Partial Continuations as the Difference of
Continuations
A Duumvirate of Control Operators

Luc Moreau' and Christian Queinnec?

! Institut Montefiore B28, Service d’Informatique, Université de Liége, Sart-Tilman, 4000
Liege, Belgium — Email: moreau@montefiore.ulg.ac.be
2 Ecole Polytechnique (URA 1437) & INRIA-Rocquencourt France — Email:

queinnec@polytechnique.fr

Abstract. We define a partial continuation as the difference of two continua-
tions. We exhibit, in a single framework, several design choices and their impact
on semantics. The ability of partial continuations to manipulate stack frames
blurs the nature of dynamic extent; therefore, we introduce a new concept
of prefizal extent that characterises the time during which a partial continu-
ation can be reified. We propose two equivalent formal semantics for partial
continuations: a context-rewriting system and a cps translation. Two new and
realistic examples illustrate both the interest of partial continuations and the
expressiveness of our choices.

1 Introduction

The mathematical concept of continuation was introduced by Strachey and Wadsworth
[18] [16] to give a semantics to control operators such as goto. The continuation of an
expression represents the rest of the computation to be performed after evaluation of
this expression. Some programming languages, such as Scheme and SML of New-Jersey,
provide the control operator call/cc, which gives the programmer the possibility to
reify the current continuation into a first-class object. Invoking a reified continuation on
a value v consists in resuming the computation where the continuation was captured,
with v the value of the call/cc expression. The invocation of a first-class continuation
has an abortive effect since the control is transferred from the current continuation to
the captured continuation. First-class continuations can be used to program coroutines,
exceptions, .. .[8].

More recently, the concept of partial continuation was successively introduced and
studied by Felleisen, Friedman, Wand, Duba, Merrill [6], [7], [4], Danvy and Filinski
[3], Hieb and Dybvig [9], [10] Queinnec and Serpette [15]. Although their propositions
differ, they nevertheless share a common idea: a partial continuation represents a part
of the rest of the computation. Partial continuations can also be reified into first-class
objects but, unlike continuations, when a partial continuation is invoked, control is
returned to its invocation point after its termination. Therefore, partial continuations
have the behaviour of functions and are composable.

Two operators are introduced to delimit the part of the computation that a partial
continuation represents. The first of them can be regarded as a marker, while the
second operator reifies the partial continuation between its invocation point and a
mark. The operators #, reset, spawn, and splitter belong to the former category,
while F, shift, and call/pc belong to the latter. Although the notion of partial
continuation comes from the simple idea of reifying a part of the current continuation,
the solutions proposed in [7] and [3] introduce a debate on the “dynamic-ness” of
control operators. Indeed, during invocation of a partial continuation, some marks
might be copied. Therefore, which mark should a control operator refer to, the most

recent one, i.e. the one that was just copied, or the oldest one, i.e. the one that existed
before the invocation of a partial continuation?
As Murthy [12] writes

Now, naturally, one might ask: is there a way to “jump over” the delimiters?
This would lead us to invent a new control-operator, which could jump over
the prompts, and grab all of the evaluation context, to the top of the program.
And after that, we might want to delimit the action of this operator, too. And
so on. ...

In other words, a language should provide the programmer with control operators
able to capture partial continuations between any two points, whatever the marks
appearing inside. For this purpose, hierarchies of control operators were introduced
by Sitaram and Felleisen [17] and Danvy and Filinski [3]. Control operators are now
indexed by a number which is their control level, and an operator of level m is able to
reify the partial continuation delimited by the first mark of level n if n > m. Although
this solution provides the possibility to reify any part of the computation, it lacks of
intuition: which intuition should a programmer rely on to choose a mark of level n or
a mark of level n+ 17 Quantitative notions like control level are not easy to apprehend
and are not easy to deal with in everyday programming. On the other hand, Hieb
and Dybvig [9] and Queinnec and Serpette [15] propose pairs of control operators (a
marker and a reifier) that are, respectively, parameterised by a label or a mark. These
proposals are able to reify partial continuations between any two points but introduce
debates on the extent during which partial continuations can be reified.

The four following points are the original contribution of this paper.

1. We suggest a new definition for partial continuations: we regard a partial con-
tinuation as the difference of two continuations if one is the prefix of the other.
We provide two operators: marker names the current continuation, while call/pc
subtracts a named continuation from the current one and reifies their difference
into a partial continuation. Since a hierarchy is not required any longer, our two
operators, marker and call/pc, are solely given the power to exercise control, they
form our duumuvirate of control operators.

2. We rely on intuitive stack frames manipulations to explain our control operators
in Section 2. In this single framework, we show different semantical choices and
their impact. There are two issues. First, are continuation names copied when a
partial continuation is reified? Second, what is the extent during which partial
continuations can be reified with respect to a named continuation? As opposed to
the current literature, we discuss the possible choices and select the most expressive
one in Section 3. Although dynamic extent has some interesting properties as far as
implementation is concerned, we observe that the ability of partial continuations to
manipulate stack frames blurs the nature of dynamic extent: we therefore introduce
a new concept of extent that we name prefizal extent.

3. We present two formal semantics. The first one is a reduction system (Section 4);
its most salient feature is its conciseness. The second semantics is a cps translation
(Section 5) in which the connection between stack frames and cps is explicit. The
two semantics were proved equivalent, and both formalise the different aforemen-
tioned choices.

