
Partial Continuations as the Di�erence of
Continuations

A Duumvirate of Control Operators

Luc Moreau� and Christian Queinnec�

� Institut Monte�ore B��� Service d�Informatique� Universit�e de Li�ege� Sart�Tilman� �			
Li�ege� Belgium
 Email� moreau�montefiore�ulg�ac�be

� �Ecole Polytechnique �URA
���� � INRIA�Rocquencourt France
 Email�
queinnec�polytechnique�fr

Abstract� We de�ne a partial continuation as the di�erence of two continua�
tions� We exhibit� in a single framework� several design choices and their impact
on semantics� The ability of partial continuations to manipulate stack frames
blurs the nature of dynamic extent� therefore� we introduce a new concept
of pre�xal extent that characterises the time during which a partial continu�
ation can be rei�ed� We propose two equivalent formal semantics for partial
continuations� a context�rewriting system and a cps translation� Two new and
realistic examples illustrate both the interest of partial continuations and the
expressiveness of our choices�

� Introduction

The mathematical concept of continuation was introduced by Strachey and Wadsworth
���� ���� to give a semantics to control operators such as goto� The continuation of an
expression represents the rest of the computation to be performed after evaluation of
this expression� Some programming languages� such as Scheme and SML of New�Jersey�
provide the control operator call�cc� which gives the programmer the possibility to
reify the current continuation into a �rst�class object� Invoking a rei�ed continuation on
a value v consists in resuming the computation where the continuation was captured�
with v the value of the call�cc expression� The invocation of a �rst�class continuation
has an abortive e	ect since the control is transferred from the current continuation to
the captured continuation� First�class continuations can be used to program coroutines�
exceptions� � � � ����

More recently� the concept of partial continuation was successively introduced and
studied by Felleisen� Friedman� Wand� Duba� Merrill ���� �
�� ���� Danvy and Filinski
���� Hieb and Dybvig �
�� ���� Queinnec and Serpette ����� Although their propositions
di	er� they nevertheless share a common idea� a partial continuation represents a part
of the rest of the computation� Partial continuations can also be rei�ed into �rst�class
objects but� unlike continuations� when a partial continuation is invoked� control is
returned to its invocation point after its termination� Therefore� partial continuations
have the behaviour of functions and are composable�

Two operators are introduced to delimit the part of the computation that a partial
continuation represents� The �rst of them can be regarded as a marker� while the
second operator rei�es the partial continuation between its invocation point and a
mark� The operators �� reset� spawn� and splitter belong to the former category�
while F � shift� and call�pc belong to the latter� Although the notion of partial
continuation comes from the simple idea of reifying a part of the current continuation�
the solutions proposed in �
� and ��� introduce a debate on the �dynamic�ness� of
control operators� Indeed� during invocation of a partial continuation� some marks
might be copied� Therefore� which mark should a control operator refer to� the most

recent one� i�e� the one that was just copied� or the oldest one� i�e� the one that existed
before the invocation of a partial continuation�

As Murthy ���� writes

Now� naturally� one might ask� is there a way to �jump over� the delimiters�
This would lead us to invent a new control�operator� which could jump over
the prompts� and grab all of the evaluation context� to the top of the program�
And after that� we might want to delimit the action of this operator� too� And
so on� � � �

In other words� a language should provide the programmer with control operators
able to capture partial continuations between any two points� whatever the marks
appearing inside� For this purpose� hierarchies of control operators were introduced
by Sitaram and Felleisen ��
� and Danvy and Filinski ���� Control operators are now
indexed by a number which is their control level � and an operator of level m is able to
reify the partial continuation delimited by the �rst mark of level n if n � m� Although
this solution provides the possibility to reify any part of the computation� it lacks of
intuition� which intuition should a programmer rely on to choose a mark of level n or
a mark of level n��� Quantitative notions like control level are not easy to apprehend
and are not easy to deal with in everyday programming� On the other hand� Hieb
and Dybvig �
� and Queinnec and Serpette ���� propose pairs of control operators �a
marker and a rei�er� that are� respectively� parameterised by a label or a mark� These
proposals are able to reify partial continuations between any two points but introduce
debates on the extent during which partial continuations can be rei�ed�

The four following points are the original contribution of this paper�

�� We suggest a new de�nition for partial continuations� we regard a partial con�
tinuation as the di�erence of two continuations if one is the pre�x of the other�
We provide two operators� marker names the current continuation� while call�pc
subtracts a named continuation from the current one and rei�es their di	erence
into a partial continuation� Since a hierarchy is not required any longer� our two
operators� marker and call�pc� are solely given the power to exercise control� they
form our duumvirate of control operators�

�� We rely on intuitive stack frames manipulations to explain our control operators
in Section �� In this single framework� we show di	erent semantical choices and
their impact� There are two issues� First� are continuation names copied when a
partial continuation is rei�ed� Second� what is the extent during which partial
continuations can be rei�ed with respect to a named continuation� As opposed to
the current literature� we discuss the possible choices and select the most expressive
one in Section �� Although dynamic extent has some interesting properties as far as
implementation is concerned� we observe that the ability of partial continuations to
manipulate stack frames blurs the nature of dynamic extent� we therefore introduce
a new concept of extent that we name pre�xal extent �

�� We present two formal semantics� The �rst one is a reduction system �Section ���
its most salient feature is its conciseness� The second semantics is a cps translation
�Section �� in which the connection between stack frames and cps is explicit� The
two semantics were proved equivalent� and both formalise the di	erent aforemen�
tioned choices�

