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Abstract

We present an operational semantics for a functional language with first-class
continuations and transparent constructs for parallelism fork and pcall. The
sequential semantics of programs with first-class continuations is preserved when
parallel evaluation is allowed, by verifying whether some expressions have returned
a value before applying a continuation. These expressions are the ones that are
evaluated before this continuation is applied in a left-to-right sequential order. An
implementation is proposed using a notion of higher-order continuation that we call
metacontinuation. This semantics is costless when first-class continuations are not
used. Several programs also illustrate the programming style that can be adopted
in such a language.

Keywords: Scheme, parallelism, transparency, continuation, metacontinuation,

left expression, operational semantics.

1 Introduction

There are essentially two trends to extend a functional language with parallel constructs.
On the one hand, the approach adopted by the ML community [22] consists in adding
to the language the notions of processes, channels, and communications as in calculi like
CCS [21]. An operational semantics is given in [2] and several implementations were
realised (PFL [17], CML [32]). Its main drawbacks are that the language is no longer



functional and that it requires another programming methodology to develop parallel
applications. On the other hand, one can preserve the functional features of the language
by adding constructs like future and pcall. These constructs were initially implemented
in MultiLisp as described in [9], [10]. Such operators are said to be transparent since
programs using them return the same results as their sequentialised versions (i.e. these
programs where those operators were deleted). Thus, those parallel constructs can be
seen as annotations for parallelism. Consequently, in order to write a parallel functional
program, one has to write a sequential functional program and annotate it with parallel
annotations (which is not a trivial task).

One feature of Scheme [31] is its ability to give the programmer access to the inter-
nal continuation. The function call/cc reifies the current continuation, i.e. call/cc
packages up the current continuation as a first-class object, which is an escape proce-
dure, also called reified continuation. When an escape procedure is applied to a value
v, the current computation is aborted and the execution resumes at the point where the
continuation was captured by call/cc; the value v being the value returned from that
call/cc expression. First-class continuations are useful to define powerful control struc-
tures, such as escape mechanisms, abortion and resumption of computations, coroutines;
several programming examples with continuations can be found in [14], [15].

As far as parallelism is concerned, the second approach, with transparent constructs,
is commonly used to add parallelism to Scheme. However, first-class continuations gave
a hard time to researchers to define a transparent future construct ([19], [16], [18],
[20], [11]). Sequential programs are characterised by a fixed evaluation order (that we
assume to be from left to right in this paper). This evaluation order does not exist any
longer when parallel constructs are introduced in the functional language. However, by
their abortive nature, the order in which continuations are applied is critical. Hence, a
parallel program can produce a different result than its sequentialised version because a
continuation ¢; can be applied before another continuation co, while ¢o would be applied
first in the sequential program. In absence of a formal specification, the constructs
for parallelism lose their transparency. An implementation of a transparent future
construct was realised by Katz and Weise ([18], [20]), but, unlike the ML approach, a
formal semantics was not provided.

In this paper we present an operational semantics for a subset of Scheme extended with
transparent constructs for parallelism fork, pcall that we call A¢; the case of future is
also considered. This operational semantics is a translation of Ac to a language, called
Ay, itself specified by an operational semantics. A/, is a functional language without

first-class continuations to which CCS-style constructs for parallelism are added.



The basic idea of the semantics is to ensure that, before applying a continuation, all
the expressions that are evaluated in parallel and that should be evaluated in the sequen-
tial version, have indeed returned a value. We call these expressions “left expressions”
since they are evaluated before the continuation is applied in a left-to-right evaluation
order. In our semantics, we implement the check of left expressions by a higher-order
continuation also called metacontinuation.

This paper is organised as follows. First, in Sections 2 and 3, an informal and a formal
semantics are presented for the languages A¢ and A/, respectively; some programming
examples are also given. In Section 4, we distinguish symmetric and asymmetric con-
tinuations, and we propose a semantics of pcall based on symmetric continuations. In
this semantics, pcall is not transparent for two reasons, which are studied in Sections 5
and 6: operands must be revaluated if a continuation is applied several times, and left
expression should be taken into account. The details of the semantics of Ax are given
in Section 7. Properties of this semantics are studied in Section 8, and we conclude this

paper by a comparison between our contribution and related work.

2 The Source Language: A¢

In this paper, we present an operational semantics of A, a parallel functional language
with first-class continuations. This operational semantics is based on the translation of
Ac to another language A/,. In this section, we informally define A¢ and we illustrate

the programming style that can be adopted with such a language.

2.1 Informal Definition

Ac¢ is a Scheme-like language [31]; its syntax is defined by the following grammar over a

set of variables.
M:=x | (lambda (x) M) | (M M) | (call/cc M)

The evaluation is sequential (left-to-right order) unless parallelism is explicitly introduced

by three constructs:

1. A process p; evaluating (fork exp) in a sequence creates a process p, to evaluate
exp; the value returned by fork is unspecified; the process p; continues to evaluate

the sequence in parallel with p,.



2. A process p; evaluating (pcall M N) creates a process ps to evaluate M and a pro-
cess p3 to evaluate N. When both values are computed, the application is performed

by ps or ps3, the other one and p; are killed.

3. A process p; evaluating (future exp) creates a process ps to evaluate exp, the
returned value is an object called a placeholder. A placeholder is a data structure
with a slot for one value aimed at containing the value of the expression exp when

it is computed by process ps.

When the notion of placeholder is introduced in a language, one classically makes a
distinction between strict and non-strict functions ([11]). When a process applies a
strict function to a placeholder, the strict function requires the value contained in
the placeholder. If the value is not yet computed, this process is suspended. It will
be reactivated as soon as the value is computed. The fact of requiring the value of
a placeholder is called “touching” the placeholder. As opposed to strict functions,
non-strict functions do not require the value of a placeholder. For example, the
function adding two values is strict since it requires them to be numbers while the

function constructing a pair with two values is non-strict.

One should also note that touching a placeholder is a recursive process: when the
value of a placeholder is also a placeholder, this one is also touched until a value,

different from a placeholder, is obtained.

In A¢e, we consider that all functions are non-strict and we view placeholders as
a new data type. The programmer has to take care of providing functions with
arguments the right data types. For this purpose, we add a new function called
touch, which is a strict identity function. Now, touching arguments is performed

only by the function touch, where specified by the programmer.

One can compare future and touch in A with delay and force. Lazy evaluation
or call-by-need in Scheme are available by the constructs delay and force. An
expression (delay exp) returns an object called a promise. The value of exp
may be computed later by applying the operator force to this promise. The pair
future/touch is similar to the pair delay/force except that the argument of
future is evaluated eagerly while an expression delayed by delay is only evaluated

when forced by exp.

The construct future was initially introduced in MultiLisp [10] as an annotation
specifying which expressions could be evaluated in parallel. In the presence of first-

class continuations, this annotation can lose its transparency as exposed in [11],



[18]. In [11, page 19|, Hasltead gives three criteria for the semantics of parallel

constructs and continuations in a parallel Scheme. We list them here:

(a) Programs using call/cc without constructs for parallelism should return the

same results in a parallel implementation as in a sequential one.

(b) Programs that use continuations exclusively in the single-use style should yield
the same results as in sequential Scheme, even if a parallel construct is wrapped

around arbitrary expressions.

