumes at the point where
the continuation was captured; the value v being the value
returned from this call/cc expression. When parallelism
is introduced in such languages the meaning of continua-
tions does not appear to be clear. There have been several
attempts to give a semantics to continuations and paral-
lelism [11], [12], [16], [17], [22]. In a previous paper [19], we
presented a new semantics for a functional language with
continuations and transparent constructs for parallelism. In
this paper, we formalise this approach and prove some in-
teresting properties.

1.1 Intuitive semantics

A construct for parallelism is said to be transparent if all pro-
grams using this construct return the same result as those
programs written without this construct. Thus, a transpar-
ent construct can be seen as an annotation for parallel ex-
ecution which preserves the meaning of programs. Thanks
to this property, parallel applications can be developed in
two phases: programs can be written using the functional
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programming methodology and then, they can be annotated
by constructs for parallelism as described in [18].

Let us consider the purely functional subset of Scheme
extended with call/cc and let us suppose that evaluation
is sequential (left-to-right order) unless parallelism is intro-
duced by the construct pcall. pcall requires two argu-
ments; (pcall f e) applies the value of f to the value of e
after evaluation of £ and e in parallel.

Let us show by several examples the behaviour of pro-
grams using simultaneously call/cc and pcall. In the fol-
lowing program, which is the same as program 1 (in figure
1) without the pcall annotation,

(call/cc (lambda (k)
((£1 (& 1)) (x 2)))

k is applied to 1 because evaluation is supposed to be from
left to right. In program 1, the evaluations of (k 1) and
(k 2) proceed in parallel. Since pcall is transparent, only
one application can actually be performed, and it must be
k to 1. In fact, with a transparent pcall, k must not be
applied to 2 because expression (f1 (k 1)) escapes and this
expression, appearing to the left of (k 2), is evaluated before
(k 2) in the sequential program. We can state this intuitive
rule: before applying a continuation in a parallel program,
erpressions appearing to the left of the application of this
continuation should have returned a value.

(call/cc (lambda (k)
(pcall (f1 (k 1)) (k 2)))) 1

(pcall (e) (call/cc (lambda (exit) 2
C .. C(exit 2))))

(pcall (call/cc (lambda (k1) ...)) 3
(call/cc (lambda (k2) ...)))

Figure 1: Three small examples

In the following example,

(let ((a (call/cc (lambda (x) x))))
(o (lambda (x) x)))

the continuation returned by the call/cc expression is ap-
plied outside this call/cc expression. The continuation is
said to be applied outside the extent of this call/cc. On
the other hand, in program 2 (in figure 1), the continuation
bound to exit is applied while evaluating the call/cc ex-
pression, i.e. in its extent. If we apply our intuitive rule
to program 2, we have to wait for the value of (e) before



applying exit to 2 because (e) appears to the left of (exit
2). However, we understand that we can invoke exit inde-
pendently of the behaviour of (e), since the application of
exit aims at returning the value of the call/cc expression.

In program 3, we would like to capture two continuations
in parallel. Intuitively, there does not seem to be any reason
to sequentialise those captures: indeed, the continuation to
be bound to k2 can be found independently of the value of
(call/cc (lambda (k1) ...)) and vice-versa.

Those three examples illustrate the principles about the
parallel evaluation we want to formalise using syntactic the-
ories. First, continuations can be applied if expressions to
their left have returned a value. Second, if a continuation
is applied in the extent T of the call/cc by which it was
reified, one has to consider only expressions appearing to
the left and which have an extent which is included in T'.
Third, a continuation can be captured in any context, inde-
pendently of expressions appearing to their left.

1.2 Syntactic theories of control

Syntactic theories of control were introduced by Felleisen et
al. [5], [7], [8], [6]. These theories extend the call-by-value
A-calculus defined by Plotkin [21] with control operators like
C and A. C allows to capture a continuation and A aborts
a computation. Felleisen et al. proved these systems to be
Church-Rosser. This property states that if M reduces to
P and M reduces to @ by different reduction paths, there
exists N such that P and @ reduce to N. This entails that
there is an evaluation function.

Initially, we defined a reduction system which was also
an extension of Plotkin’s call-by-value A-calculus with con-
trol operators callcc and A. It was composed of several
reduction rules: the B-value reduction, rules to eliminate
callcc (i.e. reify a continuation) in any context and rules
to apply a continuation. Those rules were supposed to be
a formalisation of the intuitive semantics given in section
1.1. We defined a leftmost, outermost reduction strategy
which corresponds to a sequential (left-to-right evaluation
order) semantics. A parallel evaluation was also possible in
this system since several redices could be reduced at each
evaluation step.

Unfortunately, it appeared that such a system was not
Church-Rosser: we could find a program M which reduced
to P and @ by the sequential and parallel strategy but we
could not find N such that both P and @ reduced to N.
The rule which made the Church-Rosser property collapse
was the rule which allowed the capture of continuation in
any context. Although Church-Rosser is a nice property,
it appears to be too strong for our purpose. Indeed, there
are programs which cannot be proved to be equal although
they behave “externally” in the same way, in any context
they are used. This notion of equivalence is usually called
observational equivalence. Given two observational equiv-
alent programs, there is no context in which one program
terminates and the other not: both programs are indistin-
guishable as far as termination is concerned.