4. In Section 6, we introduce two new examples that illustrate the interest of partial
continuations and the choices that we propose. In particular, prefixal extent is
emphasized by the latter example.

2 Partial Continuations as a Difference of Continuations

Let us first consider the program in Figure 1, where first-class continuations are only
used as downward continuations. One of the first-class continuations k1, k2, or k3
is invoked by (k¢ v) in the extent of the call/cc by which it was reified. Before
evaluating the expression (ki v), the control stack can be symbolically represented
as in Figure 1. The top and base of the stack are indicated by the top and base
pointers respectively, and the stack is conceptually divided into four regions by the
marks a1, g, and «g. Each variable ki is bound to a continuation that corresponds
to a portion of the stack from the base pointer to the «; mark. Evaluating (k: v)
consists in removing the portion of the stack from the top pointer to the a; mark.

top
(f0 (call/cc (31D
(lambda (k1) e
(f1 (call/cc (f2[1)
(lambda (k2) a2
(£2 (call/cc (1]
(lambda (k3) an
(£3 (k1 v)))))))))))
;1 =1,2, or 3 (fo []) b
ase

Fig. 1. Program 1 and stack representation

However, first-class continuations are not restricted to a downward use, and call/cc
is not aimed at leaving marks on the stack. So, let us call marker a new control operator
that is intended to leave a mark with a new name on the control stack. Such marks
divide the control stack into regions that we call control blocks, and the purpose of a
mark is to give a name to the block just below it. We call the current block the top
block: it is delimited by the top pointer and the previous mark left or the base pointer
if no mark was left. Pushing a new mark on the current block consists in naming the
current block. Moreover, like call/cc, marker requires one argument, called a receiver,
which must be a unary function. Besides naming the current block, marker also reifies
the names of the current continuation and applies its receiver to the sequence of names
of the current continuation, i.e. the sequence of names of all marks left in the current
continuation.

According to Figure 2, before evaluating (marker (lambda (k3) ...)), two marker
expressions were already evaluated, having given names «; and as to the two first
control blocks. Just after invocation of the third marker, the old current block is given
the new name a3, and the application of the receiver (1ambda (k3) ...) to the sequence
of names (a1, a2, a3} starts a new current block, pointed by the top pointer.

When a value v is returned to a mark «, this mark is removed from the stack, the
block that was named « becomes the current block, and the value v 1s now returned
to the current block. Therefore, marks are transparent to normal returns.

According to this description, a continuation is composed of several control blocks
with associated names. We call A (c) (names of ¢) the sequence of block names of
continuation ¢. We can now give two definitions related to continuations.

Definition 2.1 (Prefix) A continuation ¢y is a prefiz of a continuation co if the
sequence of block names N'(c1) is a prefiz of the sequence of block names N(ca).

(£0 (marker
(lambda (k1)
(£1 (marker
(lambda (k2)
(£2 (marker
(lambda (k3)
(£3 (call/pc k1 (Lambda (pc) ...))))))))))))

to
current bloc
top
current block a3
2’5} a2
oq aq
base base
k2 = (al,02> k3 = <a/1,a/2,a/3>
k1 = <a/1> k2 = (al,02>

k1 = <a/1>

Fig. 2. Stack representation before and after evaluating (marker (lambda (k3) ...))

Definition 2.2 (Difference of two continuations) The difference of two continu-
ations ¢y and co 1s defined, if co 15 a prefir of ¢y, by the sequence of blocks s from ¢

such that N'(c1) = append(N(c2), N (s)).
We can now define our notion of partial continuation.

Definition 2.3 (Partial continuation) A partial continualion is a sequence of con-
trol blocks obtained by the difference of two continuations.

Let us introduce a second control operator call/pc that is able to reify partial
continuations into first-class objects; call/pc requires two arguments: a sequence of
block names and a receiver. The receiver is a unary function that will be applied to
the reified partial continuation. Figure 2 represents the stack before evaluating the
expression (call/pc k1 (lambda (pc) ...)) appearing in the program. The behaviour
of call/pc is specified by the five following actions.

— A new mark is pushed on the stack, giving the current block the new name «4; so,
the current continuation is composed of the blocks «q, as, a3, and ay.

— The partial continuation is computed by difference between the current continua-
tion and the continuation whose sequence of block names is the value of the first
argument of call/pc (here k1). This defines a unique partial continuation which,
here, is the sequence of blocks named (s, a3, ag).

— This partial continuation is reified into a first-class object.

— The computation is aborted to the continuation with names k1: the portion of the
stack from the top pointer to the mark oy is removed; the mark « is left as it is
because a mark is intended to name the block below it.

— The receiver is applied to the reified object above the mark a7, starting a new
control block.