(c) Programs should yield the same results as in sequential Scheme, even if a paral-
lel construct is wrapped around arbitrary subexpressions, with no restrictions

on how continuations are used.

In Section 8, we show how our semantics satisfies these conditions.

2.2 Programming Examples in A¢

In this section, we show how the functional programming methodology can be used to
develop parallel programs: we give some functional programs and use parallel annotations
to parallelise them. For readability purpose, we use a notation similar to Scheme with

multiple-arguments functions and syntactic sugar let, begin and letrec.

2.2.1 search-first

The first example consists in a depth-first search for the leftmost occurrence of an atom
satisfying a predicate in a given S-expression. A sequential version can be written as

follows.

(define search-first
(lambda (tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((atom? tree) (if (pred tree)
(exit tree)
0D))
(else (begin (loop (car tree))
(Loop (cdr tree))))))))
(loop tree))))))

When an atom satisfying the predicate pred is found, the continuation bound to exit
is applied; this continuation was captured when entering the function search-first.

Since continuations are first-class objects and they have an unlimited extent, we can



slightly modify this function in order to return the atom satisfying the predicate and the

current continuation.

(define search-first
(lambda (tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((atom? tree) (if (pred tree)
(call/cc
(lambda (next)
(exit (1list tree next))))
0D))
(else (begin (loop (car tree))
(loop (cdr tree))))))))
(loop tree))))))

When the search for the leftmost occurrence of an atom succeeds, this definition of
search-first returns a list composed of an atom and a continuation. If this continuation
is applied on a value, the function search-first is resumed where it was aborted by the
application of exit and the search for the next leftmost atom satisfying the predicate is
launched.

In order to parallelise this program, one can search the left and right subtrees in
parallel instead of sequentially. This is done by annotating the first call to loop on the

left subtree with the annotation fork.

(define search-first
(lambda (tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((atom? tree) (if (pred tree)
(call/cc
(lambda (next)
(exit (list tree next))))
*()))
(else (begin (fork (loop (car tree)))
(Loop (cdr tree))))))))
(loop tree))))))

When a process evaluates the expression (fork (loop (car tree))), a new process
is created to evaluate (loop (car tree)) in parallel with (loop (cdr tree)). In this
example, we use fork and not future because the loop function is not designed to return
a value.

With such a definition, we can easily imagine a tree for which an atom satisfying the
predicate is found in a right subtree before one is found in a left subtree. In this case,

the continuation exit is applied on an atom that is not the leftmost. The purpose of



this paper is the design of a transparent fork construct which means that, although a
leaf of a right subtree can be found first, the final result of the search-first function
is the same as the result of the sequential version of search-first. In other words, the
semantics of fork must guarantee that a result in a right subtree can only be returned
if the search in the left subtree has not succeeded.

In the following sections, we will show that, when a continuation is applied in a
process p, the processes executing in parallel with p are not suspended. Therefore, when
the process p has found an atom satisfying the predicate, the processes which run in
parallel with p keep on searching for other atoms. We are in the presence of a speculative
computation: the following atoms are not known to be needed, although they are searched
in parallel with the mandatory computation.

In order to display the atoms of an S-expression satisfying a predicate, we can use
the function display-atoms.

(define display-atoms
(lambda (tree pred)
(let ((a-leaf (search-first tree pred)))
(if (null? a-leaf)
’end

(begin (display (car a-leaf))
((cadr a-leaf) ’()))))))

In display-atoms, we begin to search for the leftmost occurrence of an atom. If the
returned result is a non-empty list (composed of an atom and a continuation), the atom is
displayed and the search for the following atom is initiated by applying the continuation.
This process is repeated as long as atoms are found.

One should remark that the function display-atoms can use either the sequential or
the parallel version of search-first. In the former case, the display and the search of
atoms are interleaved like coroutines, while in the latter case, the atoms can be searched

speculatively, the search preceding the display.

2.2.2 The Producer-Consumer Problem

In the previous example, the function display-atoms is not considered as a coroutine
by the function search-first because it is always the same continuation bound to exit
which is applied in search-first: the function display-atoms is always resumed at the
same point. On the contrary, search-first is resumed by the continuation next where
it was interrupted the last time.

Let us now consider the producer-consumer problem for which a sequential version

is written in a coroutine style. Unlike [14], [15], we use a functional language without



assignment; so, a coroutine is called with a function resume that transmits a pair: the
continuation of the caller coroutine and the value to transmit to the called coroutine.
This continuation allows the called coroutine to resume its caller. The function resume

is defined as follows.

(define resume
(lambda (coroutine value)
(call/cc (lambda (k)
(coroutine (list k value))))))

We define a producer coroutine which computes integers and transmits them to a
consumer, and a consumer coroutine which receives values from a producer and executes

an operation on them.

(define producer
(lambda (producer-job)
(lambda (consumer)
(letrec ((loop (lambda (n pair)

(let* ((pair (resume (car pair) n))

(new-value (producer-job n)))

(loop new-value pair)))))
(loop O consumer)))))



(define consumer
(lambda (producer)
(lambda (consumer-job)
(letrec ((loop (lambda (producer)
(let* ((pair (resume producer ’any))
(producer (car pair))
(n (cadr pair)))
(consumer-job n)
(loop producer)))))
(loop producer)))))

The coroutine system, displaying numbers from 1 to the infinite is launched by the

function run.

(define run
(lambda ()
((consumer (producer (lambda (n) (+ n 1))))
(lambda (n) (display n) (newline)))))

There are several ways to parallelise these functions. One of them consists in resuming
the consumer coroutine in parallel with the computation of the next element; this is done,
in the new definition of producer, by annotating (resume (car pair) n) with future.
Therefore, the variable pair in loop will be bound to a placeholder. Consequently, we
must take care of applying car on a cell and not on a placeholder, i.e. we have to touch

the pair before accessing the cell. The parallel version is defined as follows.

(define producer
(lambda (producer-job)
(lambda (consumer-value)
(letrec ((loop (lambda (n pair)
(let* ((pair (future (resume (car (touch pair)) n)))
(new-value (producer-job n)))
(loop new-value pair)))))
(loop O consumer-value)))))

This solution allows some speculative computation since new values are computed be-
fore they are displayed: indeed, (resume (car (touch pair)) n) is going to be eval-
uated in parallel with (loop new-value pair). Therefore, an unbounded number of
processes can be created to evaluate (resume (car (touch pair)) n) with the dif-
ferent values of n. But continuations will be applied in the expected order because a
coroutine is resumed after touching the value received from the consumer.

We can also introduce parallelism without speculative computation: in the producer,
we can compute the following element and resume the consumer coroutine in parallel
(as in the previous example), but we allow the recursive call to loop to be performed
only after the consumer coroutine has displayed the value. Therefore, only one value is

computed in advance.



(define producer
(lambda (producer-job)
(lambda (consumer-value)
(letrec ((loop (lambda (n pair)
(pcall loop (producer-job n)
- (resume (car pair) n)))))
(loop O consumer-value)))))

Hence, the programmer can determine the kind of parallelism he wants, speculative
or not, by choosing the expression to evaluate in parallel and by selecting the construct
for parallelism.