Therefore, we adopted another approach to formalise the
intuitive semantics of section 1.1. We initially defined a
core reduction system C, which extends the call-by-value \-
calculus, with control operators callcc and A. Unlike our
first attempt, we do not allow the capture of continuation
in all contexts and we do not consider the problem of the
application of a continuation in the extent of the callcc by
which it was reified. This system C looks very like Felleisen’s

theory [5] and it suffers from the same defaults: a parallel
evaluation strategy can be defined but far less parallelism
is obtained than in our intuitive semantics because control
operators are bottlenecks. Although it does not capture our
intuitive semantics, this system is interesting since it can
be proved to be Church-Rosser and can be used to define a
notion of observational equivalence. Then, we extend this
initial system with a set of equations which encode the in-
tuitive semantics. We show that those equations preserve
observational equivalence. It means that programs reduced
with those equations and the same programs reduced with-
out them return results which are observationally equivalent.
Our goal is reached: we can define a sequential reduction
strategy and a parallel reduction strategy (with the seman-
tics of 1.1) for which returned results are observationally in-
distinguishable. It means that parallel evaluation does not
change the meaning of programs and transparent constructs
can be added to a sequential language and be considered as
annotations for execution.

This paper is organised as follows. In section 2, we
present the core reduction system C and in section 3, we
define the observational equivalence in C and prove a ma-
jor result relating the CPS translation to the observational
equivalence. In section 4, we extend C by equations for
the capture of continuations in any context and equations
which improve the evaluation, all of them being proved to
be sound. At this point, our reduction system is able to
evaluate examples 1 and 3 as explained in section 1.1. The
optimisation of the application of a continuation in the ex-
tent of a callcc requires a new representation of continuation
objects and a new syntactic construct to mark the extent.
This is presented in two steps: in section 5, we describe an
intermediate reduction system CP (for Continuation Points)
which allows to uniquely name a reified continuation. In sec-
tion 6, we define the system CPP (for Continuation Points
and Prompts) with a mechanism of prompt delimiting the
extent of a callcc. This system is able to evaluate example 2
as explained in section 1.1. All reduction systems C, CP and
CPP are proved to have the same notions of observational
equivalence.

2 The C calculus

Let us consider A, the language defined by

v Value
) (MM) Application
Term M = (callecc M) callcc-Application
(A M) A-Application
a,b,... Constants
Value V ::=<¢ z,y,... Variables

Ax. M Lambda Abstraction

and let us use Barendregt’s [1] conventions, for substitution,
free variables, closed values. This language is a A-calculus
extended with two control operators: callcc which captures
the current continuation and .4 which aborts a computation.
We also define several kinds of contexts used in this paper,
Contexts C[ ], Applicative A[ ], Evaluation contexts EJ ]:

Cll == [JICML]| O ]M] | O[]
| Cleallec []] | CLA[]]

ALl s= ] AML] [ A[l1M]

E[] == []|EV[]IE[]M]



(Az. M)V & M{V/z} with V a value (C1)
(ab) KN 8(a,b) if this is defined (C2)
Mcallce Ny S Callce AEM(N (. A(K(M)))) with M a value (C3)
(callce N I Calice (MO L AREN))N (C4)
(AMN % AMm (C5)
M(AN) % AN with M a value (C6)
AAM  Em AN (C7)
Acalice ay - NS 4 4ar(ae. Ag)) (C8)

Figure 2: One step reduction —. for C

The C reduction system is defined by the set of rules in
figure 2; it is similar to Felleisen’s reduction system [8]. Let
us sketch some of its features. The first rule is the 8-value
reduction [21] and the second rule is the §-reduction apply-
ing a primitive a to a constant b. As Plotkin [21], we sup-
pose that J is defined on the following domain: Constants x
Constants — Closed Value. Rules C5 and C6 are the same
as in [8]; in an application (AM)N, when the expression in
operator position aborts, the operand N is removed and, in
M(AN), an expression in operand position can abort if the
expression in operator position M is a value.

Rules C3 and C4 are adapted from Felleisen’s rules for
C. callcc is intended to reify the current continuation and
to apply its argument to it. In this reduction system, the
current continuation is reified as a functional abstraction,
which is built step by step according to the context in which
callcc appears. The two rules allow callcc to appear in an
application either in operator or operand position. Let us
consider rule C3, rule C4 being symmetric. Supposing that
the continuation of M (callcc N) is k, the continuation of
callcc N is represented by Av.A(k(Mv)), an abortive func-
tion waiting for a value, applying M to this value, the result
being transmitted to the continuation k. The value of the
continuation k is also found by a callcc.

By successively, applying rules C3 and C4, a callcc-ex-
pression appearing internally in a expression is moved step
by step, inside-out, until it appears at the top level of this ex-
pression. Instead of using computation rules as Felleisen, we

suppose that a computation is performed in an A-application.

Rule C8 transforms a callcc at the top level by an applica-
tion of its argument to the initial continuation (Az.Az) and
similarly, rule C7 eliminates an A at the top level.

As long as no callcc or A appears in a program, this
reduction system behaves as the call-by-value A-calculus.
When a callcc is used in a program, it is intended to capture
its current continuation. This continuation is represented by
a functional abstraction of the context which is built step
by step by bubbling up [6] callcc-applications (using rules
C3 and C4) until a callcc reaches the top level. This phase,
called the construction phase [7], accumulates all “applica-
tion frames”. At this point, rule C8 can be applied (since we
suppose that evaluation proceeds in an A-application) and a
series of B, reductions are performed; this phase, called the
collection phase [T7], “concatenates all application frames”.
After these two phases, we are in the situation where the

initial callcc-application is replaced by the application of its
argument to the functional abstraction of the context. If a
continuation is applied to a value, it immediately aborts the
current computation (with A). In order to abort a compu-
tation, terms are pruned step by step using rules C5 and C6
until the top level is reached where rule C7 can be applied.

With the first six rules, we can define a notion of reduc-
tion —°

callcc callcc
o=y s St O ey
and its compatible closure —. is defined by

M—-°N = M-—=.N

M—-.N = .M —.\x.N

M—.,N = ZM —,ZN,MZ —. NZ, with Z € A,
M —.N = callcc M —.callcc N

M—-.N = AM-—=. AN

Classically we define —, the reflexive, transitive closure of
—¢ and =, the equivalence relation generated by —.