After these steps, we can now represent the stack as in Figure 3. The current block is
above the block a1 and the captured partial continuation is composed of blocks a4, a3,
and oy,

g

(£0 (marker N the Partiql
(lambda (k1) 3(continuation
(£1 (marker

(lambda (k2) az
(£2 (marker
(lambda (k3) - top
(£3 (call/pc k1 } current block
(lambda (pc)
(f4 (pc v)))) }m
)DDRDIDIDY) base
k3 = <a/1, a2, a/3>
k2 = <a/1, Cl/2>
k1 = <a/1>

Fig. 3. Stack representation after application of the receiver to the partial continuation

3 Reifying a Partial Continuation

In Section 2, we defined a partial continuation as a sequence of blocks obtained by
difference of two continuations. We have not yet precisely specified how such a partial
continuation was reified into a first-class object. Several behaviours can be considered
according to the way a reified partial continuation preserves its structure of control
blocks. Let us examine the different choices and their impact on semantics.

Let us now consider the program of Figure 3, where call/pc is applied to a re-
ceiver that invokes the reified partial continuation pc. Two different approaches can
be adopted.

1. Since we have defined a partial continuation as a sequence of control blocks sep-
arated by marks, we can consider that the structure of the blocks is preserved
during the reification, 1.e. marks are conserved. This case is illustrated in figure 4,
where applying a partial continuation consists in concatenating the current con-
tinuation with the partial continuation. However, we can again consider two cases
depending on whether we want to keep the structure of the block that is current
at invocation time.

(a) At invocation time, a new mark (here as) is introduced between the current
block and the first block of the partial continuation.

(b) At invocation time, no marker is introduced between the current block and
the first block of the partial continuation so that they both appear under the
mark as; since a mark is intended to name the block below it, both blocks
seem to be merged in a single block named by «s.

After installing the partial continuation pc, the stack is composed of block names

aq, s, (o, g, vy 10 the first case and aq, a9, g, g 1n the second case. Afterwards,

the value v is returned and the mark «4 is removed; hence, the block that was
previously called a4 becomes the current block. But, in both cases, the variables
k1, k2, and k3 are still bound to (a1}, (@1, as2), and {a1, az, as) respectively. We
can conclude that {«) is still a prefix of the names of the current continuation, but
neither (o, o) nor (@, @z, aez) is a prefix of the names of the current continuation

in the first case. Consequently, after invocation of pc, it is allowed to capture a

partial continuation with respect to k2 and k3 in the second case, but this is

forbidden in the first case.

- top - top
current block current block
(previously ay) (previously ay)
pc a3 pc a3
a2
a2
ay
k1 = <a/1> k1l = <a/1>
oq aq
base base

Fig. 4. Stack representation after invocation of a partial continuation preserving marks

Remark. Just before reifying a partial continuation, a newly created mark (a4 in
the running example) was pushed on the stack. As soon as this partial continuation
is invoked, a value is returned to this mark, and this mark is removed from the
stack. Therefore, this mark can never be reified and is somehow useless. However,
we thought that for the purpose of explanation it was more uniform to consider
named blocks rather than a sequence of named blocks and one unnamed block.

2. Although a partial continuation was defined as a sequence of blocks, we can con-
sider that the process of reification removes all marks between blocks. Therefore,
all blocks in the partial continuation appear to be merged as a single block. This is
illustrated in Figure 5, where again two cases can be considered w.r.t. the current
block.

(a) At invocation time, a new mark (here as) is introduced between the current
block and the single block of the partial continuation.

(b) At invocation time, no marker is introduced between the current block and the
single block of the partial continuation so that they are merged into a unique
block.

After installing the partial continuation pc, the stack is composed of block names

a, s, g 10 the first case and «q, ay in the second case. Afterwards, the value

v is returned and the mark a4 is removed; hence, the block that was previously

called iy becomes the current block. Consequently, both solutions are able to reify

a partial continuation with respect to k1 but none of these solutions is able to

reify a partial continuation with respect to k2 or k3. Indeed, immediately after

invocation of the partial continuation, (o) is a prefix of the names of the current
continuation, but neither {a, as) nor {ay, ae, az) is a prefix.

The extent of sequences of names is the property that essentially makes a distinction
between these four solutions. We shall define the extent of a sequence of names as the
period of time within which this sequence of names can be used to reify a partial
continuation.

The notion of dynamic extent is related to the use of a stack; it is traditionally
defined as the period of time during which a stack remains active, i.e. blocks are
pushed and popped above a given stack. In a language without partial continuations,
the dynamic extent can be equivalently defined as the period of time during which
evaluation is concerned with blocks above a given block. But, the ability of partial
continuations to manipulate blocks blurs this notion of dynamic extent because a
block is no longer uniquely associated with a stack. Therefore, we refine this notion of
extent for partial continuations.

Definition 3.1 (Dynamic extent of a sequence of names) Letn* be the sequence
of names of the current continuation ¢ obtained by the operator marker. We say that

- top - top

current block
pc

(previously ay) current block

(previously ay)

pc

as

k1 = <a/1> k1 = <a/1>

a1 a1
base base

Fig.5. Stack representation after invocation of a partial continuation without preservation
of marks

n* has a dynamic extent iff n* cannot be used to reify a partial continuation after a
value is returned to the current continuation c, or after the computation is aborted to
a continuation ¢’ that is a prefiz of c.

In the first, third, and fourth solutions, sequences of names have a dynamic extent
for two different reasons. In the first and third solutions, when a partial continuation
is invoked, a new mark gives a name to the current block; so, the sequences of names
captured in the partial continuation become obsolete because they are no longer prefix
of the current continuation. In the third and fourth solutions, as soon as a partial
continuation is captured with call/pc, all the marks captured in the partial continuation
disappear.