The first parallel version shows that an unbounded number of processes might be
created: this raises the question of scheduling. We did not study this problem in this
paper but some solutions have been previously suggested like the sponsors in [11] and
[26].

3 The Target Language: A/,

We recall the reader that we intend to define A¢ by a translation to A;,. In Section
3.1, A, is given a formal semantics, and some programming examples can be found in
Section 3.2.

3.1 Definition and Semantics

Ay, is the target language of the translation; it is defined by the following grammar over

a set of variables.
M:=x | (lambda (x) M) | (M M)
It is extented by a set of four low level primitives for concurrency.

(spawn thunk) The function spawn takes a thunk (function without argument) in ar-
gument, creates a new process that applies this thunk, and returns an unspecified

value after the process creation.

(channel) Processes exchange data on channels. The function channel returns a new

object called channel identifier on which processes can communicate.

(send channel value) Communications are synchronous as in CCS. In order to per-
form a communication, there must be a process ready to send a value on a channel
and a process ready to receive a value on the same channel. The value returned by

the function send is unspecified.



(receive channel) The value returned by the function receive is the value transmit-

ted on channel by a sending process during a synchronous communication.

For readability purpose, we add the usual syntactic sugar let, begin and letrec in
Ay, as we did in Ac.

An operational semantics of parallel ML is given in [2] by a set of transition rules
similar to the ones of CCS [21]. Using a similar approach, we give a semantics to A//;
this semantics consists of a set of rules that allow us to infer transitions between configu-
rations. A configuration is represented by the notation (K, I,S) | P. In a configuration,
K denotes a set of channels, I a set of process identifiers, S a set of locations, and P a
set, of processes [p; : ¢;], where each process p; is evaluating the expression ¢; € A;;. The
initial configuration is (), {0}, 0) | {po}[po : €] where e is the expression to evaluate. An

expression such as
(K,1,S) | Plpp:€e'] = (K',I',S") | P'[p, : €"]

describes a transition from a configuration (K,I,S) | P where process p, is evaluating
the expression €’ to another configuration (K’,I',S") | P' where the same process p, is

evaluating the expression €”. In Figure 2, inference rules of the form

erp
eTps

permit us to infer expy from exp;.

In Figure 2, rule 1 concerns the order of evaluation in an application. This rule spec-
ifies a left-to-right evaluation order of subexpressions. The notation (vy...v; € e ...¢;)
0<:<2,0<5<2,0<i+4j<2denotes applications composed of one, two, or three
subterms. It identifies a term e whose left terms must be values and right terms are
not evaluated yet. We have to consider these cases because channel is a no argument
function, A-expressions require one argument, and eq? and send require two arguments.
Rule 1 can be read as follows, “knowing that from configuration (K,1,S) | P where
process p,, evaluates €', there is a transition to configuration (K’,I', S") | P' where pro-
cess p, evaluates e”, we can infer that for the first configuration (K, I,S) | P, where p,
evaluates (vy...v; € ey...¢;), there is a transition to the second configuration where p,
evaluates (vy...v; € e1...e;) where left terms of €’ are values”. Rule 2 is the call-by-
value f-reduction [27]. According to rule 3, the evaluation of a lambda-expression Az.M
yields a triple (z, M, @), called a function. One should remark that a function contains
a fresh location o which allows us to compare functions with eq? (rule 7). Rule 4 is the

evaluation rule of the function channel: it adds a new channel k to the set of channels



p,q € I, set of process identifiers
a € S, Store, set of locations
k€ K, set of channels
v € Value = Functions U BasicValues U {any}
(z,e,a) € Functions
BasicValues = {spawn,eq?, send,receive, channel}

Luc Moreau. Figure 1. Semantic objects



(Kala S> | P[pn : el] - <Klallas,> | Pl[pn : 6”]

(K,I,S) | Plpp: (vi...vi€ er...e))] = (K", I',S") | P'lpp : (v1...v; €" e ..

where 0 < <2and 0<j3<2and 1 <71+75 < 2.

(K,I,S) | Plpn : ((z,e,0)0)] > (K,I,S) | Plps : e{v/z}]

aégsS
(K,1,S) | Plpy : (lambda (x) M)] 3 (K,I,SU{a}) | Plp, : (z, M, )]
kg K
(K,1,S) | Plp, : (channel)] ¥ (K U {k},I,S) | Ppy : k]
qg 1

(K, 1,S) | Plpn : (spawn((), e, 0))] ™ (K, TU{q},S) | Plpn - any]lp, : €]

ke K

. €;)]

(K,I,8) | Plpy : (send k v)][pm : (receive k)] %" (K, I,S) | Pp, : any][py, : v]

e

(K,1,S) | Plp, : (eq?(z1, €1, 1) (w2, €2, 2))] % (K, I, S) | Plpn : a1 = as]

Luc Moreau. Figure 2. Reduction rules for A/,



K. Rule 5 is the evaluation rule of the function spawn: it adds a new identifier ¢ to
the set of process identifiers I and creates a new process p, to evaluate the argument of
spawn. A communication between two processes proceeds according to rule 6 if a process
pn wishes to send a value v on a channel k£ and a process p,, is ready to receive a value
on the same channel. Communications are synchronous since a process can send a value
on a channel c is there is another process which is ready to receive a value on the same
channel ¢ (and vice-versa). According to rule 7, two functions are equal (eq?) if they
have the same location, i.e. if they result from the evaluation of the same A-expression

by rule 3. Such an approach is also adopted in the definition of Scheme [31].

3.2 Programming Examples in A/,

Let us illustrate the programming style offered by A,, by several functions that will be
used in the following sections. With the primitives for parallelism defined in the previous
section, we can define a store as a data structure created by the constructor make-store,
accessed by read and modified by write. It can be modelled by a process as described in
Figure 3. The value contained in the store is the value bound to the local variable v. This
process infinitely sends and receives values on a given channel c, the last value received
being the next to be sent. The store can be read by receiving a value and immediately
sending back the same value afterwards; the store can be written by sending a new value
after discarding a received value.

The reader might wonder why such a protocol is used in the definition of the store.
An intuitive solution would be to receive a value on a channel when we want to read a
store, and to send a value on a channel when we want to write the store. Such a solution
requires the store to be a process able to choose between a send and a receive: this is
a non-deterministic choice but A;, does not have a non-deterministic choice instruction.
We have decided to define A;, without such an operator because it was superfluous for
the purpose of the semantics of Ac.

When several processes have access to a store, one usually needs to consider the store
as a critical section. Such a critical section can be implemented by a semaphore. In
Figure 4, we implement semaphores using the function make-store. The actions wait
and signal are performed by receive and send actions respectively. In the following
sections, we associate a value to a semaphore. A version of the semaphore with a value
also appears in Figure 4.

We call a sink, a process that infinitely receives values on a given channel c. On the

contrary, an emitter is a process that infinitely sends the same value on a given channel.