We suppose that an evaluation is performed within an
A operator. Rules C7 and C8 can only be used at the top
level. We call them top level rules. Those rules are different
from rules C1 to C6 since we do not define their compatible
closures. We define a computation —> by

Aidem i
—)Z:—>: U i; U CaIIC_C> inA
and we note —>* its transitive closure.
The C reduction system has the following properties:

Theorem 2.1 (Church-Rosser)
e The notion of reduction —° is Church-Rosser.
e The relation —% satisfies the diamond property.

Sketch of Proof of Theorem 2.1

The proof is similar to the one proposed by Felleisen [8].
First, from the definition of —¢, we define a parallel reduc-
tion —»,. We prove the diamond property for —», which
leads to the diamond property of —.. Then we show that
—?¥ also satisfies the diamond property. O
We can abstract the evaluation process by evalc:

Definition 2.2 (Eval) evalc(M) =V iff AM—2" AV with
V' a value.



evalc is defined if the reduction AM—2* AV terminates,
else it is undefined. We can also define a standard reduction
function s which reduces the leftmost, outermost redex
and which does not allow reduction under A-abstraction, .4
and callcc-applications. We naturally extend it to a stan-
dard reduction function with top level reduction 7.

Definition 2.3 (Standard Reduction Function )

M—-°‘N = Mw—,N

Mw—.M = MN—,MN

Nw—,N = MNw—, MN' with M is a value

MoTN o AM @IS DA AN o0 anr Mg 4N
or M —s N

These standard reductions are related to the notion of
evaluation by the following theorem:

Theorem 2.4 evalcM = V iff M—T"V' for some value
V.

Sketch of Proof of Theorem 2.4

Again, similar to Felleisen’s [8] and Plotkin’s [21] proofs.
We define a standard reduction sequence and show that for
any reduction M —; N there is a standard reduction se-
quence M,...,N. Then we extend standard reduction se-
quences to standard reduction sequences with top level re-
ductions and relate them to the notion of evaluation. O

The standardisation theorem and the Church-Rosser prop-
erty entail that there is an evaluation function, and that
there is an algorithm to compute it which corresponds to a
left-to-right evaluation order. We can also define a parallel
evaluation strategy where the subexpressions of an applica-
tion are evaluated in parallel, and where evaluation can be
performed under an A or callcc.

Definition 2.5 (Parallel Evaluation Strategy)

M—>°N = M-, N
M —, M
M-, M' N, N = MN-,MN
M -, N = callcc M —, callecc N
M—=,N = AM-—=, AN

We call —}, the reflezive, transitive closure of =, and M —

N is defined by M —5 NUAM ™5™ AN U AM calleg ina

AN

By examining the parallel evaluation strategy of C, we
can conclude that it does not allow parallel evaluation as
we described in section 1.1. As a matter of fact, in order
to capture a continuation, callcc must be bubbled up to the
top level; this requires all expressions appearing to the left
of callcc to be values, i.e. a continuation can be captured
in an evaluation context. Moreover, when a continuation is
applied, expressions appearing to the left, up to the top level,
are pruned if they are values but there is no optimisation
when the continuation is applied in extent of the callcc by
which it was reified.

Consequently, we could change the side condition of rule
C3 to solve the first problem: we could allow the capture of
the context even if M is not a value:

M (callcc N) — callcc Me. M(N (M. A(k(Mv))))

Unfortunately, adding such a rule makes the Church-Rosser
property disappear. However, we can define a more general
notion of equivalence based on C which is called observa-
tional equivalence.

3 Observational Equivalence

From a programmer’s point of view, two behaviours can be
observed: either a program terminates or it does not termi-
nate. Consequently, we can say that two expressions M and
N have indistinguishable behaviours, if for all contexts C] |,
either C[M] and C[N] both terminate or both do not ter-
minate. This leads to the formal definition of observational
equivalence.

Definition 3.1 (Observational Equivalence) M =, N
iff V context C[ ], such that C[M] and C[N] are programs,
either both evalc(C[M]) and evalc(C[N]) are defined or both
are undefined.

Observational equivalence allows to prove the correctness of
some optimisations.

Abstractly, an optimisation of a program C[M]
is the replacement of M by a more “efficient” ex-
pression N such that a programmer cannot dis-
tinguish the observational behaviour of the pro-
grams C[M] and C[N]. [26, section 2,page 230]

Therefore, a correct optimisation is an equation M = N
such that M =. N. It is our intention to define some op-
timisations which allow parallel evaluation in the sense of
section 1.1. Proving the observational equivalence of two
terms is not an immediate task but Plotkin gave a powerful
technique for this purpose relating the CPS translation to
the observational equivalence.

The CPS translation is an old idea in computer science.
It was first formalised by Fischer and Reynolds [10], [25];
it is defined by the following equations where [.] maps a
call-by-value term to a lambda-term:

Definition 3.2 (CPS translation)

[Vl = Xek¥(V) with V a value (cpsl)
[(MN)] = Me[M](Am.[N](An.mnk)) (cps2)
U(zr) = =z withx a variable or constant (cps3)
U(Aze. M) = (Az.[M]) (cpsd)

Some essential properties of the CPS translation were proved
by Plotkin; A, and A, represent the call-by-value and call-
by-name theories respectively, evaly and evalp, the cor-
responding evaluation functions, 22,, observational equiv-
alence in \,.

Theorem 3.3 (Plotkin)

1. ¥(evaly(M)) = evaln([M](A\z.z)): the value of M ac-
cording to the call-by-value evaluation strategqy s re-
lated to the value of the CPS translation of M accord-
ing to the call-by-name strategy.

2.0 FM=N = X\, F[M]=[N]: the call-by-value
A-calculus 1s sound with respect to the CPS translation
(but it is not complete).

3. A F[M]=[N] = M =, N: equality in An of the
CPS translations of M and N implies observational

equivalence of M and N in X\, (the converse does not
hold).