�� In Section �� we introduce two new examples that illustrate the interest of partial
continuations and the choices that we propose� In particular� pre�xal extent is
emphasized by the latter example�

� Partial Continuations as a Di�erence of Continuations

Let us �rst consider the program in Figure �� where �rst�class continuations are only
used as downward continuations� One of the �rst�class continuations k�� k�� or k�
is invoked by �ki v� in the extent of the call�cc by which it was rei�ed� Before
evaluating the expression �ki v�� the control stack can be symbolically represented
as in Figure �� The top and base of the stack are indicated by the top and base
pointers respectively� and the stack is conceptually divided into four regions by the
marks ��� ��� and ��� Each variable ki is bound to a continuation that corresponds
to a portion of the stack from the base pointer to the �i mark� Evaluating �ki v�
consists in removing the portion of the stack from the top pointer to the �i mark�

�f� �call�cc
�lambda �k��
�f� �call�cc

�lambda �k��
�f� �call�cc

�lambda �k��
�f� �ki v�����������
	 i
 ���� or �

�

�

�

�

�

�

�f� � ��

�f� � ��

�f
 � ��

�f	 � ��

top

��

��

��

base

Fig� �� Program
 and stack representation

However� �rst�class continuations are not restricted to a downward use� and call�cc
is not aimed at leaving marks on the stack� So� let us callmarker a new control operator
that is intended to leave a mark with a new name on the control stack� Such marks
divide the control stack into regions that we call control blocks� and the purpose of a
mark is to give a name to the block just below it� We call the current block the top
block� it is delimited by the top pointer and the previous mark left or the base pointer
if no mark was left� Pushing a new mark on the current block consists in naming the
current block� Moreover� like call�cc�marker requires one argument� called a receiver�
which must be a unary function� Besides naming the current block� marker also rei�es
the names of the current continuation and applies its receiver to the sequence of names
of the current continuation� i�e� the sequence of names of all marks left in the current
continuation�

According to Figure �� before evaluating �marker �lambda �k�� � � ���� two marker
expressions were already evaluated� having given names �� and �� to the two �rst
control blocks� Just after invocation of the third marker� the old current block is given
the new name ��� and the application of the receiver �lambda �k�� � � � � to the sequence
of names h��� ��� ��i starts a new current block� pointed by the top pointer�

When a value v is returned to a mark �� this mark is removed from the stack� the
block that was named � becomes the current block� and the value v is now returned
to the current block� Therefore� marks are transparent to normal returns�

According to this description� a continuation is composed of several control blocks
with associated names� We call N �c� �names of c� the sequence of block names of
continuation c� We can now give two de�nitions related to continuations�

De�nition ��� �Pre�x� A continuation c� is a pre�x of a continuation c� if the
sequence of block names N �c�� is a pre�x of the sequence of block names N �c���

�f� �marker

�lambda �k��
�f� �marker

�lambda �k��
�f� �marker

�lambda �k��
�f� �call�pc k� �lambda �pc� � � �������������

�

�

�

top

base

�
��

�
��

�
current block

k� � h��� ��i
k� � h��i

�

�

�

top

base

�
��

�
��

�
��

o
current block

k� � h��� ��� ��i
k� � h��� ��i
k� � h��i

Fig� �� Stack representation before and after evaluating �marker �lambda �k�� � � ���

De�nition ��� �Di�erence of two continuations� The di�erence of two continu�
ations c� and c� is de�ned� if c� is a pre�x of c�� by the sequence of blocks s from c�
such that N �c�� � append�N �c���N �s���

We can now de�ne our notion of partial continuation�

De�nition ��� �Partial continuation� A partial continuation is a sequence of con�
trol blocks obtained by the di�erence of two continuations�

Let us introduce a second control operator call�pc that is able to reify partial
continuations into �rst�class objects� call�pc requires two arguments� a sequence of
block names and a receiver� The receiver is a unary function that will be applied to
the rei�ed partial continuation� Figure � represents the stack before evaluating the
expression �call�pc k� �lambda �pc� � � � �� appearing in the program� The behaviour
of call�pc is speci�ed by the �ve following actions�

� A new mark is pushed on the stack� giving the current block the new name ��� so�
the current continuation is composed of the blocks ��� ��� ��� and ���

� The partial continuation is computed by di	erence between the current continua�
tion and the continuation whose sequence of block names is the value of the �rst
argument of call�pc �here k��� This de�nes a unique partial continuation which�
here� is the sequence of blocks named h��� ��� ��i�

� This partial continuation is rei�ed into a �rst�class object�
� The computation is aborted to the continuation with names k�� the portion of the
stack from the top pointer to the mark �� is removed� the mark �� is left as it is
because a mark is intended to name the block below it�

� The receiver is applied to the rei�ed object above the mark ��� starting a new
control block�

After these steps� we can now represent the stack as in Figure �� The current block is
above the block �� and the captured partial continuation is composed of blocks ��� ���
and ���

�f� �marker

�lambda �k��
�f� �marker

�lambda �k��
�f� �marker

�lambda �k��
�f� �call�pc k�

�lambda �pc�
�f� �pc v����

����������

�

�

�

���������
��������

the partial
continuation�

��

�
��

�
��

top

base
k� � h��� ��� ��i
k� � h��� ��i
k� � h��i

�
��

g current block

Fig� �� Stack representation after application of the receiver to the partial continuation