(define make-store
(lambda (c init-value)
(spawn (lambda ()
(letrec ((loop (lambda (v)
(begin (send c v)
(loop (receive c¢))))))
(loop init-value))))))

(define read (define write
(lambda (c) (lambda (c v)
(let ((value (receive c))) (begin (receive c)
(begin (send c value) (send ¢ v))))
value))))

Luc Moreau. Figure 3. Definition of a store



(define make-semaphore (define wait (define signal

(lambda (c) (lambda (sem) (lambda (sem)
(make-store c ’any))) (receive sem))) (send sem ’any)))
(define make-semaphore-with-init-value (define signal
(lambda (c init-value) (lambda (sem val)
(make-store ¢ init-value))) (send sem val)))

Luc Moreau. Figure 4. Definition of a semaphore



Such processes are defined in Figure 5.

In Figure 6, we illustrate the semantics of A, by evaluating an expression according
to the transition rules of Figure 2. We show only the configurations that are followed by
a transition related to parallelism.

In order to simplify the presentation of this example, we have not explicitly repre-
sented the store (set of locations) of each configuration. Instead, we have called them «,
though they might not all be the same. In fact, locations are used to uniquely name func-
tions in order to be able to distinguish them with eq?. Our simplification is acceptable

because we do not use eq? in this example.

4 Symmetric or Asymmetric Continuation-Passing
Style

Figure 7 displays a translation of the sequential subset of Ag using the continuation-
passing style or CPS for short. The CPS translation is an old idea in computer science;
it was initially proposed by Fisher [8] and Reynolds [33], and further investigated by
Plotkin [27]. Such a style is often used for denotational semantics and for program
transformations in compilers [3], [4], [34], [35], [1]. In our notation, a translation consists
of a set of translation rules having the following pattern: [Term]=exp. The left-hand side
of the rule is a source term of A¢ in brackets and the right-hand side is an expression of
Ay;. Such a rule should be read as “the text of the translation of Term is exp, in which
every occurrence of [e] must be replaced by the text of the translation of e and each
newly introduced variable in exp is supposed not to collide with existing ones”.

The basic idea of the CPS translation is to transform each function of one argument
into a function of two arguments, the second being a continuation which represents what
to do after the evaluation of the function. The third rule of Figure 7 is the translation of an
application (M N): (lambda (x) ([M] (lambda (vm) ([N] (lambda (vn) (vm vn k)))))).
For a continuation k, the translation of M is applied to the continuation (lambda (vm)
([N] (lambda (vn) (vm vn x)))). As soon as M is evaluated, its value will be bound to
vm, and the translation of N will be applied to the continuation (lambda (vn) (vm vn k)).
The value that N yields is bound to vn and the application (vm vn k) is performed with
vm which must be bound to a function of two arguments (resulting from the translation
of a function of one argument).

We can also find in Figure 7 the meaning of call/cc which applies its argument

to an escape procedure, which is of the form (lambda (v ') (k v)), where « is the



(define make-sink
(lambda (c)
(spawn (lambda ()
(letrec ((loop (lambda ()
(begin (receive c)
(loop)))))
(Loop))))))

(define make-emitter
(lambda (c value)
(spawn (lambda ()
(letrec ((loop (lambda ()
(begin (send c value)
(loop)))))
(loop))))))

Luc Moreau. Figure 5. Definition of a sink and an emitter



Let e; be the following expression:

(let ((c (channel)))
(make-store c 0)
(write c 1)

(print (read c)))

The initial configuration is

(0, {po}, ) [ [po : e1]
meaning that there is only one process py which evaluates e; and no channel has already been created.
It is followed by the configuration:
({co}, {po}, @) | [po - €2]
with es
(begin
(make-store ¢y 0)

(write co 1)
(print (read cp)))

After creation of the store, we obtain a new configuration:

({co}ts {pos 1}, ) | [po : es]pr : eq]

with e3 and ey

(begin (begin
(write co 1) (send ¢y 0)
(print (read cp))) (loop (receive cp)))

where p; is the process modelling the store. The following configuration is

({eco}, {po. 1}, @) | [po = es][p1 : eq]
after the write operation with e; and eg

(begin (begin
(print (read cp))) (send ¢y 1)
(loop (receive cp)))

which reduces to
({Co},{po,m},a) | [po : 67][171 : 66]

after the read operation with e;

(begin
(print 1))

The final configuration is
{({co}, {po, o1}, @) | [po ][p1 - 6]

where process pg has finished the evaluation of its expression and where p; is blocked. Indeed, there is
no other process which is ready to receive a value on ¢p, and since communications are synchronous, we
can never apply rule 6 and the process p; is blocked.

Luc Moreau. Figure 6. Evaluation of an expression in A/,



lambda (k) (k x))

lambda (k) (k (lambda (x c) ([M] <))))

lambda (k) ([M] (lambda (vm) ([N] (lambda (vn) (vm vn k))))))
lambda (k) ([M] (lambda (vm) (vm (lambda (v ') (k v)) k))))

[x]
[(lambda (x) M)]
[0 1]
[(call/cc M)]

(
(
(
(

Luc Moreau. Figure 7. Asymmetric continuation-passing style translation



captured continuation. Since Figure 7 contains the translation of the sequential subset
of A¢, no parallel construct of A, is used. In order to completely specify A, we still
have to add translation rules for the parallel constructs pcall, fork, and future. Let
us initially consider the first one. Queinnec [28] gives a semantics for PolyScheme, a
parallel dialect of Scheme. Let us use the same technique to define the pcall operator
for which a verbose translation can be found in Figure 8. For each application (pcall
M N), two processes are created to evaluate M and N in parallel and two new memory
cells intended to contain the values of M and N are allocated. This translation is also a
continuation-passing translation: the continuation of M stores the value of M in the data
structure cm; if N is not yet computed, the process evaluating M terminates its execution.
When N is evaluated, the continuation of N stores the value of N in a data structure, and
since M is already evaluated, the application of the value of M to the value of N and the
continuation  is performed. The behaviour is symmetric if N terminates its evaluation
first.

In Figure 9, we give the translation rule for the parallel application (pcall M N).

There are a few differences:

1. We must be sure that processes evaluating M and N do not both evaluate (vm vn
k). Hence, the memory cells cm and cn must be considered as a critical section
which is implemented by a semaphore sem. The operations wait and signal on
a semaphore are performed when entering and exiting the critical sections. An

implementation of semaphores is given in Figure 4.

2. In the translation, we do not use an if expression and the action die and the test
computed? are implicit; this conditional expression is implemented by applying the
content of the data structures cm and cn which are initialised with an empty body

function and which receive a function applying vm to vn and k.