We proved similar results for C:

Theorem 3.4 (Simulation)
U, (evalc(M)) = evaln([M]\z.x)
Theorem 3.5 A\, F [M] =[N] = M= N

Sketch of Proof of Theorems 3.4, 3.5

Theorem 3.5 comes from theorem 3.4 as Plotkin’s corol-
lary 2 comes from theorem 6.2 [21]. For theorem 3.4, we
adopt the same technique as Plotkin in theorem 6.2. If
evalc(M) is defined, there is a leftmost, outermost reduc-
tion path M —T M; =T My —T ...V by theorem 2.4. By
lemma A.1, we can conclude that

M7 5 DAL= 57 VD™ = wy(V)

which concludes the proof since evalc(M) =V. O

We now have the tool to prove that two expressions
are observationally equivalent. In the following section we
present some optimisations which preserve the observational
equivalence. The appendix is dedicated to the description
of the optimised cps translation that we use in theorem 3.4.

4 Optimisations and Parallel evaluation

Using theorem 3.5, it is now easy to state some optimisations
which are suitable for parallel evaluation. An optimisation
is an equation M = N, where A\, - [M] = [N]; this implies
M =, N. A set of such optimisations is displayed in figure
3.

With equation OPT1, it is allowed to capture a continu-
ation in any applicative context. This rule is essentially the
same as rule C3 where the side condition is removed. One
should also note that in the right-hand side,

callcc Me.(Af.fF(N (. A(k(fv))M

the expression M is not duplicated; this was necessary to
have equality between CPS translations of both sides of this
equation. This has a strange consequence: one could have
expected that if the application of N to the continuation
reduces to another callcc-application, a new continuation
could have been captured. Unfortunately, this new callcc-
application does not appear in an applicative context but
under a A-expression; however, rule OPT2 gives a solution
to this problem, allowing to reduce several callcc to only
one. This is also the purpose of equation OPT3. Equations
OPT4 and OPTS5 allow to simplify some callcc-applications
independently of the context. This bunch of equations en-
codes the rules 1 and 3 of the semantics given in 1.1.

Rule OPT6 is the equivalent of Ciop [9]; it allows to eval-
uate a callcc-application without capturing the context by
applying the argument to a continuation A\v.A(kv).

The equations OPT7 and OPTS8 show that the top level
rules C7 and C8 can, in fact, be used in any context and
that, they preserve observational equivalence.

Equations OPT9 to OPT12 are presented here and will
be used in several proofs in the following sections. Equation
OPT9 proves that a special operator like A is not neces-
sary. Indeed, (Az.Az) represents the initial continuation
and equation OPT9 says that every expression AM can be
replaced by the application of the initial continuation to
M. This equation is generalised by equation OPT10 for
any evaluation context. We can even further generalise this
equation with equation OPT12, where K[ ] is a captured
context which will be defined in the following section.

5 The CP calculus

There is still a notion we presented in the intuitive seman-
tics which is not yet axiomatised: when a continuation is
applied in the extent of the callcc by which it was reified, it
is not necessary to abort the whole computation; it is suffi-
cient to abort the computation up to this callcc. We intend
to formalise this idea by a prompt mechanism which is ex-
plained in the following section. In this section, we present
an intermediate system where continuations can be uniquely
named.

In C, continuations are represented by anonymous func-
tions and the abortive effect comes from the A operator. In
CP (standing for Continuation Points), we introduce a new
object (p, K| |p), called continuation point which abstracts
a context K[ ]p. A continuation point object is given a name
p which is also given to the hole of the context. When the
name of the continuation point is unimportant (which is the
case in CP), we conventionally use p. CP is based on the
following language Acp

v Value
Term M = (M M) Application
(callcc M) callcc-Application
a,b,... Constants
Value V. i T, Y, .- Variables

Ax.M Lambda Abstraction
(p, K[ ]p) Continuation point, p name

where A-applications were removed since they were showed
to be optional according to rule OPT9. The new reduction
system CP is defined by the rules displayed in figure 4.

Rules CP1 and CP2 are the same as rules C1 and C2.
Rules CP3 and CP4 allow the capture of a continuation in
any applicative context; the continuation is now represented
by a continuation point. Rules CP5 and CP6 model the fact
that the application of a continuation is abortive.

Rules CP7 allows to reduce a callcc in a continuation.
Top level reductions are performed with rules CP9 and CP10.

We call a captured contert, the context K appearing in
a continuation point. Such a context satisfies the following
grammar

K =[] K[[]M] | K[V]] | K[callecAk.[]] | K[(Av.[ V]

Rule CP9 allows the composition of captured contexts; this
was proved to be sound in C according to optimisation OPT12.
Similarly to C, we can define —°?, a notion of reduction,

M — N if M — N using rules CP1 to CP8
—cp its compatible closure,

M—="N = M=, N

M —ep N = Ae.M —cp Az.N

M=, N = ZM —p ZN,MZ —5., NZ with Z € Ay
M —. N = callcc M —., callecc N

M—op N = (a,M) —cp (o, N)

—.p the reflexive, transitive closure of —¢,, and =, the
equivalence relation generated by —7,,.