However, note that sequences of names do not have a dynamic extent per se. As
all first-class values, they have an unlimited extent, i.e. they can be referenced, stored,
or returned even outside their dynamic extent, but it is the process of subtracting
continuations that restricts the use of sequences of names w. r. t. call/pc.

On the contrary, in the second solution, sequences of names do not have a dynamic
extent. We call prefizal extent the extent of sequences of names in the second solution.

Definition 3.2 (Prefixal Extent) Let ¢ be the conlinuatlion existing atl the moment
an object o is created. We say that o has a prefizal extent iff, for every c1, the contin-
wation existing when the object o is used, ¢ is a prefix of c1.

Amongst the different approaches given above, it is only in the second one that
sequences of names have a prefixal extent. In all other cases, the extent of sequences
of names is dynamic. We prefer the notion of prefixal extent because it offers more
expressiveness as it will be shown in examples of Section 6.

In the two following sections, we propose two formal semantics: the first of them is
a reduction system and the second is a cps translation. These two semantics are proved
to be congruent. By their equivalence, both semantics precisely define our duumvirate
of control operators as well as they satisfy differing tastes. Both semantics formalize
the four previously mentioned choices. The first one favours concision by the use of
evaluation contexts. The second one exhibits the connection between stack frames and
cps, as well as the machinery for new names creation.

4 Reduction System

In this section, we present a context-rewriting system as Felleisen and Friedman [5].
This rewriting system is an extension of the call-by-value A-calculus [13] with the
marker and call/pc operators. We also introduce a new syntactic construct #4(...),

called prompt with name «, that is intended to represent a mark naming a control
block. Terms® of the language are defined inductively by the following grammar.

Muo=z|{a,8,....7) | Qe M) | (MM) | (marker M) | (call/pc VM) | #,(M)

A walue, denoted by V| is either a variable z, a sequence of block names (o, 3, ..., 7},
or an abstraction (Az.M). An expression of the form (marker M) is called a marker-
application. An expression of the form (call/pc VM) is called a call/pe-application. An
expression of the form #,(M) is called a prompt.

We also define an evaluation context £¢[]indexed by a depth d, where d represents
the number of prompts #,() in E4[].

E°[]u=(V E°[]) | (B[] M) | (call/pe V [1) | []
BT a= (VBT [(2] M) | (call/pe V [1) | #a(E'[])

An evaluation context of depth d represents a continuation composed of d + 1 blocks;
amongst them, n blocks are named while the last one is the current block.

We can find in Figure 6 the definition of the context-rewriting system. Equation
(1) is the call-by-value S-reduction [13]. In (2), a marker-expression is replaced by a
prompt with a new name 6, and the receiver of marker, the expression M, is applied
to the sequence of prompt names appearing in £¢[] extended with 6. According to
(3), when the evaluation in a prompt reaches a value, the prompt is removed, and
evaluation proceeds with this value. This rule corresponds to the intuitive explanation
given previously: when a value is returned to a mark at the top of the stack, the mark
is removed. Equation (4) concerns the reification of a partial continuation. In order
to apply this rule, the context E¢[] should contain the names o ...y. The partial
continuation is represented by the context Egl[]. The operator call/pc applies the
receiver f to a reification of the partial continuation returned by a call to F, which
transforms a context into a function.

EY(Az.M)V] — EYM{V/z}] with V a value (1)
E%lmarker M] — E%[#s(M (6,7,...,a))] (2)
with § ¢ EY[M]
with E9[]= Eg[#al. .. #+(Ea[])..)]
EY#a(V)] — EV] (3)
B4 (B [eallfpe (g, 7, ..., o) M) — Ef[#(f F(ES 1) (4)
with EY[]= Eg[#a(... #,(EQ[]).)]

Fig. 6. Context-rewriting system

The four possible ways of reifying a partial continuation are formalised in Figure
7. In the two first definitions of F, the control information held in E9[] is preserved,
while in the two last definitions, this information is removed by the function flat. With
the first and third definitions, when the partial continuation is invoked, a prompt with
a new name ¢ 1s inserted.

®In order to slightly simplify the definition of the reduction system, we suppose that a
call/pc-expression has a value as a first argument.

Four ways of reifying a partial continuation: Control information removal
F1(E)) = Ao.#te(EY2]) with a fresh ¢ flat(E°[]) = E°[]

Fo(E]) = Aa.E[x] flat(V E[]) = (V (Rat(E])))
Fo(BY]) = Az #o(flat(Ez])) with a fresh ¢ flat(EY] M) = (lat(E[]) M)
Fu(E)) = Awfat(Ex]) flat(#a (B[]) = flat(E4' [])

Fig. 7. Reification of a partial continuation

5 CPS Translation

A continuation semantics is another natural way to give control operators a semantics.
In a traditional continuation semantics, a continuation maps an intermediate value to
a final value, 1.e. a continuation represents the rest of the computation. This property
1s not suitable for partial continuations since they are expected to be composable.
Felleisen, Wand, Friedman, and Duba [7] proposed a non-traditional continuation se-
mantics where a continuation algebra was derived from the evaluation contexts of the
reduction system. This technique, named Abstract Continuation Passing Style, was
also used by the second author to define splitter [14]. Although such an approach is
also possible here, we have adopted Danvy and Filinski’s technique [3] to exploit the
expressive power of continuation-passing style through the use of multi-level continu-
ations.