3. The data structures cm and cn are stores for which a code is illustrated in Figure
3.

In the continuation-passing style translation (Figure 7), the continuation of M, (i.e.
(lambda (vm) ([N] (lambda (vn) (vm vn k))))) and the continuation of N, (i.e. (lam-
bda (vn) (vm vn k))) are asymmetric since they force the evaluation of M before the
evaluation of N. They define a left-to-right total order of evaluation of expressions. In the
definition of pcall (Figure 9), the continuation of M stores a value in store cm, reads store
cn and applies its content to vm and the continuation x. We see that the continuation

of N is symmetric to the continuation of M. They define a partial order of evaluation of



[(pcall M N)] = (lambda (k)
(let ((cn a new memory cell) (cm a new memory cell))
(begin (spawn (lambda () ([M] (lambda (vm)
(begin store vm in cm
(if (computed? <walue of N>)
(vm <walue of N> k)
(die)))))))
(spawn (lambda () ([N] (lambda (vn)
(begin store vn in cn
(if (computed? <walue of M>)
(<value of M> vn k)

(@ie)))NHMNHN)

Luc Moreau. Figure 8. Verbose translation for a PolyScheme-style pcall



[(pcall M N)] =
(lambda (k)
(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (spawn (lambda () ([M] (lambda (vm)
(begin (wait sem)
(write cm (lambda (vn x) (vm vn x)))
(let ((fn (read cmn)))
(begin (signal sem)
(fn vm k))))))))
(spawn (lambda () ([N] (lambda (vn)
(begin (wait sem)
(write cn (lambda (vm x) (vm vn x)))
(let ((fm (read cm)))
(begin (signal sem)
(fm vn k))))))))
(make-store cm (lambda(vn k) >()))
(make-store cn (lambda(vm k) > ()))
(make-semaphore sem))))

Luc Moreau. Figure 9. Symmetric continuation-passing style translation for pcall



expressions: the body of a function is always evaluated after the subexpressions of a
parallel application, but there is no order between these subexpressions.

In this paper we use the term symmetric continuations to denote PolyScheme style
continuations and we use asymmetric continuations to denote continuations such as those
from the CPS translation; by extension, we use the terms symmetric and asymmetric
continuation-passing styles (SCPS or ACPS).

While the ACPS total order of evaluation forbids parallelism, the partial order defined
by the symmetric continuation-passing style allows parallel evaluation of subexpressions
in an application. Unfortunately, with such a meaning of pcall, an expression of Aq
does not always return the same value as the same expression where the pcall operator
is deleted: in other words, the pcall operator is not transparent.

Let us examine the evaluation of a simple program using the translations from Figures

7 and 9:
(pcall f1 (call/cc (lambda (k)

(pcall (pcall f2 (k 1)) (8)
(k 2)))))

The resulting computation tree is illustrated in Figure 10. Each node represents a
process evaluating an expression. When a process evaluates a pcall expression, two
nodes are added as sons of the current node; the first argument of pcall being the left
son and the second argument, the right son. The first node is said to be the left brother
of the second node.

The evaluation tree of expression (8) shows that k is applied on 1 and 2 in two
different processes. By analysing the translation given in Figures 7 and 9, we notice that

k will be bound to a reified continuation' which is
(lambda (v k') (k v))

with k, the captured continuation. We can also see that when k is applied, the current
continuation k' is discarded. This is the reason why continuations are said to be abortive
and can model jumps. One should remark that pcall creates processes and each process
has its own continuation. Therefore, when a reified continuation k is applied, the current
continuation of the ezecuting process is discarded but this has no effect on processes

running in parallel: i.e. processes keep on running in parallel and are not interrupted.

'We use the term reified continuation to denote the object returned by a call/cc. This reified
continuation captures a continuation x, called the captured continuation or the implicit continuation

which is the continuation resulting from the continuation-passing style translation.



(pcall f1 (call/cc ..

£1 (call/cc ...)

(pcall £2 (k 1))

£2 &k 1) (k 2)

Luc Moreau. Figure 10. Computation tree for expression 8

D)



Consequently, in expression (8), k is applied on 1 and 2 in two different processes.
This has a strange effect: an expression can return several different results and among
them some can be multiple as explained in [28].

Let us consider that £1 is a function that adds 3 to its argument ant prints the result.
Let us enumerate the different evaluation orders of expressions f1, (k 1) and (k 2). Let

us call c1 and c2 the two stores allocated when evaluating the first pcall.

1. According to the verbose semantics of Figure 8, if £1 is evaluated first, the value
bound to this symbol is stored in c¢1 and the process evaluating f1 dies since the

argument of £1 is not yet evaluated.

If (k 1) is evaluated second, then the value 1 is stored in c2 as the value of the

(call/cc ...) expression, and the application is performed, yielding 4.

If (k 2) is evaluated third, then a similar execution yields the value 5.

2. If £1 is evaluated first, but (k 1) and (k 2) are evaluated in a reverse order, the

returned values will be 5 and 4.

3. If (k 1) is evaluated first, then the value 1 is stored in c¢2 and the process dies

since f1 is not yet evaluated.

If (k 2) is evaluated second, the value 2 is stored in ¢2 and the process dies since

f1 is not yet evaluated. The value 1 which was contained in c2 is lost.

If £1 is evaluated third, the application is performed yielding 5

4. If (k 1) and (k 2) are evaluated in the reverse order, before £1, the result will be
4.

In the first two cases, multiple results are returned by the expression while in the two
last cases, single results are returned.
We can sequentialise expression (8) by replacing parallel applications by sequential
applications. We obtain
(f1 (call/cc (lambda (k)
((f2 k 1)) (k 2))))) (9)

where the continuation k is only applied to 1 since the evaluation order is left-to-right.
We can see that the construct pcall, as defined now, is not transparent since returned
results are not the same for expressions (8) and (9). Indeed, among the four possible
results of expression (8), only 4 is returned by expression (9).

We can summarise the properties of the current definition of Ac by:



e every program not using call/cc or not applying a continuation always returns

the same result as the sequentialised program,;
e when continuations are used, multiple answers can be returned;
e the number of returned solutions is not always determinate.

Furthermore, as we will see in Section 5, the solution returned by the sequentialised

version of a program is not guaranteed to be returned by the current semantics of Ac.

5 Operand Re-Evaluation

In the asymmetric continuation-passing translation, the continuation of the operator M
evaluates the operand N as indicated in the third rule of Figure 7. On the contrary, in
the symmetric continuation-passing translation, the continuation of M does not evaluate
the operand N, but only refers to its last value. Hence, if a continuation is captured in
the operator and is applied several times, the symmetric and asymmetric translations

can give different results as illustrated by the following example.

(let ((pair (pcall (pcall coms (call/cc (lambda (k1) k1)))
(call/cc (lambda (k2) k2)))))
(if (and (not (number? (cdr pair)))
(not (pair? (car pair))))
((cdr pair) 5)
(if (not (pair? (car pair)))
((car pair) (comns 4 (car pair)))

(number? (cdr pair)))))

According to the asymmetric continuation-passing translation, this program returns
#f (after removing the pcall annotations). If we assume that the processes are scheduled
in a left-to-right order, this program returns #t according to the symmetric continuation-
passing translation. This difference comes from the fact that k1 is passed a value several
times in this example, which forces the reevaluation of (call/cc (lambda (k2) k2))
in the asymmetric continuation-passing style.

In order to solve this problem, we propose in Figure 11 an asymmetric continuation-
passing style translation for pcall, which forces the reevaluation of N when the continu-
ation of M is passed a value several times.