Similarly to C, we call a computation the relation —7,
defined by

Mo, N=M=, Nu M BN o BN



M (callcc N) callcc Me.(Af.f(N (M. A(k(fv))M (OPT1)
callcek.((Af.f(callcc MK N)M) = callcchk.((Af.f((AE.N)(Av.k(fv)))) M) (OPT2)
callcchk.calleceAk’. M = callecchk.(AK'. M)k (OPT3)
callccAk.M = M if k ¢ FV(M) (OPT4)
callccAk.(kM) = M if k ¢ FV(M) (OPT5)
callcc M = callcc(Ak.(MA\v.A(kv))) (OPT6)
Acallcc M = AM(X\z.Azx) (OPTT)
AAM = AM (OPTS)
Aze. Ax)M = AM (OPTY9)
((Az. AE[z])M) = A(E[M]) with E an evaluation context (OPT10)
(A (Az.(A (callcc 2)))Q)) = (A (callcc Q)) (OPT11)
((Az. AK[z]) M) A(K[M]) with K an captured context (OPT12)

Figure 3: Optimisations for parallel evaluation
M. M)V — M{V/z} with V a value (CP1)
(ab) —  dcp(a,b) if this is defined (CP2)
M(callcc N) —  callecc Xk.(Af.f(N{(a, k(f [ ]a)))) M (CP3)
(callecc M)N —  callcc Ak.(M{a, k([ ]« N)))N (CP4)
({p,K[1p) VN — ({p,K[]p) V) with V a value (CP5)
M{p,K[]p) V) — (p,K[]p) V) with M,V values (CP6)
(o, (callec M)) = (o, (M (5,[]s))) (CPT)
(a, (B, K[ ls) (K2[]a)) = (o, Ki[K>[a]) (CP8)
((p,K[1p) V) =T K[V]with V a value (CP9)
callec M —* M (5,[ ]s) (CP10)

Figure 4: Reduction system with continuation points: —.p

and we note —¢,

by

its transitive closure. evalcp can be defined

evalcp(M) = V iff M —¢, V with V a value

The observational equivalence for CP is also a simple adap-
tation of definition 3.1

Definition 5.1 (Observational Equivalence) M 2., N
iff V context C[] € Acp, such that C[M] and C[N] are pro-
grams, either both evalcp(C[M]) and evalcp(C[N]) are de-
fined or both are undefined.

We can easily show that the system C and the system CP
are equivalent. For this purpose, we define two translations
which essentially map A-applications to continuation points
and vice-versa.

VM € Aep, M7 € A :

Theorem 5.2 VP € Ac,fiEc P
VM € Aep, M° =, M
Sketch of Proof of Theorem 5.2
We proceed by a straightforward induction on the size of
Por M. O

The main result of this section is that the observational
equivalences in C and CP are preserved.

Theorem 5.3 M =, N & M* =5 N¥
P gc Q -~ B%CP Q

Sketch of Proof of Theorem 5.3

First, we prove that for each possible reduction M —,
N, M¥? =, N”. We can then prove that evalcp(M) is de-
fined iff evalc(M¥) is defined. Then, supposing that M =,
N, we try to prove that M* =, N” i.e. VC[], evalc(C[M*])
and evalc(C[N*]) are simultaneously both defined or unde-

¥ ¥ —
dep(a,b)” = dc(a,b)  callec M™ = (callcc M ) o/l fined. We show that for any C[] € A., we can find K[] € A¢p
¥ =z (o, K[]a) ) = M. AK[].’ such that K[ ] = C[]. Therefore, evalc(C[M7]) is defined,
o.M = (A& M%) [l = ¢la) iff evalcp (K [M]) is defined, iff evalcp(K[N]) is defined, iff
P P P
MN™ = (M" N7) evalc(C[N”]) is defined which concludes the proof. O
VP €A, P €Ay : This theorem has a corollary. There is a bijection between
Jo(a,b) = Oop(a,b) callcM = (callcc M) tChF()a classes of observational equivalent programs in C and
= @ AM = ((5,[ ]s)M) '
.M = .M (MN) = (M N) Corollary 5.4 If we consider programs composed of vari-

These translations satisfy the following properties:

ables, constants, applications, lambda abstraction, callcc ap-

plications, > = 2,



The optimisation rules given in figure 3 can now be adapted

to CP where they also preserve observational equivalence
=3

We are now ready to define a reduction system where the
notion of extent is made explicit.

6 The CPP calculus

The notion of extent is not easy to define for a parallel lan-
guage with first-class continuations. First, we informally de-
fine it and then we represent it explicitly in a new reduction
system CPP.

According to [13], [28], the eztent refers to a period of
time: the lifetime of an object or a construct.

“In Scheme, the extent of the application of a function
f on its argument v is the time during which is computed
the body of the function f, this includes the time taken by
the computation of all subforms that appear in the body[24,
page 175, section 1]”.

The extent of an expression in which parallelism is intro-
duced encompasses all the processes evaluating parts of this
expression [23].

On a sequential machine, when first-class continuations
are not used, the extent of an expression is a single interval of
time, or a contiguous time period. When first-class contin-
uations with indefinite extent are introduced as in Scheme,
the evaluation of an expression E can be aborted by apply-
ing a continuation, and the evaluation of E can be resumed
later by a continuation which was captured in E. In this sit-
uation, the extent is composed of several intervals of time,
or a non-contiguous time period. On a parallel machine,
the evaluation order is non-deterministic (while results of
our programs are deterministic). Therefore, time intervals
can be interleaved.

We define the extent of an expression callcc M by the
extent of the application of M to the current continuation.
In the reduction system CP, callcc is bubbled up to the top
level in order to build the continuation. Let us suppose that
rule CP4 is used,

(callecc M)N — callcc Mk.(M (o, k([ ]« N)))N  (CP4)

The extent of callcc M in the left-hand side is the extent
of the application of M to the continuation (o, k([ ]« N)),
while the extent of the callcc-expression in the right-hand
side is the extent of the application of \k.(M{a, k([ ]« N)))N
to the current continuation. Consequently, the extent of the
callcc in the right-hand side includes the lifetime of N which
is not the case in the left-hand side. Eventually, when we
apply a top level reduction CP10, the extent of callcc is the
lifetime of the whole program.