As explained in Sections 2 and 3, it is important to uniquely name a new control
block. Unlike the operational semantics, we explicitly represent in the cps translation
this naming facility by a single-threaded counter passed to each continuation. When-
ever a new name is required, the counter is incremented by one, therefore guaranteeing
the uniqueness of names.

The domains of values and the cps translation appear in Figure 8. A block is
represented by an element of the domain K. A block returns a final answer when
given a value, a continuation and a counter. An element of C'ont is a continuation,
which is nothing more than a sequence of named blocks. The semantic function []
maps a program, a block, a continuation, and a counter to a final answer. There exists
a similarity with the informal definition of Section 2, where the current block appears
on top of the stack and the rest of the stack consists of named blocks: the current
block is an element of K| and the stack 1s an element of Cont.

The auxiliary functions P and D used in the translation of call/pc in Figure 8 are
defined in Figure 9. They receive a sequence of names and a continuation. The function
P returns the prefiz of the continuation having this sequence of names, i.e. it is the
part of the continuation that is not reified. The function D returns the reification of
the partial continuation computed by difference as explained in Section 2. Both P and
D call the function decompose, which returns two continuations, the first being the
prefix, the other the suffix. The function F reifies a continuation (i.e. a sequence of
named blocks) into a function. Four definitions of F are given for each case of Section
3. We add to the set of names the special name ¢, which stands for “anonymous”.
The blocks of a sequence are merged by giving them this anonymous name, which is
considered as an invisible name by the function decompose.

6 Application

The operators marker and call/pc can be used to express Danvy and Filinski’s [3]
example about the non-deterministic finite state automaton and Danvy’s example of
computation of the prefixes of a list [2]. In Sections 6.2 and 6.3, we illustrate how

e M]rr*d = k(As" Az A" d" [M]x's""d")" d
[MN]re*d = [M] Ams"d" [N]Anx""d" . mrns""d")& d')x*d
[z]kx"d = & zx"d
[marker M]rx"d = [M] (Am&pdm. m 8o ({dm)§(map ()\x xll) Km))
({({dm, &))§rm) (dim +1))x"d

(d
(¢, (({dm, &))§Km))
(¢, ({{dm

[call/pc ¢ Mk&"d = [M] (Amkydm. m 6 D
Pe, >>§Km)) (dm + 1)) K" d
B0 = Aor"d.(((" [1) | 2)v)(x" $1)d the initial block
Ko = Av. Ak . Ad.v the initial continuation

k€K : Val — Cont — N — Ans
f€Fun : K —Val — Cont — N — Ans
k* € Cont : (N x K)*
[1: Prog— K — Cont — N — Ans

Fig. 8. CPS translation

decompose : Cont x N* x Cont — (Cont, Cont)
decompose(cont, names, acc) =
if null?(cont) then wrong("not in extent")
elif null?(names) then {(acc, reverse(cont))
elif names |1 = ¢ then decompose(cont,names |1, acc)
elif (cont|1)]1 = ¢ then decompose(cont 1, names, {cont|1)§acc)
elif names |1 = (cont|1)]1 then decompose(contil,namesj1,{cont|1)§acc)
else wrong("not in extent")

P : N* x Cont — Cont prefix

Plc,x") = decompose(reverse(r™),reverse(c),{)) |1
D : N*xCont— Fun difference

D(c, k") = F(decompose(reverse(s™), reverse(c), ()) 1 1)
F . Cont — Fun

Fi(k") = As1vidisl (6o v1) (d 1))

Fo(k™) = Akrvidikl (6o v1) d1) (£7§{{0, k1))§KT)

Fa(k*) = Akrvidik] ((6o v1) (d1 + 1)) ((map (Az.{o,z T 1)) &")§{({d1, k1))§K])

Filw) (o v1) da) ((map (\w-{o, 1)) £*)5{(o, ma)}8ich)

1+ 1)) (7§((dr, k1)) §KT)
) (
)

*
=)\K1 ’U1d1i€1 .

Fig. 9. Reification of a partial continuation

our duumvirate of control operators can be used in two new applications of partial
continuations. But beforehand, we show that marker and call/pc can simulate call/cc.

6.1 Simulating call/cc

The control operators marker and call/pc provide the user with a facility to specify
the part of the rest of the computation he precisely wishes to reify. On the other
hand, call/cc is able to reify the whole rest of the computation. Therefore, 1t is not
surprising that call/cc can be simulated by marker and call/pc. With a toplevel-based
implementation of Scheme, call/cc also has some weird interactions with the toplevel.
Consider for instance a continuation reified at interaction n and used at interaction
n—+ 1+ m: either - (i) it is a full continuation that comprises the toplevel mechanism

which must take care of being multiply returned to, or, - (i) it excludes the toplevel
mechanism so it is a bounded continuation more akin to be described as a partial
continuation associated with an abortive effect.

Using the primitives marker and call/pc, we can define call/cc. Any program
(prog) using call/cc can be replaced by the following program.