In the continuation of M, we compare the value that is stored in cm with the initial

value of cm. If they are the same (using eq?), it means that it is the first time that a



[(pcall M N)] =

(lambda (k)
(let ((cn (channel)) (cm (channel)) (sem (channel)))

(begin (spawn (lambda ()
([M] (1ambda (vm)
(begin (wait sem)
(let ((oldcm (read sem)))
(if (init-cm? oldcm)
(begin
(write cm (lambda (vn x) (vm vn x)))

(let ((fn (read cn)))

(begin (signal sem)

(fn vm K))))
(begin

(signal sem)

([N] (lambda (vn) (vm vn £)))))))))))

(spawn (lambda () ([N] (lambda (vn)
(begin (wait sem)
(write cn (lambda (vm x) (vm vn x)))

(let ((fm (read cm)))
(begin (signal sem)

(fm vn £))))))))

(make-store cm init-cm)
(make-store cn (lambda(vm k) > ()))

(make-semaphore sem))))

(define init-cm (lambda(vn k) *()))
(define (init-cm? x) (eq? x init-cm))

Luc Moreau. Figure 11. Asymmetric continuation-passing style translation for pcall



value is passed to the continuation of M; so we can perform the same actions as in Figure

9. Otherwise, if they differ, we have to evaluate again the operand N.

6 Left Expressions

Although some asymmetry was restored in the semantics presented in Section 5, the
pcall construct is not yet transparent because programs can return several results, when
continuations are applied. Let us introduce the notion of left expression which is related
to our new semantics of continuations.

In the expression (pcall M N), Missaid to be a left expression of N since M is evaluated
before N in the sequentialised expression (M N). The set of left expressions of a given
expression can be known at run-time by examining the execution tree. For a given node
in an execution tree, the set of left expressions is the set of nodes which are left brothers
of nodes between this node and the top node. For example, 1 and (pcall £2 (k 1))
are left expressions of (k 2) in expression (8) as shown in Figure 10.

Using this notion of left expression, we can state the condition that must be satisfied
before applying a continuation: a continuation k can be applied in a subexpression (k
v) of E, if all left expressions of (k v) in E have already returned a value.

We can even refine this condition. In the expression
(pcall (f1) (call/cc (lambda (k) (pcall (£2) (k 1)))))

k can be applied to 1 as soon as (f2) has returned a value, independently of (f1).
Therefore, when a continuation is applied in the dynamic extent of the call/cc by
which it was reified, the left expressions which should be checked are restricted to the
expressions whose lifetime is included in this extent.

Hence, in terms of the computation tree, the set of left expressions of a given node
(where a continuation is applied), is the set of nodes which are left brothers of nodes
between this node and either the top of the tree or the node where this continuation was
reified.

We can give an algorithm that implements the condition that must be satisfied before
applying a continuation. Let e be (k v) an expression where the continuation bound to
k is applied on a value. Let S be the set of left expressions of e; this set is computed using
the execution tree of the expression E that contains e as a subexpression. We suppose
that the set S is ordered: the closest left expression (i.e. the innermost) being the first
and the furthest left expression (i.e. the outermost) being the last. In order to determine

whether the continuation bound to k can be applied, we proceed using the following loop.



1. If S is empty, then we can safely apply the continuation to the value.
2. If S is not empty, then let 1 be the closest left expression of e,

(a) if 1 is evaluated, go to point 1 with the new set S\{1}

(b) if 1 is not evaluated, the application of the continuation should be suspended.

As soon as 1 gets evaluated, the algorithm can be resumed with S\{1}.

With our notion of left expressions, we have introduced a more constrained partial
order of evaluation: not only all subexpressions of a parallel application must be evaluated
before the body of a function, but all left expressions of a continuation application must

also be evaluated before applying this continuation as well.

7 Operational Semantics of A¢

In Section 4, we presented a first attempt of a semantics of Ag; we analysed its weak-
ness and suggested two corrections in Sections 5 and 6. In Section 7, we follow these
suggestions to write the semantics as a translation from A¢ to A/,.

In Section 6, we described an algorithm, based on the notion of left expression, to
determine whether a continuation could be applied on a value. In the translation, the test
of left expressions is implemented by a higher-order continuation or metacontinuation.
Although some left expressions can be determined at translation-time, we cannot find all
of them at this moment. It is the role of the metacontinuation to find all left expressions
at run-time. Such a metacontinuation is passed during the computation, accumulating
information about left expressions. The translation is presented in Figure 12; it is a
“continuation-passing and metacontinuation-passing” translation. Hence, the translation
of an expression is a two-arguments function: x the implicit continuation and v the
metacontinuation.

In Figure 12, the first four rules define the sequential subset of the language Ac. In
the translation of a one argument function, the implicit continuation « is applied on a
three arguments function: the initial argument, s, and . Therefore, metacontinuations
are passed when applying A-expressions as it was the case for continuations in Figure 7.

We use the term higher-order continuation for v because, in a reified continuation, a

metacontinuation 7 is applied on a continuation k:

(lambda (v ¢ v) ((y k) v))



where k is the captured continuation and ~ is the current metacontinuation. As in the
definition of the sequential language (Figure 7), the reified continuation discards the
current continuation c. Instead of blindly applying the captured continuation x to v, the
metacontinuation v is first applied to x, and then v. By definition of v, the effect of ((v
k) v) is the same as the effect of (x v) if all left expressions are evaluated.

If v is the metacontinuation of expression (pcall M N), the metacontinuation of M
is also vy (since it is known at translation-time that left expressions of M are the same as
those of (pcall M N)). We can now examine the metacontinuation of N knowing that

the metacontinuation of (pcall M N) is v; it is copied below.

(lambda (cont)
(let ((£f (wait sem)))
(f cont
(lambda (v) (signal sem f))
(lambda (v)
(begin (write cn (lambda (vm k 7)
((y cont) v)))
(signal sem £))))))

It takes a continuation cont in argument, and enters the critical section by waiting the

semaphore. The value associated with the semaphore is applied to the continuation cont

and two functions. The initial value of the semaphore is (lambda (cont s f) f).
Therefore, when we apply such a metacontinuation to a continuation, and a value v,

the following function

(lambda (vm & 7y)
((y cont) v))

is stored in cn and the critical section is closed. At this time, the application of the
continuation is suspended because the left expression has not been evaluated. When it
gets evaluated, the value stored in cn is applied and the the test for the application of the
continuation is resumed. One should also note that when a left expression is evaluated
(i.e. a term M in (pcall M N)), the value associated with the semaphore changes; it
becomes

(begin (s v)
((y cont) v))

which immediately applies the metacontinuation of the parent expression on the captured
continuation.