This example illustrates that it is difficult to define the
extent of a callcc in a reduction system like CP. This is
the reason why we introduce a new construct, that we call
prompt, which is used to mark the extent of a callcc. We
define a new set of expressions, Acpp:

Vv Value
._ ) (MM) Application
Form A 5= (callecc M) callcc-Application
F#ao (M) Prompt
a,b,... Constants
Value V ::= T, Y, Variables

Az.M Lambda Abstraction
(p, K[ ]p) Continuation point

where K| ] is a captured context:

K u= []] K[1M] | K[V[]] | KlcallceAk.[ ]
| K#ta(0D] | K[(w.[ V)

Similarly, we define contexts C[ ] and evaluation contexts
E[]:

Cll==[]1cM[]| Cl[IM] | ClAz.[]]
| Cleallee [ ] | Cl#a ([ ])]
E[]==[11 EVI] | E[[1M] | El#a ()]

The reduction system is based on equations displayed
in figure 5. Equations CPP1 to CPP10 are the same as
equations CP1 to CP10. Those equations are independent
of the prompt construct. CPP15 is the rule which introduces
a prompt; it is similar to the equation OPT6:

callcc M =, callcc(Ak.(M{a, k[ ]a))) (OPT6)
callccy M — callcchk.#a (M {a, k[ o)) with a fresh a
(CPP15)

The equation CPP15 wraps the application (M {(«, k[ ]a))
in a prompt #4 (.. .) where the continuation point (o, k[ Ja})
and the prompt #,(...) are given the same new fresh name.

When a callcc is a redex for the first time, rule CPP15
should be applied to mark the extent of this callcc. Af-
terwards, there is no need to use this rule again: indeed,
one prompt is enough, moreover if we re-apply this rule, we
obtain:

callcc M
- callcchk.#a (M (o, k[ ]o))
—  callccAk” #5 (Ak.#a (M (o, k[ 1a))) (B, k[ 15))
la)) )

(x
—  callccAk” #p (F#a (M (o, (B,k[ 1) [ 1))
= callceAk” #5 (#a (M (o, k []a)))

where the continuation point named 3 has disappeared and
the prompt (3 is useless. This is the reason why we have
added the subscript y to callcc in the left-hand side of the
rule. This callccy is a construct which originally appears in
the user program while the callcc in the right-hand side is
an internal callcc generated by the reduction system.

In order to be able to perform the same reductions as
we could before introducing the prompt, we must consider
the different reductions of (M(«, k[ ]o)) that might appear
in the prompt:

1. (M{a, k[ ]o)) reduces to a value V. We can use equa-
tion CPP11
#a(V) — V with V a value (CPP11)

which eliminates the mark #4(), meaning that the
application (M («, k[ ]o)) has reached its end.

2. A continuation named S is invoked and escapes from
(M{a, k[ ]a))- By equation CPP13

#.((B,K[1p) V) — (B,K[]g) V with V a value
(CPP13)

the mark #, () is removed to allow the escape of this
continuation.



M. M)V — M{V/x} with V a value (CPP1)

(ab) —  dcpp(a,b) if this is defined (CPP2)

M(callcc N) —  callecc Ak.(Af.f (N (p,k(f []p))) M (CPP3)
(callcc M\)N —  callecc Me.(M (p,k([ ], N)))N (CPP4)
((p,K[],) VN —  ({p,K[]p) V) with V a value (CPP5)
M{p,K[],) V) — ({p,K[]p) V) with M,V values (CPP6)
(a,(callecc M)) = (o, (M (,[]s})) (CPP7)
(a, (B, K[ ls) (K2[]a)) = (o, Ki[K>[a]) (CPP8)
({p,K[]p) V) =T K[V]with V a value (CPP9)
callcc M =T M (5,[]s) (CPP10)

#.(V) — V with V a value (CPP11)

#o((a, K[]a) V) — V with V a value (CPP12)
#3({o, K[]a) V) — {a,K[]a) V with V a value (CPP13)
callcc \e. M  — M with k¢ FV (M) (CPP14)
callccy M —  callcchk.#a (M (o, k[ ]o)) with a fresh « (CPP15)
#a(callece M) —  callec Ae.#a (M {p, k(#a(1p)))) (CPP16)

Figure 5: Reduction system with continuation points and prompts: —¢pp

3. (M{a, k[ ]a)) reduces to a callcc expression.

#a(callcc M) —  callcc Me.dta (M (p, k(#a([ 1))
(CPP16)

In the equation CPP16, the callcc is passed out of the
mark and the mark is also copied in the continuation.

Now, we can define the extent of a callcc by the extent of
its corresponding mark. Moreover, we say that an expression
M is evaluated in the extent of a callcc if M is a redex in an
applicative context appearing in the mark associated with
this callcc:

#a(A[M]) = #a(AIM

We can easily optimise the invocation of a continuation in
the extent of the callcc by which it was reified. Since a con-
tinuation and the mark delimiting the extent of this callcc
are given a unique name, the following rule can detect such
an invocation:

#a({, K[ ]a) V)

Therefore, rule CPP13 should be applied when a continu-
ation escapes from a mark with a different name while rule
CPP12 is used for the application of a continuation in a
mark with the same name.

The main result of this section is the following theorem;
it says that two programs are observationally equivalent in

CP if they are observationally equivalent in CPP.

Theorem 6.1 VM € Aep, M =y N iff M Zepp N

") with A[] an applicative context

— V with V a value (CPP12)

The proof of theorem 6.1 requires the definition of an
intermediate reduction system CP’: it is based on the set of
expressions Agp, and it is composed of all reduction rules of
CPP except CPP12. In this system CP’, we define a notion
of reduction, its compatible closure, equivalence relations,
evaluation and observational equivalence as we did in the
previous systems. We can prove that CP’ and CP satisfy
the following theorem:

Theorem 6.2 evalcp(M) =V <= evalcp/ (M) = V' with
S(V')Y=V and S(M) defined by
S(Az.M) = Xz.S(M) S(z) = =
S(MN) = (S(M) S(N)) S([la) = [la
S(callcc M) = callcc §(M) S(#(M)) = S(M)
S(a, M)) = (a,8(M))

Although rule CPP12 does not belong to CP’, we can show
that this rule preserves observational equivalence =, .