(marker
(lambda (lowest)
(let ((call/cc (lambda (f)
((call/pc lowest
(lambda (pc)
(pc (lambda ()
(f (lambda (v)
(call/pc lowest
(lambda (any)
(pc (lambda () v))))))))))))))

(prog)))

6.2 Run-Time Partial Evaluation: Path Reification

Let us consider a binary tree tree and a predicate pred; let us search tree for a leaf
that satisfies pred. We are not interested in the leaf itself but in the direct path that
leads to this leaf. In Figure 10, we illustrate the search and direct paths that lead to
leaf 2. Moreover, we would like the direct path to be represented by a unary function:
given a leaf v, this function would build a new tree that is the same as tree, except
for the leaf v that replaces the leaf satisfying pred.

search path ----._direct path

Fig. 10. Search and Direct Paths

Here 1s the function search.

(define (search tree lowest pred)
(letrec ((loop (lambda (tree fail)
(if (pair? tree)
(or (marker (lambda (fail)
(cons (loop (car tree) fail) (cdr tree))))
(cons (car tree) (loop (cdr tree) fail)))
(if (pred tree)
(call/pc lowest (lambda (pc) pc))
(abort fail (lambbda () #£)))))))
(marker (lambda (fail) (loop tree fail)))))

Partial continuations are particularly useful to solve this problem.

1. The operator marker marks each point of choice where the search should backtrack
to, 1in case of failure.

2. Backtracking is implemented by aborting to a mark. The abort operator simply
reifies a partial continuation, discards it, and forces the evaluation of the thunk.

(define (abort mark thunk)
(call/pc mark (lambda (pc) (thunk))))

3. When the search succeeds, the partial continuation up to the call of search is
reified. This yields the expected function that represents the path.

4. We could have used first-class continuations, but it would have required a complex
protocol to allow the function search to return a value to its caller.

5. Tt is possible to write such a function in “continuation-passing style”; two contin-
uations would be required: a success continuation and a failure continuation. On
the contrary, the solution that we propose is in “direct style” and only passes the
failure continuation. The continuation-passing style and the direct version differ by
their performance. The former allocates two closures (representing the success and
failure continuations) per node visited. In the worst case, O(2") closures must be
allocated in the heap, where n is the depth of the found leaf. On the contrary, the
direct style version does not allocate closures, but only copies the reified partial
continuation into the heap; the cost is proportional to n.

The following example shows that the same function can be used several times to
construct different trees. Moreover, the last result illustrates that the trees built by
the function path are shared with the initial tree the-tree, as much as possible.

(define the-tree (cons (cons ’a ’b) (cons (cons ’c¢c 2) ’e)))

(define path (marker (lambda (init) (search the-tree init number?))))
(path ’d) — ((a.b) . ((c.d) .e»

(path ’3) — ((a.b) . ((c.3) .eN)

(eq? (car (path ’d)) the-tree) — #t

Unfortunately, the partial continuation returned by searchis only able to construct
a new tree. Instead, we could parameterise the function by two constructors cons1 and
cons2.

(define (search tree lowest pred consl cons2)
(letrec ((loop (lambda (tree fail)
(if (pair? tree)
(or (marker (lambda (fail)
(consl (loop (car tree) fail) (cdr tree))))
(cons2 (car tree) (loop (cdr tree) fail)))
(if (pred tree)
(call/pc lowest (lambda (pc) pc))
(abort fail (lambbda () #£)))))))
(marker (lambda (fail) (loop tree fail)))))

In the following example, the function path computes the depth of the leaf found
by search, i.e. the length of the direct path.

(define path (marker (lambda (init)
(search the-tree init number?
(lambda (x y) (+ 1 x))
(lambda (x y) (+ 1 y))))))
(path 0) — 3

But this solution requires the function search to be passed the constructors before
reifying the partial continuation. We propose below a solution that needs the values
of the constructors only when the partial continuation is invoked. (It is possible to
design a version without side-effects at the price of extra-allocations of closures.)

(define (search tree lowest pred)
(let ((consl ’any)
(cons2 ’any))
(letrec ((loop
(lambda (tree fail)
(if (pair? tree)
(or (marker
(lambda (fail)
((lambda (x y) (consl x y)) (loop (car tree) fail)
(cdr tree))))
((lambda (x y) (cons2 x y)) (car tree)
(loop (cdr tree) fail)))
(if (pred tree)
(call/pc lowest (lambda (pc)
(lambda (v consll cons22)

(set! consl consil)
(set! cons2 cons22)
(pc v))))

(abort fail (lambbda () #£)))))))

(marker (lambda (fail) (loop tree fail))))))

Now, the same partial continuation can be used for several purposes. Below, in
[1], a tree is built; in [2], the depth is computed; in [3], the result 1s a tree that
mirrors the-tree with respect to the direct path.

(define path (marker (lambda (init) (search the-tree init number?))))
(define (rcons x y) (cons y x))

(path cons cons ’here) — ((a . b) . ((c . here) .e)) [1]
(path (lambda (x y) (+ 1 x))

(lambda (x y) (+ 1 y)) 0) — 3 (2]
(path rcons rcons ’here) — ((e .(here . ¢)) . (a . b)) [3]

This technique can be referred to as run-time partial evaluation. Consel and Danvy
[1] define partial evaluation as “a source-to-source program transformation technique
for specialising programs with respect to parts of their input”. For example, let f be a
function requiring two arguments, if f is applied to « and y with z known at compile-
time, the process of partial evaluation generates the definition of a new function f,
which requires one argument, with f, such that Yy, fz (v) = f(z,y).