The algorithm to determine whether we can apply a captured continuation s to a
value is implemented by the metacontinuation v, it is executed by evaluating ((y k)

v):



[x]
[(lambda (x) M)]
[(call/cc M)]

(lambda (k v) (kK x))
(lambda (k v) (k (lambda (x & v) ([M] & ¥))))
(lambda (k )

(let ((f (lambda (v c 7) ((y k) v)))

(7" (lambda (cont) (if (eq? cont k) cont (v cont))))))
([M] (lambda (vm) (vm £ & ")) 7))

(lambda (k )

([M] (lambda (vm) ([N] (lambda (vn) (vm vn & 7))

7))

[ W]

Y))
[(pcall M N)]
(lambda (k 7v)
(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (spawn (lambda ()
([M] (lambda (vm)
(let ((f (wait sem)))
(let ((oldcm (read cm)))
(if (init-cm? oldcm)
(begin
(write cm vm)
(let ((fn (read cn)))
(signal sem (lambda (cont s f)
(lambda (v)
(begin(s v)
((y cont) v)))))

(fn vm &k v)))
(begin
(signal sem f)
([N] (Lambda (vn) (vm vn & 7)) ¥))))))
200))
(spawn (lambda ()
([N] (Lambda (vn)
(let ((£f (wait sem)))
(write cn (lambda (vm x <) (vm vn x 7)))
(let ((fm (read cm)))
(begin (signal sem f)
(fm vn & ¥)))))
(lambda (cont)
(let ((£f (wait sem)))
(f cont
(lambda (v) (signal sem f))
(lambda (v)
(write cn (lambda (vm & 7)
((y cont) v)))
(signal sem £))))))))
(make-store cm init-cm)
(make-store cn (lambda(vm s v) ’()))
(make-semaphore-with-init-value sem (lambda (cont s f) £)))))

(define init-cm (lambda(vn k& 7) *()))
(define (init-cm? x) (eq? x init-cm))

Luc Moreau. Figure 12. Translation of Ag



1. The metacontinuation v knows the first left expression of e (by definition of v at
translation-time); let 1 be this expression; let N be its immediate right expression

in (pcall 1 N) and let 7; be the current metacontinuation of (pcall 1 N).

2. If 1 is evaluated and has returned a value, the algorithm continues with ((y; k)

v), i.e. the next left expression is tested.

3. If 1 is not evaluated, the application of the captured continuation is suspended
by storing in the cell cn associated to N the value (lambda (vm k' ) ((y; k)
v)). When 1 is evaluated, its continuation reads cn and resumes the algorithm by

evaluating ((y; k) v).
4. If there is no left expression, the continuation x can be safely applied.

It remains to determine whether we are in the dynamic extent of a call/cc. In the

translation of call/cc, a new metacontinuation ~' is defined:
(lambda (cont) (if (eq? cont k) cont (v cont)))

It compares its argument cont with the captured continuation k. If they are equal, it
means that we try to apply a captured continuation in the dynamic extent of the call/cc
by which it was reified. Therefore, no left expression remains to be tested before applying

cont.

Now that we have defined pcall, there are still two other parallel constructs of Aq
which need to be defined: fork and future. The rest of this section is dedicated to their
definitions.

The parallel construct fork must appear in a sequence: it creates a process to evaluate
its argument and returns an unspecified value. In the sequence (begin (fork expl)
exp2), expl is evaluated in parallel with exp2, and the value of exp1 is discarded. Thus,
our semantics must guarantee that if a continuation is applied in exp2, it can escape
from exp?2 if and only if it is applied in the sequential definition, i.e. if exp1 is evaluated
and has returned a value.

We can easily define fork thanks to pcall. The translation in Figure 13 prevents
any escape from N unless M is computed and the sequence value is returned after M is

evaluated.

Now let us examine the case of the future construct. With a few changes, the
translation of pcall can be transformed into a translation for the future construct,



[(begin (fork M) N)] = [(call/cc (lambda (k) (pcall (let ((x M)) (lambda (u) w))
(& N))))]

Luc Moreau. Figure 13. Translation rule for fork



essentially by introducing the notion of placeholder. The abstract data type placeholder
is defined by the constructor make-placeholder, the accessor placeholder-value and
the predicate placeholder?. They are defined by the following rules.

aég S

(K,T,S) [ Plp, - (make-placeholder v)] = (K, T,SU{al) [ Plon [, 0]] (10)
(K,I1,S) | Plpn : (placeholder-value [a,v])] = (K, I, S) | Plpn : v] (11)
(K,I1,S) | Plpy, : (placeholder? v)] — (K,I,S) | Plpy : v € Placeholder — #t,#f] (12)

According to rule 10, the constructor make-placeholder creates a new placeholder
which is represented by a pair [, v] containing a location a and a value v. By rule 11,
the accessor placeholder-value returns the value v of a placeholder [, v]. Rule 12,
gives the immediate definition of the predicate placeholder?. In appendix, we give all
the rules and all the semantic domains for a complete definition of A/, .

We are going to translate (M (future N)) and not (future N) alone because we need
to explicitly have the two threads evaluating in parallel in order to introduce synchroni-
sations between them. Occurrences of future in different contexts reduce to (pcall M
N) or (M (future N)):

((touch (future M)) (future N)) (M (future N))
((touch (future M)) N) (pcall M N)
(pcall M (future N)) is equivalent to (M (future N))
(pcall (touch (future M)) (future N)) (M (future N))
(pcall (touch (future M)) N) (pcall M N)

With these properties, (future N) will be defined in all contexts if we give a seman-
tics to (M (future N)). We display in Figure 14 the translation of (M (future N)). A
placeholder is a data structure that holds a channel. Values are sent on this channel
only by an emitter process indefinitely sending the first value received on 7. It is the
continuation of N which sends values on m; the first time it is called. The constructor for
an emitter process is make-emitter, defined in Figure 5. With the channels m; and 79,
we can guarantee that the channel held in the placeholder yields the first value returned
by N.

If the continuation of N is passed a value more than once, it applies the value of M to
the value it receives and not to the placeholder. This semantics is the one proposed by
Katz and Weise in [18].

In Figure 15, we give the translation for the touch operator. Since touch is a strict
identity function, its operand M is evaluated, its value is bound to vm, and the func-

tion touch,, is applied to vm. The function touch,, returns its argument if it is not a



[(M (future N))] =
(lambda (kK )
(let ((cm(channel)) (cn(channel)) (sem (channel)) (m;(channel)) (m(channel)))
(kp (lambda (7 cm cn) ; continuation of N parameterised
(lambda (vn) ; by placeholder m and channels cm, cn
(let ((f (wait sem)))
(let ((vm (read cm))
(oldvn (read cn)))
(if (init-cn? oldvn)
(begin (write cn (lambda (vm x ) (vm vn K 7)))
(signal sem f)
(determine! 7 wvn))
(begin (signal sem f)
(vm vn & )))))))))

(define init-cm (lambda(vn k 7) >()))

(define init-cn (lambda(vm x 7) (vm (make-placeholder m) K 7)))
(define (init-cm? x) (eq? x init-cm))
(define (init-cn? x) (eq? x init-cn))

(spawn (lambda ()
([M] (lambda (vm)
(let ((£f (wait sem)))
(let ((oldcm (read cm)))
(if (init-cm? oldcm)
(begin (write cm vm)
(let ((fn (read cn)))
(signal sem (lambda (cont s f)
(lambda (v)
(begin(s v)
((y cont) v)))))
(fn vm k 7)))
(let ((7](channel)) (7} (channel)) (cm(channel)) (cn(channel)))
(store cm vm)
(store cn init-cn)
(signal sem f)
(spawn (lambda () ([N] (k, 7] cm cn) 7)))
(make-emitter 7 (receive w}))
(vm (make-placeholder 7h) & ¥))))))
7))
(spawn (lambda () ([N] (x, m1 cm cn)
(lambda (cont)
(let ((f (wait sem)))
(f cont
(lambda (v) (signal sem f))
(lambda (v)
(write cn (lambda (vm k ) ((vy cont) v)))
(signal sem £))))))))
(make-store cm init-cm)
(make-store cn init-cn)
(make-semaphore-with-init-value sem (lambda (cont s f) f))
(make-emitter my (receive mp)))

Luc Moreau. Figure 14. Translation of (M (future N))



[(touch M)] = (lambda (x 7)
(M] (lambda (vm) (k (touch,, vm)))
7))

(define (touch;, object) (if (placeholder? object)
(touch;, (receive (placeholder-value object)))
object))

(define (determine! 7 v) (send 7w Vv))

Luc Moreau. Figure 15. Translation of (touch M)



placeholder. Otherwise, touch,, receives a value on the channel contained in the place-
holder, and repeats this action until the value is no longer a placeholder. The function
touch,, suspends the current process if N has not yet returned a value, by waiting for a
communication with a receive.
The value of an expression E of A¢ is given by the value of the expression
(1et ((cO (channel)))
(begin (spawn (lambda () ([E] x; 7:))) (13)

(receive c0)))

where ;, the initial metacontinuation, is the identity function and «;, the initial contin-
uation, is defined by

k; = (lambda (v) (send cO v)).