Lemma 6.3 #.((o, K[ |a) V) &y V

Sketch of Proof of Lemma 6.3

In C, we have proved that callcc Ak.(kV') =, callcc Ak.V.
So, it is true in CP by th. 5.4 and in CP’ by th. 6.2. By ap-
plying rule CPP15, we have callcc Ak’ .#q ({(o, k' [1a)V") Zep
callcc Ak’ .4 (V') from  which we can derive that
#a((0, K[ ]a)V') = V', O

Sketch of Proof of Theorem 6.1

Rule CPP12 is shown to preserve observational equiv-
alence in CP’ and CPP is defined to be CP’ extended by
CPP12. Therefore, by theorem 6.2, M =., N iff M =, N
and by lemma 6.3, M =, N iff M =.,, N which concludes
the proof. O

CPP is a reduction system which allows the capture of
continuations in any applicative context and which does not
abort the whole computation when a continuation is applied
in the extent of the callcc which created it. With theorems
5.4 and 6.1, observational equivalence is the same in CPP
and C, meaning that programs can be evaluated with a se-
quential or a parallel strategy. Therefore, we have succeeded
in formalising the intuitive semantics of section 1.1.

Instead of CPP16, we could have used another equation

#a(callce M) —  callec \k.#o(M(p,k[],)) (CPP16")

where the prompt in not copied in the continuation. In
this case, the prompt is the explicit representation of the
dynamic extent of the callcc.



7 Related work

Queinnec [22] has also proposed a semantics for continu-
ations in a parallel framework but his pcall construct is
not transparent. Moreover, the concept of returned value
has changed: an expression may return several results (at
different times) and, for a given expression, the number of
returned results can change with execution.

Katz and Weise have implemented a system with a trans-
parent future construct [16], [17]. It is based on a notion of
legitimacy: a process is legitimate if the code it is executing
would have been executed by a sequential implementation in
the absence of future. For a given program, their implemen-
tation returns one or more results without knowing if they
are legitimate. The legitimacy is determined later when all
subcomputations have completed and a total order of eval-
uation can be found as in the sequential semantics. In a
sense, we also have a notion of legitimacy: we have to deter-
mine whether it is legal to apply a continuation in a parallel
program. But, pcall can be more optimised than future: a
continuation can be applied in an evaluation context and if
an expression returns a value using parallel evaluation rules,
the result is behaviourly equivalent to the one returned by
a sequential evaluation strategy.

In [19], we presented the intuitive semantics we describe
in section 1.1. We can see [19] as an implementation of the
system CPP on a machine with multiple processors and a
shared memory.

The system C is very similar to Felleisen’s A. [8] except
that C is based on callcc and not C. The notion of ob-
servational equivalence has already been used by Felleisen
and others in several papers [5], [8], [9]. However, Felleisen
hardly investigated the problem of parallelism in reduction
systems with control operators. This is partly due to the
choice of the control operator: C is abortive, it applies its
argument to the current continuation in an empty context
while callcc is not abortive. Therefore, it was required for
C to be in an evaluation context which is not the case for
callcc. In [6], a parallel evaluation strategy is proposed but
C is designated as the cause of bottlenecks.

Sabry and Felleisen [26], [27] present extensions of the A,
and Ac-calculi which are complete with respect to CPS trans-
lation (VM,N € Avc,Ao,e F M = N & A\, F [M] = [N]).
It appears that their axioms B f¢, Briat, Bid, B, Clist, Cabort,
Ctai all satisfy our relation of observational equivalence.
However, we did not investigate if C was complete by adding
this set of axioms.

Kanneganti et al. [15] use the axiom callccAk.C[E[kv]] —
callcc Mk.C[kv] which also preserves observational equiva-
lence .. When added to C, this axiom optimises the appli-
cation of a continuation in the dynamic extent of a callcc.
While this approach does not require to introduce a prompt
construct and continuation point objects, it suffers from the
defaults suggested at the beginning of section 6. callcc is
given the role of both marking the dynamic extent and cap-
turing a continuation: therefore, after capturing a continu-
ation, the mark of the dynamic extent has disappeared.

Optimised CPS translations were proposed by Sabry and
Felleisen [26], [27], Danvy and Filinski [3]. For the purpose of
the proof, we had to specialise our CPS translation but the
applicability of this approach in other circumstances does
not appear to be immediate.

The mechanism of prompt introduced in section 6 is es-
sentially different from Felleisen’s prompt [4], or Danvy and
Filinski’s reset [2] or Queinnec and Serpette’s splitter fa-

cility [24]. In their approach, a prompt is used to delimit a
partial continuation while we use the prompt to mark the
extent of callcc.

Jouvelot and Gifford [14] present a static analysis of pro-
grams with call/cc. Their type system can detect programs
that use internally call/cc. While they prove their type
system gives a safe approximation, we show that the opti-
misation of the application of a continuation in the extent
of its call/cc, always preserves observational equivalence.

8 Conclusion

To our knowledge, it is the first time that reduction rules
for control operators are investigated in the perspective of
parallelism. It appears from our results that continuations
can be captured in any applicative context. It is also the
first time that the notion of extent of a callcc is used in
a reduction system in order to avoid to abort the whole
computation.