On the contrary, let us consider a program where a two-argument function f is
applied to @, y; and to x, ys but x, y1, y2 will be known at run-time only. The technique
of partial evaluation cannot be used here since this process requires the value x to
be known at partial-evaluation-time. One could imagine to generate at run-time a
specialised version of f, but as opposed to partial evaluation, we would not generate
the text of the definition of the function f,, but a closure f; specialised for x.

The function search generates a specialised function for the tree passed in argu-
ment; search just unfolds the recursive calls until a leaf satisfies the predicate.

6.3 Insertion of Values

Let 11 be a list of length m, and let 12 be an A-list associating n values with numbers.
We want to construct a new list where each value of 12 is inserted in 11 at the position
which 1t is associated with in 12. We suppose that 12 is not sorted in ascendent
position-order. One solution consists in sorting the list 12 and then constructing the
final result by merging the list 11 and the values at the positions indicated in the sorted
list 12. This solution requires O(nlog(n)) comparisons for sorting 12 and O(m + n)
comparisons for insertion of values.

We propose another solution that requires neither to sort the list 12 nor to compare
positions for insertions. The function walk-1list builds a vector with m + 1 marks.
Each mark delimits a control block that conses an element of the list 11. The insertion
of values 1s performed in insert-vals: for a position and a value, insert-vals reifies
a partial continuation with respect to the mark in the corresponding position in the
vector and re-installs this partial continuation after consing the value.

(define (walk-list 1 acc next-action)
(if (null? 1)
(marker (lambda (k) (next-action (cons k acc))))
(cons (car 1)
(marker (lambda (k)
(walk-list (cdr 1) (cons k acc) next-action))))))

(define (insert-vals 1 mark-vect)
(if (null? 1)
()
(let ((position (car (car 1)))
(value (cdr (car 1))))
((call/pc (vector-ref mark-vect position)
(lambda (pc)
(cons value
(pc (lambda ()
(insert-vals (cdr 1) mark-vect))))))))))

(define (insert 11 12)
(marker (lambda (k)
(walk-list 11
(list k)
(lambda (mark*)
(insert-vals 12 (list->vector (reverse mark*))))))))

(insert ’(3 7 33 23 53)
> ((2 3000) (5 6000) (3 4000) (1 2000) (0 1000) (4 5000)))
— (1000 3 2000 7 3000 33 4000 23 5000 53 6000)

This solution reifies n partial continuations and invokes each of them only once. The
exact cost is highly dependent of the implementation. We can nevertheless approximate
the cost of the n invocations to roughly O(mn) since there are at most m blocks to
concatenate per invocation. This approach offers a speed-up when 12 is much longer
than 11 (nlog(n) > nm).

In this problem, the positions of the elements of 11 remain constant during the
insertion of values. It is clear that the complexity of the solution that we propose is
enhanced by the use of a random access data structure: a vector here. It is easy to
imagine another solution with side-effects. (Let us consider a vector of buckets, and
let us add (by a side-effect) each value of 12 to a bucket at the desired position; the
concatenation of the buckets yields the result.) However, the remarkable feature of the
solution with partial continuations is that it does not use side-effects.

Moreover, this example shows that a new programming style can be adopted with
partial continuations. We know that we have to cons the m values of list 11 but we
do not know where to insert values of 12: partial continuations allow us to split the
traversals of 11 and 12 in two separate functions. This example also illustrates that
our duumvirate of control operators needs not be extended to a hierarchy of control
operators. Indeed, we are able to capture any part of the computation whatever the
marks appearing inside. And finally, this example exhibits a typical use of marks in
their prefixal extent.

7 Related Work

Queinnec and Serpette’s [15] splitter-call/pc is certainly the closest approach to
marker-call/pc. Indeed, splitter leaves a special mark on the evaluation stack and
passes this mark to its receiver; call/pc reifies the portion of the current stack ap-
pearing above this mark?. However, splitter-call/pc is less expressive than marker-
call/pc since call/pc is restricted to the dynamic extent of the mark. Consequently,
examples like insert in the previous section cannot be programmed with splitter
since marks must be usable outside their dynamic extent.

Moreover, we have tried to simplify the semantics as much as possible. We have
included in the semantics the minimal number of features necessary for marker-call /pc.
We neither require the full power of a store nor an extent parameter as in [15]. Another
semantics of splitter appears in [14] in Abstract Continuation Passing Style [7], how-
ever this semantics subsumes the existence of both a store and a physical comparison
without making this store explicit.

Danvy and Filinski’s shift/reset and Hieb and Dybvig’s spawn have in common
that partial continuations incorporate the mark up to which they were reified. This
approach is totally opposite to ours; indeed, we consider that a mark is pushed on a
stack to give a name to the block below it and a mark is pushed on the stack on user’s
request. Including a mark in the partial continuation is therefore meaningless and can
be seen as a “dangling” name which, whenever the partial continuation is invoked, will
name the current block.