� Reifying a Partial Continuation

In Section �� we de�ned a partial continuation as a sequence of blocks obtained by
di	erence of two continuations� We have not yet precisely speci�ed how such a partial
continuation was rei�ed into a �rst�class object� Several behaviours can be considered
according to the way a rei�ed partial continuation preserves its structure of control
blocks� Let us examine the di	erent choices and their impact on semantics�

Let us now consider the program of Figure �� where call�pc is applied to a re�
ceiver that invokes the rei�ed partial continuation pc� Two di	erent approaches can
be adopted�

�� Since we have de�ned a partial continuation as a sequence of control blocks sep�
arated by marks� we can consider that the structure of the blocks is preserved
during the rei�cation� i�e� marks are conserved� This case is illustrated in �gure ��
where applying a partial continuation consists in concatenating the current con�
tinuation with the partial continuation� However� we can again consider two cases
depending on whether we want to keep the structure of the block that is current
at invocation time�
�a� At invocation time� a new mark �here ��� is introduced between the current

block and the �rst block of the partial continuation�
�b� At invocation time� no marker is introduced between the current block and

the �rst block of the partial continuation so that they both appear under the
mark ��� since a mark is intended to name the block below it� both blocks
seem to be merged in a single block named by ���

After installing the partial continuation pc� the stack is composed of block names
��� ��� ��� ��� �� in the �rst case and ��� ��� ��� �� in the second case� Afterwards�
the value v is returned and the mark �� is removed� hence� the block that was
previously called �� becomes the current block� But� in both cases� the variables
k�� k�� and k� are still bound to h��i� h��� ��i� and h��� ��� ��i respectively� We
can conclude that h��i is still a pre�x of the names of the current continuation� but
neither h��� ��i nor h��� ��� ��i is a pre�x of the names of the current continuation
in the �rst case� Consequently� after invocation of pc� it is allowed to capture a
partial continuation with respect to k� and k� in the second case� but this is
forbidden in the �rst case�

�

�

�

�

pc

��������
�������

�
��

�
��

�
��

�
��

�
current block
�previously ���

top

k� � h��i

base

�

�

�

�

pc

��������
�������

�
��

����
���
��

�
��

�
current block
�previously ���

top

k� � h��i

base

Fig� �� Stack representation after invocation of a partial continuation preserving marks

Remark� Just before reifying a partial continuation� a newly created mark ��� in
the running example� was pushed on the stack� As soon as this partial continuation
is invoked� a value is returned to this mark� and this mark is removed from the
stack� Therefore� this mark can never be rei�ed and is somehow useless� However�
we thought that for the purpose of explanation it was more uniform to consider
named blocks rather than a sequence of named blocks and one unnamed block�

�� Although a partial continuation was de�ned as a sequence of blocks� we can con�
sider that the process of rei�cation removes all marks between blocks� Therefore�
all blocks in the partial continuation appear to be merged as a single block� This is
illustrated in Figure �� where again two cases can be considered w�r�t� the current
block�
�a� At invocation time� a new mark �here ��� is introduced between the current

block and the single block of the partial continuation�
�b� At invocation time� no marker is introduced between the current block and the

single block of the partial continuation so that they are merged into a unique
block�

After installing the partial continuation pc� the stack is composed of block names
��� ��� �� in the �rst case and ��� �� in the second case� Afterwards� the value
v is returned and the mark �� is removed� hence� the block that was previously
called �� becomes the current block� Consequently� both solutions are able to reify
a partial continuation with respect to k� but none of these solutions is able to
reify a partial continuation with respect to k� or k�� Indeed� immediately after
invocation of the partial continuation� h��i is a pre�x of the names of the current
continuation� but neither h��� ��i nor h��� ��� ��i is a pre�x�

The extent of sequences of names is the property that essentially makes a distinction
between these four solutions� We shall de�ne the extent of a sequence of names as the
period of time within which this sequence of names can be used to reify a partial
continuation�

The notion of dynamic extent is related to the use of a stack� it is traditionally
de�ned as the period of time during which a stack remains active� i�e� blocks are
pushed and popped above a given stack� In a language without partial continuations�
the dynamic extent can be equivalently de�ned as the period of time during which
evaluation is concerned with blocks above a given block � But� the ability of partial
continuations to manipulate blocks blurs this notion of dynamic extent because a
block is no longer uniquely associated with a stack� Therefore� we re�ne this notion of
extent for partial continuations�

De�nition ��� �Dynamic extent of a sequence of names� Let n� be the sequence
of names of the current continuation c obtained by the operator marker� We say that

�

�

�

�

�
��

�
��

��������
�������

current block
�previously ���

top

k� � h��i

base

pc

��������
�������

pc

��������
�������

�

�

�

�

�
��

������������
�����������

current block
�previously ���

top

k� � h��i

base

Fig� �� Stack representation after invocation of a partial continuation without preservation
of marks

n� has a dynamic extent i� n� cannot be used to reify a partial continuation after a
value is returned to the current continuation c� or after the computation is aborted to
a continuation c� that is a pre�x of c�

In the �rst� third� and fourth solutions� sequences of names have a dynamic extent
for two di	erent reasons� In the �rst and third solutions� when a partial continuation
is invoked� a new mark gives a name to the current block� so� the sequences of names
captured in the partial continuation become obsolete because they are no longer pre�x
of the current continuation� In the third and fourth solutions� as soon as a partial
continuation is captured with call�pc� all the marks captured in the partial continuation
disappear�

However� note that sequences of names do not have a dynamic extent per se� As
all �rst�class values� they have an unlimited extent� i�e� they can be referenced� stored�
or returned even outside their dynamic extent� but it is the process of subtracting
continuations that restricts the use of sequences of names w� r� t� call�pc�

On the contrary� in the second solution� sequences of names do not have a dynamic
extent� We call pre�xal extent the extent of sequences of names in the second solution�

De�nition ��� �Pre�xal Extent� Let c be the continuation existing at the moment
an object o is created� We say that o has a pre�xal extent i�� for every c�� the contin�
uation existing when the object o is used� c is a pre�x of c��

Amongst the di	erent approaches given above� it is only in the second one that
sequences of names have a pre�xal extent� In all other cases� the extent of sequences
of names is dynamic� We prefer the notion of pre�xal extent because it o	ers more
expressiveness as it will be shown in examples of Section ��

In the two following sections� we propose two formal semantics� the �rst of them is
a reduction system and the second is a cps translation� These two semantics are proved
to be congruent� By their equivalence� both semantics precisely de�ne our duumvirate
of control operators as well as they satisfy di	ering tastes� Both semantics formalize
the four previously mentioned choices� The �rst one favours concision by the use of
evaluation contexts� The second one exhibits the connection between stack frames and
cps� as well as the machinery for new names creation�

� Reduction System

In this section� we present a context�rewriting system as Felleisen and Friedman ����
This rewriting system is an extension of the call�by�value ��calculus ���� with the
marker and call�pc operators� We also introduce a new syntactic construct ���� � ���

called prompt with name �� that is intended to represent a mark naming a control
block� Terms� of the language are de�ned inductively by the following grammar�

M ��� x j h�� �� � � � � �i j ��x�M � j �MM � j �marker M � j �call�pc V M � j ���M �

A value� denoted by V � is either a variable x� a sequence of block names h�� �� � � � � �i�
or an abstraction ��x�M �� An expression of the form �marker M � is called a marker�
application� An expression of the form �call�pc VM � is called a call�pc�application� An
expression of the form ���M � is called a prompt �

We also de�ne an evaluation context Ed� � indexed by a depth d� where d represents
the number of prompts ���� in Ed� ��

E�� � ��� �V E�� �� j �E�� � M � j �call�pc V � �� j � �

Ed� � ��� �V Ed� �� j �Ed� � M � j �call�pc V � �� j ���E
d��� ��

An evaluation context of depth d represents a continuation composed of d� � blocks�
amongst them� n blocks are named while the last one is the current block�

We can �nd in Figure � the de�nition of the context�rewriting system� Equation
��� is the call�by�value ��reduction ����� In ���� a marker�expression is replaced by a
prompt with a new name �� and the receiver of marker� the expression M � is applied
to the sequence of prompt names appearing in Ed� � extended with �� According to
���� when the evaluation in a prompt reaches a value� the prompt is removed� and
evaluation proceeds with this value� This rule corresponds to the intuitive explanation
given previously� when a value is returned to a mark at the top of the stack� the mark
is removed� Equation ��� concerns the rei�cation of a partial continuation� In order
to apply this rule� the context Ed

�
� � should contain the names � � � ��� The partial

continuation is represented by the context Ed�

�
� �� The operator call�pc applies the

receiver f to a rei�cation of the partial continuation returned by a call to F � which
transforms a context into a function�

Ed���x�M�V �� Ed�MfV�xg� with V a value �
�

Ed�marker M �� Ed����M h�� �� � � � � �i�� ���

with � �� Ed�M �

with Ed� � � E�
� ����� � ����E

�
d � �� � � ���

Ed����V ��� Ed�V � ���

Ed
� ����E

d�

� �call�pc h�� �� � � � � �i f ���� Ed
� ����f F�Ed�

� � ���� ���

with Ed
� � � � E�

� ����� � ����E
�
d � �� � � ���

Fig� �� Context�rewriting system

The four possible ways of reifying a partial continuation are formalised in Figure

� In the two �rst de�nitions of F � the control information held in Ed� � is preserved�
while in the two last de�nitions� this information is removed by the function �at� With
the �rst and third de�nitions� when the partial continuation is invoked� a prompt with
a new name � is inserted�

� In order to slightly simplify the de�nition of the reduction system� we suppose that a
call�pc�expression has a value as a �rst argument�

Four ways of reifying a partial continuation�

F��E
d� �� � �x����E

d�x�� with a fresh �

F��E
d� �� � �x�Ed�x�

F��E
d� �� � �x�����at�E

d�x��� with a fresh �

F��E
d� �� � �x��at�Ed�x��

Control information removal

�at�E�� �� � E�� �

�at�V Ed� �� � �V ��at�Ed� ����

�at�Ed� � M� � ��at�Ed� �� M�

�at����E
d��� ��� � �at�Ed��� ��

Fig� �� Rei�cation of a partial continuation

� CPS Translation

A continuation semantics is another natural way to give control operators a semantics�
In a traditional continuation semantics� a continuation maps an intermediate value to
a �nal value� i�e� a continuation represents the rest of the computation� This property
is not suitable for partial continuations since they are expected to be composable�
Felleisen� Wand� Friedman� and Duba �
� proposed a non�traditional continuation se�
mantics where a continuation algebra was derived from the evaluation contexts of the
reduction system� This technique� named Abstract Continuation Passing Style� was
also used by the second author to de�ne splitter ����� Although such an approach is
also possible here� we have adopted Danvy and Filinski�s technique ��� to exploit the
expressive power of continuation�passing style through the use of multi�level continu�
ations�

As explained in Sections � and �� it is important to uniquely name a new control
block� Unlike the operational semantics� we explicitly represent in the cps translation
this naming facility by a single�threaded counter passed to each continuation� When�
ever a new name is required� the counter is incremented by one� therefore guaranteeing
the uniqueness of names�

The domains of values and the cps translation appear in Figure �� A block is
represented by an element of the domain K� A block returns a �nal answer when
given a value� a continuation and a counter� An element of Cont is a continuation�
which is nothing more than a sequence of named blocks� The semantic function �� ��
maps a program� a block� a continuation� and a counter to a �nal answer� There exists
a similarity with the informal de�nition of Section �� where the current block appears
on top of the stack and the rest of the stack consists of named blocks� the current
block is an element of K� and the stack is an element of Cont�

The auxiliary functions P and D used in the translation of call�pc in Figure � are
de�ned in Figure
� They receive a sequence of names and a continuation� The function
P returns the pre�x of the continuation having this sequence of names� i�e� it is the
part of the continuation that is not rei�ed� The function D returns the rei�cation of
the partial continuation computed by di	erence as explained in Section �� Both P and
D call the function decompose� which returns two continuations� the �rst being the
pre�x� the other the su�x� The function F rei�es a continuation �i�e� a sequence of
named blocks� into a function� Four de�nitions of F are given for each case of Section
�� We add to the set of names the special name �� which stands for �anonymous��
The blocks of a sequence are merged by giving them this anonymous name� which is
considered as an invisible name by the function decompose�

� Application

The operators marker and call�pc can be used to express Danvy and Filinski�s ���
example about the non�deterministic �nite state automaton and Danvy�s example of
computation of the pre�xes of a list ���� In Sections ��� and ���� we illustrate how

���x�M �����d � �������x�����d����M �������d����d

��MN �����d � ��M �� ��m���d����N ����n����d���m�n����d������d����d

��x�����d � � x��d

��marker M �����d � ��M �� ��m��mdm� m 	� �hdmix�map ��x�x�
� ��m��
�hhdm� �iix�

�

m� �dm �
����d

��call�pc c M �����d � ��M �� ��m��mdm� m 	� D�c� �hhdm� �iix�
�

m��
P�c� �hhdm� �iix�

�

m�� �dm �
�� �� d

	� � �v��d������ �
����v���� y
�d the initial block

�� � �v������d�v the initial continuation

� � K � V al � Cont� N � Ans

f � Fun � K � V al � Cont� N � Ans

�� � Cont � �N �K��

�� �� � Prog � K � Cont� N � Ans

Fig� �� CPS translation

decompose � Cont�N� � Cont� hCont�Conti

decompose�cont�names� acc� �
if null��cont� then wrong�
not in extent
�
elif null��names� then hacc� reverse�cont�i
elif names�
 � � then decompose�cont�names y
� acc�
elif �cont�
��
 � � then decompose�cont y
� names� hcont�
ixacc�
elif names�
 � �cont�
��
 then decompose�cont y
� names y
� hcont�
ixacc�
else wrong�
not in extent
�

P � N� �Cont� Cont pre	x

P�c���� � decompose�reverse����� reverse�c�� hi��

D � N� �Cont� Fun di
erence

D�c���� � F�decompose�reverse����� reverse�c�� hi� y
�

F � Cont� Fun

F���
�� � ���v�d��

�

� ���	� v�� �d� �
�� ���xhhd�� ��iix�
�

��

F���
�� � ���v�d��

�

� ���	� v�� d�� ��
�xhh�� ��iix�

�

��

F���
�� � ���v�d��

�

� ���	� v�� �d� �
�� ��map ��x�h�� x y
i� ���xhhd�� ��iix�
�

��

F���
�� � ���v�d��

�

� ���	� v�� d�� ��map ��x�h�� x y
i� ���xhh�� ��iix�
�

��

Fig� �� Rei�cation of a partial continuation

our duumvirate of control operators can be used in two new applications of partial
continuations� But beforehand� we show that marker and call�pc can simulate call�cc�

	�� Simulating call�cc

The control operators marker and call�pc provide the user with a facility to specify
the part of the rest of the computation he precisely wishes to reify� On the other
hand� call�cc is able to reify the whole rest of the computation� Therefore� it is not
surprising that call�cc can be simulated bymarker and call�pc� With a toplevel�based
implementation of Scheme� call�cc also has some weird interactions with the toplevel�
Consider for instance a continuation rei�ed at interaction n and used at interaction
n� ��m� either � �i� it is a full continuation that comprises the toplevel mechanism

which must take care of being multiply returned to� or� � �ii� it excludes the toplevel
mechanism so it is a bounded continuation more akin to be described as a partial
continuation associated with an abortive e	ect�

Using the primitives marker and call�pc� we can de�ne call�cc� Any program
hprogi using call�cc can be replaced by the following program�

�marker
�lambda �lowest�
�let ��call�cc �lambda �f�

��call�pc lowest
�lambda �pc�
�pc �lambda ��

�f �lambda �v�
�call�pc lowest

�lambda �any�
�pc �lambda �� v��������������

hprogi���

	�� Run
Time Partial Evaluation� Path Rei�cation

Let us consider a binary tree tree and a predicate pred� let us search tree for a leaf
that satis�es pred� We are not interested in the leaf itself but in the direct path that
leads to this leaf� In Figure ��� we illustrate the search and direct paths that lead to
leaf �� Moreover� we would like the direct path to be represented by a unary function�
given a leaf v� this function would build a new tree that is the same as tree� except
for the leaf v that replaces the leaf satisfying pred�

a b

c

e

�

direct pathsearch path

Fig� ��� Search and Direct Paths

Here is the function search�

�define �search tree lowest pred�
�letrec ��loop �lambda �tree fail�

�if �pair� tree�
�or �marker �lambda �fail�

�cons �loop �car tree� fail� �cdr tree����
�cons �car tree� �loop �cdr tree� fail���

�if �pred tree�
�call�pc lowest �lambda �pc� pc��
�abort fail �lambbda �� �f�������

�marker �lambda �fail� �loop tree fail�����

Partial continuations are particularly useful to solve this problem�

�� The operator marker marks each point of choice where the search should backtrack
to� in case of failure�

�� Backtracking is implemented by aborting to a mark� The abort operator simply
rei�es a partial continuation� discards it� and forces the evaluation of the thunk�

�define �abort mark thunk�
�call�pc mark �lambda �pc� �thunk����

�� When the search succeeds� the partial continuation up to the call of search is
rei�ed� This yields the expected function that represents the path�

�� We could have used �rst�class continuations� but it would have required a complex
protocol to allow the function search to return a value to its caller�

�� It is possible to write such a function in �continuation�passing style�� two contin�
uations would be required� a success continuation and a failure continuation� On
the contrary� the solution that we propose is in �direct style� and only passes the
failure continuation� The continuation�passing style and the direct version di	er by
their performance� The former allocates two closures �representing the success and
failure continuations� per node visited� In the worst case� O��n� closures must be
allocated in the heap� where n is the depth of the found leaf� On the contrary� the
direct style version does not allocate closures� but only copies the rei�ed partial
continuation into the heap� the cost is proportional to n�

The following example shows that the same function can be used several times to
construct di	erent trees� Moreover� the last result illustrates that the trees built by
the function path are shared with the initial tree the�tree� as much as possible�

�define the�tree �cons �cons �a �b� �cons �cons �c �� �e���
�define path �marker �lambda �init� �search the�tree init number�����

�path �d� � ��a � b� � ��c � d� �e��
�path ��� � ��a � b� � ��c � �� �e��
�eq� �car �path �d�� the�tree� � �t

Unfortunately� the partial continuation returned by search is only able to construct
a new tree� Instead� we could parameterise the function by two constructors cons� and
cons��

�define �search tree lowest pred cons� cons��
�letrec ��loop �lambda �tree fail�

�if �pair� tree�
�or �marker �lambda �fail�

�cons� �loop �car tree� fail� �cdr tree����
�cons� �car tree� �loop �cdr tree� fail���

�if �pred tree�
�call�pc lowest �lambda �pc� pc��
�abort fail �lambbda �� �f�������

�marker �lambda �fail� �loop tree fail�����

In the following example� the function path computes the depth of the leaf found
by search� i�e� the length of the direct path�

�define path �marker �lambda �init�
�search the�tree init number�

�lambda �x y� �� � x��
�lambda �x y� �� � y������

�path �� � �

But this solution requires the function search to be passed the constructors before
reifying the partial continuation� We propose below a solution that needs the values
of the constructors only when the partial continuation is invoked� �It is possible to
design a version without side�e	ects at the price of extra�allocations of closures��

�define �search tree lowest pred�
�let ��cons� �any�

�cons� �any��
�letrec ��loop

�lambda �tree fail�
�if �pair� tree�

�or �marker
�lambda �fail�
��lambda �x y� �cons� x y�� �loop �car tree� fail�

�cdr tree����
��lambda �x y� �cons� x y�� �car tree�

�loop �cdr tree� fail���
�if �pred tree�

�call�pc lowest �lambda �pc�
�lambda �v cons�� cons���
�set� cons� cons���
�set� cons� cons���
�pc v����

�abort fail �lambbda �� �f�������
�marker �lambda �fail� �loop tree fail������

Now� the same partial continuation can be used for several purposes� Below� in
���� a tree is built� in ���� the depth is computed� in ���� the result is a tree that
mirrors the�tree with respect to the direct path�

�define path �marker �lambda �init� �search the�tree init number�����
�define �rcons x y� �cons y x��

�path cons cons �here� � ��a � b� � ��c � here� �e�� ���
�path �lambda �x y� �� � x��

�lambda �x y� �� � y�� �� � � ���
�path rcons rcons �here� � ��e ��here � c�� � �a � b�� ���

This technique can be referred to as run�time partial evaluation� Consel and Danvy
��� de�ne partial evaluation as �a source�to�source program transformation technique
for specialising programs with respect to parts of their input�� For example� let f be a
function requiring two arguments� if f is applied to x and y with x known at compile�
time� the process of partial evaluation generates the de�nition of a new function fx
which requires one argument� with fx such that �y� fx�y� � f�x� y��

On the contrary� let us consider a program where a two�argument function f is
applied to x� y� and to x� y� but x� y�� y� will be known at run�time only� The technique
of partial evaluation cannot be used here since this process requires the value x to
be known at partial�evaluation�time� One could imagine to generate at run�time a
specialised version of f � but as opposed to partial evaluation� we would not generate
the text of the de�nition of the function fx� but a closure fx specialised for x�

The function search generates a specialised function for the tree passed in argu�
ment� search just unfolds the recursive calls until a leaf satis�es the predicate�

	�� Insertion of Values

Let l� be a list of length m� and let l� be an A�list associating n values with numbers�
We want to construct a new list where each value of l� is inserted in l� at the position
which it is associated with in l�� We suppose that l� is not sorted in ascendent
position�order� One solution consists in sorting the list l� and then constructing the
�nal result by merging the list l� and the values at the positions indicated in the sorted
list l�� This solution requires O�n log�n�� comparisons for sorting l� and O�m � n�
comparisons for insertion of values�

We propose another solution that requires neither to sort the list l� nor to compare
positions for insertions� The function walk�list builds a vector with m � � marks�
Each mark delimits a control block that conses an element of the list l�� The insertion
of values is performed in insert�vals� for a position and a value� insert�vals rei�es
a partial continuation with respect to the mark in the corresponding position in the
vector and re�installs this partial continuation after consing the value�

�define �walk�list l acc next�action�
�if �null� l�

�marker �lambda �k� �next�action �cons k acc����
�cons �car l�

�marker �lambda �k�
�walk�list �cdr l� �cons k acc� next�action������

�define �insert�vals l mark�vect�
�if �null� l�

���
�let ��position �car �car l���

�value �cdr �car l����
��call�pc �vector�ref mark�vect position�

�lambda �pc�
�cons value

�pc �lambda ��
�insert�vals �cdr l� mark�vect����������

�define �insert l� l��
�marker �lambda �k�

�walk�list l�
�list k�
�lambda �mark��
�insert�vals l� �list��vector �reverse mark���������

�insert ��� � �� �� ���
���� ����� �� ����� �� ����� �� ����� �� ����� �� �������

� ����� � ���� � ���� �� ���� �� ���� �� �����

This solution rei�es n partial continuations and invokes each of them only once� The
exact cost is highly dependent of the implementation�We can nevertheless approximate
the cost of the n invocations to roughly O�mn� since there are at most m blocks to
concatenate per invocation� This approach o	ers a speed�up when l� is much longer
than l� �n log�n� 	 nm��

In this problem� the positions of the elements of l� remain constant during the
insertion of values� It is clear that the complexity of the solution that we propose is
enhanced by the use of a random access data structure� a vector here� It is easy to
imagine another solution with side�e	ects� �Let us consider a vector of buckets� and
let us add �by a side�e	ect� each value of l� to a bucket at the desired position� the
concatenation of the buckets yields the result�� However� the remarkable feature of the
solution with partial continuations is that it does not use side�e�ects�

Moreover� this example shows that a new programming style can be adopted with
partial continuations� We know that we have to cons the m values of list l� but we
do not know where to insert values of l�� partial continuations allow us to split the
traversals of l� and l� in two separate functions� This example also illustrates that
our duumvirate of control operators needs not be extended to a hierarchy of control
operators� Indeed� we are able to capture any part of the computation whatever the
marks appearing inside� And �nally� this example exhibits a typical use of marks in
their pre�xal extent�

� Related Work

Queinnec and Serpette�s ���� splitter�call�pc is certainly the closest approach to
marker�call�pc� Indeed� splitter leaves a special mark on the evaluation stack and
passes this mark to its receiver� call�pc rei�es the portion of the current stack ap�
pearing above this mark�� However� splitter�call�pc is less expressive than marker�
call�pc since call�pc is restricted to the dynamic extent of the mark� Consequently�
examples like insert in the previous section cannot be programmed with splitter
since marks must be usable outside their dynamic extent�

Moreover� we have tried to simplify the semantics as much as possible� We have
included in the semantics the minimal number of features necessary for marker�call�pc�
We neither require the full power of a store nor an extent parameter as in ����� Another
semantics of splitter appears in ���� in Abstract Continuation Passing Style �
�� how�
ever this semantics subsumes the existence of both a store and a physical comparison
without making this store explicit�

Danvy and Filinski�s shift�reset and Hieb and Dybvig�s spawn have in common
that partial continuations incorporate the mark up to which they were rei�ed� This
approach is totally opposite to ours� indeed� we consider that a mark is pushed on a
stack to give a name to the block below it and a mark is pushed on the stack on user�s
request� Including a mark in the partial continuation is therefore meaningless and can
be seen as a �dangling� name which� whenever the partial continuation is invoked� will
name the current block�

On the other hand Queinnec and Serpette�s splitter and Felleisen� Wand� Fried�
man� and Duba�s �
�� ��� ����F avoid to copy the mark �or prompt� when reifying a
partial continuation� Those two trends are the origin of the debate about the �dynamic�
ness� of control operators� Although we have decided not to copy a mark when reifying
a continuation� a similar problem also arises when a partial continuation is applied�
We have to know whether a new mark should be inserted between the current block
and the partial continuation� should we name the current block by a new name not
given by the user or should this block be merged with the �rst block of the partial
continuation�

In order to be able to reify a partial continuation between the current point and
any mark �not the last one� Felleisen and Sitaram ��
� and Danvy and Filinski ���
introduce a hierarchy of control operators� Therefore� their languages have �n times
control operators instead of �� But� what is the intuitive di	erence between control
operators of level n or level n � ��

Moreau and Ribbens ���� also introduce a mechanism of prompt to mark the extent
of the call�cc operator� Such a prompt was used to optimise the invocation of a
continuation in the extent of the call�cc by which it was rei�ed� In their reduction
system� the prompt could be used to represent explicitly two extents� the dynamic
extent or another notion of extent� similar to pre�xal extent except that the pre�x
notion uses equality of blocks instead of equality of block names�

� Conclusion

We presented an operator marker that rei�es the block names of the current contin�
uation� This is the minimum requirement for our semantics� A nice integration with
Scheme would be to mergemarker and call�cc� thus reifying a sequence of block names
into a regular continuation� On the other hand� call�pc would extract the names that
it needs from this regular continuation� Hence� only one primitive should be added to
the language Scheme in order to reify partial continuations�

� In fact� the lowest position where this mark appears�

We de�ned a partial continuation as the di	erence of two continuations when one
is the pre�x of the other� Although other notions of pre�xes might be imagined� we
think that they must� at least� be able to properly evaluate our examples�

	 Acknowledgement

Luc Moreau wishes to thank INRIA for a three months visit of Projet ICSLA where this
work was initiated� Both authors have been partially funded by Projet Tournesol
�����
and Christian Queinnec has been partially funded by GDR�PRC de Programmation
du CNRS� The authors also wish to thank Olivier Danvy� Matthias Felleisen� and the
anonymous referees for their helpful comments�

References

� Charles Consel and Olivier Danvy� Tutorial Notes on Partial Evaluation� In Proceed�
ings of the Twentieth Annual ACM SIGACT�SIGPLAN Symposium on Principles of
Programming Languages� Charleston� January
����

�� Olivier Danvy� On Listing List Pre�xes� Lisp Pointers� ���������
���
����
�� Olivier Danvy and Andrzej Filinski� Abstracting Control� In Proceedings of the ����

ACM Conference on Lisp and Functional Programming� pages
�

�	� June
��	�
�� Matthias Felleisen� The Theory and Practice of First�Class Prompts� In Proceedings of

the Fifteenth Annual ACM SIGACT�SIGPLAN Symposium on Principles of Program�
ming Languages� pages
�	

�	� January
����

�� Matthias Felleisen and Daniel P� Friedman� Control Operators� the SECD�Machine and
the ��Calculus� In M� Wirsing� editor� Formal Description of Programming Concepts III�
pages
��
�
�� Amsterdam�
���� Elsevier Science Publishers B�V� �North�Holland��

�� Matthias Felleisen� Daniel P� Friedman� Bruce Duba� and John Merrill� Beyond Contin�
uations� Technical Report �
�� Indiana University� February
����

�� Matthias Felleisen� Mitchell Wand� Daniel P� Friedman� and Bruce F� Duba� Abstract
Continuations � A Mathematical Semantics for Handling Full Functional Jumps� In
Proceedings of the ���� ACM Conference on Lisp and Functional Programming� pages
��
��� July
����

�� Christopher T� Haynes� Daniel P� Friedman� and Mitchell Wand� Obtaining Coroutines
with Continuations� Comput� Lang��

������
��

���
����

�� Robert Hieb and R� Kent Dybvig� Continuations and Concurrency� In Second ACM
SIGPLAN Symposium on Principles � Practice of Parallel Programming� pages
��

��� March
��	�

	� Robert Hieb� R� Kent Dybvig� and Claude W� Anderson� III� Subcontinuations� Lisp
and Symbolic and Computation� Special Issue on Continuations�
������

	� January

����

� Luc Moreau and Daniel Ribbens� Sound Rules for Parallel Evaluation of a Functional
Language with callcc� In ACM conference on Functional Programming and Computer
Architecture 	FPCA
���� pages
��

��� Copenhagen� June
���� ACM�

�� Chetan R� Murthy� Control Operators� Hierarchies� and Pseudo�Classical Type Systems�
A�Translation at Work� In Workshop on Continuations� pages ��
�
� ACM Sigplan�
June
����

�� Gordon D� Plotkin� Call�by�Name� Call�by�Value and the ��Calculus� Theoretical Com�
puter Science� pages
��

���
����

�� Christian Queinnec� Value Transforming Style� In M� Billaud� P� Cast�eran� MM� Corsini�
K� Musumbu� and A� Rauzy� editors� WSA
�
�Workshop on Static Analysis� number
�
��� in Bigre� pages �	
��� Bordeaux �France�� September
����

�� Christian Queinnec and Bernard Serpette� A Dynamic Extent Control Operator for Par�
tial Continuations� In Proceedings of the Eighteenth Annual ACM SIGACT�SIGPLAN
Symposium on Principles of Programming Languages�
��
�

�� John C� Reynolds� The Discoveries of Continuations� Lisp and Symbolic and Computa�
tion� Special Issue on Continuations� ����������
���� November
����

�� Dorai Sitaram and Matthias Felleisen� Control Delimiters and Their Hierarchies� Lisp
and Symbolic Computation� ��
����
���
��	�

�� Christopher Strachey and Christopher P� Wadsworth� A Mathematical Semantics for
Handling Full Jumps� Technical Monography PRG�

� Oxford University Computing
Laboratory� Programming Research Group� Oxford� England�
����

This article was processed using the LaTEX macro package with LLNCS style

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