Allowing the capture of a continuation in any applica-
tive context entails that a control operator like callcc does
not introduce sequentiality in a parallel language. However,
application of a continuation introduces some sequentiality,
especially when the continuation is applied outside of the
extent of the callcc by which it was reified.
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A The optimised cps translation

As observed by Plotkin [21], by Danvy and Filinski [3] and
by Sabry and Felleisen [26], the CPS translation introduces
“administrative” redices. Indeed, for a standard reduction
in the call-by-value A-calculus, My —, M, we have a se-
quence of administrative reductions, followed by a reduction
M} — M which corresponds to the original reduction:

[Mo](Az.z) =~ Mgy — M;

but this term M| does not reduce to [M;](Az.z), it is in fact
the reduction of administrative redices of [M;](Az.x):

[Mi](Az.x) —* M;
Therefore, we have this unfortunate property
Mo — My but [Mo](Az.z) A" [Mi](Az.z)

Hence, for the purpose of the proof of the first proposi-
tion of theorem 3.3, Plotkin introduces an optimised CPS
translation where some administrative redices are eliminated.
In our proof, we also define an optimised cps translation. We
write [M]X for the optimised cps translation of M with the
continuation K. We have the following property

Moy =5 My = [Mo]X =~ [Mi]F

which gives lemma A.1.

If M —, N using the standard reduction, the opti-
mised cps-translation of M reduces to the optimised cps-
translation of N.



Lemma A.1 If M —, N then [M]X =" [N]X (if K is a
closed value and M and N are terms)

Sketch of Proof of Lemma A.1

The proof similar to Plotkin’s proof of lemma 6.3; we
proceed by induction on the size of M and by cases according
to the definition of —,. O

Optimised cps translations were proposed by Plotkin [21],
by Danvy and Filinski [3] and by Sabry and Felleisen [26],
[27]. In [21] and [26], the translations concern call-by-value
terms while, in [27] and [3] they concern call-by-value terms
extended by control operators callcc or escape = in M
(which is a special form equivalent to callcchz.M).

As Sabry, in the original Fischer’s translation, we mark
by an overline all lambda-abstractions which are not present
in the original term. Rules Ocpsl to Ocpsb in definition A.2
are similar to Sabry’s. In those rules, each continuation is a
A-abstraction. We add rules Ocps6 and Ocps7 for the trans-
lation of A and callcc. In the translation of AM, the initial
continuation is marked as administrative and in the trans-
lation of callccM, the reified continuation Avk'.kv, standing
for Av.\k'.kv is also marked as administrative.

Definition A.2 (Optimised CPS translation)

IVl = Xek¥(V) withV a value (Ocpsl)
[0c(a,b)] = 6n(a,b) (Ocps2)
[(MN)] = Xe[M]Om.[N](An.mnk)) (Ocps3)
U(z) = =z with z, variable or constant  (Ocps4)

Y(Az. M) = (Az.[M]) (Ocpsh)
[(AM)] = Xe[M](ha.z) (Ocps6)
[(callcc M)] = Ie[M]Om.m(Owk'.kv)k) (OcpsT)

We define the optimised CPS translation as a three-pass
process, where lambda-expressions marked as administra-
tive are reduced at translation-time, and where unreduced
administrative expressions are unmarked.

Definition A.3 (Three-Pass Translation) The three-pass

optimised translation of M, indexed by the continuation K,
[[ME is N iff U(eval™ ([M]K)) = N where eval ™ (P) = Q
iff BnE P =" Q with 55 and —5 reductions defined by

Az M)V ——

B
(A\z.Mz) —5

M{V/x}
M with x & FV (M)

(1)
(2)
and U(P) removes the marks on administrative abstractions:

UPQ) = UPUQ))
Ulx) = =

UMz M) =
Uz M)

Az.U(M)
Ax.U(M)

We also note Uo(V), the result of a translation of a value
[VIE = KU,(V). Therefore, U,(V) = U(eval™ (¥ (V)))

This solution is not yet satisfactory; indeed, in C, let
us consider (callcc M)N and its reduction by rule C4. Let
us cps-translate the two terms, we obtain the following dia-
gram:

callcc

(callcc M)N =

wlchs
[(callcc M)N]E

eallce Me.(M(Af.AE(fN))))N

wlchs
« [callce Me.(MAF.A(E(fN))))N]E
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where the reductions in A, go in the opposite direction

to the reduction in C. This situation comes from the fact
that the rule C4 introduces in the right-hand term two A-
abstractions; the new argument of callcc is called a contin-
uation receiver, Ak.(M(Af.A(k(fN))))N and the other ab-
straction, (Af.A(k(fN))), is a functional representation of
the continuation. Since the translation of those A-abstrac-
tions are not administrative, they are not reduced in the
three-pass translation. As a matter of fact, both abstrac-
tions should be considered as administrative abstractions
introduced by the reduction system. Indeed, it is the inter-
nal way of handling callcc in C. Therefore, in the reduction
system, let us mark by a star the A-expressions which are
continuation receivers or representation of a continuation
created by the system.

M(callcc N) — callecc X'k M (N (A*v.A(k(Mv))))
(callcc M)N — callecc X*k.(M(X\" f.Ak(fN))))N
A(calleceM) — AM\ z.Ax))

Nz M)V — M{V/z}

and let us add the new following rules to the cps translation
YNz M) = (Az.[M]) (Ocps8)

where \*-expressions are marked as administrative and are
reduced at translation-time. With these two rules, we have
now

(callecc M)N ca[c)c
~chs

[(callcc M)N]X

Tallcc N E.(M(X f.Ak(fN)))N
~chs
= [eallec Xk.(M(\*f.Ak(fN))))NIE

Of course, the user is not given the right to write pro-
grams with A"-abstractions. Since they are only created by
the reduction system, we can prove that this optimised cps
translation is always defined.

Lemma A.4 The optimised cps translation s a total func-
tion.

Sketch of Proof of Lemma A.4

Sabry and Felleisen proved that this cps translation is
a total function for terms belonging to A. Using the same
technique, we can show that [AM] does not duplicate any
X-expression. However, the introduction of callcc and A*-
abstraction increases the number of possible redices in the
cps terms. We can show that [callccM] duplicates its con-
tinuation but there is a bound on the number of duplications
of this continuation which depends on M and which can be
computed. O
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