On the other hand Queinnec and Serpette’s splitter and Felleisen, Wand, Fried-
man, and Duba’s [7], [4] #(), F avoid to copy the mark (or prompt) when reifying a
partial continuation. Those two trends are the origin of the debate about the “dynamic-
ness” of control operators. Although we have decided not to copy a mark when reifying
a continuation, a similar problem also arises when a partial continuation is applied.
We have to know whether a new mark should be inserted between the current block
and the partial continuation: should we name the current block by a new name not
given by the user or should this block be merged with the first block of the partial
continuation?

In order to be able to reify a partial continuation between the current point and
any mark (not the last one) Felleisen and Sitaram [17] and Danvy and Filinski [3]
introduce a hierarchy of control operators. Therefore, their languages have 2n times
control operators instead of 2. But, what is the intuitive difference between control
operators of level n or level n + 17

Moreau and Ribbens [11] also introduce a mechanism of prompt to mark the extent
of the call/cc operator. Such a prompt was used to optimise the invocation of a
continuation in the extent of the call/cc by which it was reified. In their reduction
system, the prompt could be used to represent explicitly two extents: the dynamic
extent or another notion of extent, similar to prefixal extent except that the prefix
notion uses equality of blocks instead of equality of block names.

8 Conclusion

We presented an operator marker that reifies the block names of the current contin-
uation. This is the minimum requirement for our semantics. A nice integration with
Scheme would be to merge marker and call/cc, thus reifying a sequence of block names
into a regular continuation. On the other hand, call/pc would extract the names that
it needs from this regular continuation. Hence, only one primitive should be added to
the language Scheme in order to reify partial continuations.

* In fact, the lowest position where this mark appears.

We defined a partial continuation as the difference of two continuations when one
is the prefix of the other. Although other notions of prefixes might be imagined, we
think that they must, at least, be able to properly evaluate our examples.

9 Acknowledgement

Luc Moreau wishes to thank INRIA for a three months visit of Projet ICSLA where this
work was initiated. Both authors have been partially funded by Projet Tournesol 94016,
and Christian Queinnec has been partially funded by GDR-PRC de Programmation
du CNRS. The authors also wish to thank Olivier Danvy, Matthias Felleisen, and the
anonymous referees for their helpful comments.

References

1. Charles Consel and Olivier Danvy. Tutorial Notes on Partial Evaluation. In Proceed-
ings of the Twentieth Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Charleston, January 1993.

2. Olivier Danvy. On Listing List Prefixes. Lisp Pointers, 2(3-4):42-46, 1989.

3. Olivier Danvy and Andrzej Filinski. Abstracting Control. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 151-160, June 1990.

4. Matthias Felleisen. The Theory and Practice of First-Class Prompts. In Proceedings of
the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 180-190, January 1988.

5. Matthias Felleisen and Daniel P. Friedman. Control Operators, the SECD-Machine and
the A-Calculus. In M. Wirsing, editor, Formal Description of Programming Concepts 111,
pages 193-217, Amsterdam, 1986. Elsevier Science Publishers B.V. (North-Holland).

6. Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond Contin-
uations. Technical Report 216, Indiana University, February 1987.

7. Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract
Continuations : A Mathematical Semantics for Handling Full Functional Jumps. In
Proceedings of the 1988 ACM Conference on Lisp and Functional Programming, pages
52-62, July 1988.

8. Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining Coroutines
with Continuations. Comput. Lang., 11(3/4):143-153, 1986.

9. Robert Hieb and R. Kent Dybvig. Continuations and Concurrency. In Second ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming, pages 128—
136, March 1990.

10. Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations. Lisp
and Symbolic and Computation, Special Issue on Continuations, 1(7):83-110, January
1994.

11. Luc Moreau and Daniel Ribbens. Sound Rules for Parallel Evaluation of a Functional
Language with callcc. In ACM conference on Functional Programming and Computer
Architecture (FPCA’93), pages 125-135, Copenhagen, June 1993. ACM.

12. Chetan R. Murthy. Control Operators, Hierarchies, and Pseudo-Classical Type Systems:
A-Translation at Work. In Workshop on Continuations, pages 49-71. ACM Sigplan,
June 1992.

13. Gordon D. Plotkin. Call-by-Name, Call-by-Value and the A-Calculus. Theoretical Com-
puter Science, pages 125-159, 1975.

14. Christian Queinnec. Value Transforming Style. In M. Billaud, P. Castéran, MM. Corsini,
K. Musumbu, and A. Rauzy, editors, WSA 92— Workshop on Static Analysis, number
81-82 in Bigre, pages 20-28, Bordeaux (France), September 1992.

15. Christian Queinnec and Bernard Serpette. A Dynamic Extent Control Operator for Par-
tial Continuations. In Proceedings of the Fighteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, 1991.

16. John C. Reynolds. The Discoveries of Continuations. Lisp and Symbolic and Computa-
tion, Special Issue on Continuations, 6(3/4):233-248, November 1993.

17. Dorai Sitaram and Matthias Felleisen. Control Delimiters and Their Hierarchies. Lisp
and Symbolic Computation, 3(1):67-99, 1990.

18. Christopher Strachey and Christopher P. Wadsworth. A Mathematical Semantics for
Handling Full Jumps. Technical Monography PRG-11, Oxford University Computing
Laboratory, Programming Research Group, Oxford, England, 1974.

This article was processed using the IATRX macro package with LLNCS style

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