The value of an expression E is the value received on channel c0 in expression (13).

8 Properties of the Semantics

In another paper [25], we define the CPP-calculus as an extension of the call-by-value
lambda-calculus [27] with a control operator call/cc. The CPP-calculus differs from
Felleisen and Friedman’s A.-calculus [5], [7] because call/cc is not the origin of a bot-
tleneck in the CPP-calculus. The CPP-calculus contains reduction rules that allow the
capture of continuations in any context, even when left expressions are not evaluated.
Furthermore, the CPP-calculus contains a mechanism to delimit the extent of a call/cc
expression, which is used to recognise the application of a continuation in the extent of
its call/cc (which is usually calle a downward use). The rules that caracterise the CPP-
calculus are sound because the were proved to preserve the observational equivalence.
Two expressions M and N are observationally equivalent, if for all contexts C|[ |, either
C[M] and C[N] both terminate or both do not terminate.

In conclusion, as far as termination properties are concerned, a parallel program
(where continuation can be captured in any context and where continuations are applied
when left expressions are evaluated) is undistinguishable from its sequentialised counter-
part (that is, the same program evaluated sequentially). This proves that constructs for
parallelism can be seen as annotations for parallel evaluation which do not change the
meaning of programs.

Our semantics of fork and pcall satisfies Halstead’s criteria enumerated in Section
2.1. According to our proof, programs not using parallel constructs return the same

results as in the sequential semantics. Parallel programs are observationnally equivalent



to their sequentialised versions. In our proof, we do not have to distinguish the single or
multiple use of continuations.

The semantics proposed in Figure 14 does not insure that future is an annotation.
Indeed, we assumed that the programmer had to judiciously add the touch construct,
so that the pair future/construct could be considered as transparent. Our approach
is closer to delay/force operators for lazy evaluation, where the programmer has also

to explicitly use force.

9 Related Work

PolyScheme was initially proposed by Queinnec [28], [29], from whom we borrowed the
technique of symmetric continuations in Figure 9. In Figures 12, 13, and 14, we have
added higher-order continuations to preserve the sequential semantics, and we have forced
the reevaluation of operands when serveral values were passed to the continuation of an
operator. PolyScheme [28] [29] unfairness is outlined when returning multiple results.
Queinnec solves this problem by adding conditions on continuations applications to insure
that the number of results is execution independent although possibly greater than one.
Our approach is totally opposite, we add constraints on continuations applications in
order to ensure only one result, the same as in the sequential version. Queinnec [30]
distinguishes multiplicative pcall from additive pcall. An expression (pcall M N) is
multiplicative if all values of M are applied to all values of N (when M and N multiply
return results). An expression (pcall M N) is additive if each new value of M is applied
to the last value of N or if the last value of M is applied to each new value of N. Our pcall
is neither additive nor multiplicative because we force the reevaluation of the operand
when several values are passed to the continuation of the operator .

Katz and Weise [18] suggest to use a notion of legitimacy to give a functional program
a parallel semantics equivalent to the sequential one. A process is legitimate if the code
it is executing would have been executed by a sequential implementation in the absence
of future. When the evaluation begins the initial process is said to be legitimate. This
notion is not formally defined in [18] and an implementation with unification variables
associated to processes is given in [20]. A process is legitimate if there is a unification
chain existing between this process and the initial one.

Our notion of metacontinuation is the device we use to restore sequential semantics

but it behaves differently from Katz and Weise’s notion of legitimacy:

e We also have a kind of legitimacy notion but it is related to continuations appli-



cations and not to processes, so we have to check legitimacy only when a program
explicitly applies a continuation (by checking all left expressions), and not when

two processes have to synchronise through a placeholder.

e [t is sufficient to test the legitimacy of an application of a continuation between
the application point and call/cc if applied in its extent. In [18], there must be
a legitimacy path between an expression and the initial expression (the top of the

computation tree).

e With the legitimacy notion, one can say that an expression is legitimate only when
the computation has ended while metacontinuations guarantee the legitimacy dur-

ing evaluation.

However, our approach is probably more conservative when applying a continuation
outside the dynamic extent of the call/cc which captured it: we apply a continuation
if we know that it is legitimate. In [18], continuations are applied independently of the
legitimacy testing. Nevertheless, in the coroutine-style examples we give in [24] and in
Section 2.2, continuations are applied to transmit a result to a coroutine; thus, there is
no point to transmit another result if it is not needed although the next result can be
searched speculatively.

Felleisen and Friedman [5] defined the A.-calculus, an extension of the call-by-value
A-calculus with the control operator C which can model call/cc. In the A.-calculus, a C
operator can capture a continuation iff it appears in an applicative context. An applica-
tive context C] is a context such that all left expressions of [] are values. Our semantics
allows more parallelism than their calculus since we do not require left expressions to
be evaluated to capture a continuation. Moreover, their calculus penalises continuation
application when a continuation is applied in the dynamic extent of the call/cc by
which it was reified since all left expressions should have returned a value, even the ones
outside the scope of the call/cc. Felleisen and Friedman [6] define the operator F and
they describe a parallel evaluation strategy but they impose the same constraints on the
capture and the application of continuations.

Hammond [12], [13] defines a semantics of ML exceptions which can be preserved in
a parallel implementation. If expression e, in application e;(ey) returns an exception,
it can only be raised if e; returns a value. If e; returns an exception, it will be raised.
This is a definition at the level of evaluation rules a la ML without description of process
interactions. His work is less general than our approach because exceptions can be

considered as a special case of continuations.



10 Conclusion

We have presented a semantics of first-class continuations in a parallel functional lan-
guage, which requires to evaluate left expressions before being allowed to apply a con-
tinuation. This semantics is costless for programs not using continuation. We have
implemented this semantics using higher-order continuations which explicitly represent
the left-to-right evaluation order.

This semantics gives parallel programs the same meaning as sequential programs
because parallel operators are transparent. This approach allows the re-usability of code
(parallel programs can still run sequentially) and allows the programmer to use a single

programming methodology for developping both sequential and parallel applications.
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A Formal Definition of A/ /

In this section we give the complete definition of A/, included semantics objects like

placeholders and unique values and their associated rules.



p,q € I, set of process identifiers
a € S, set of locations
k € K, set of channels
v € Value = Functions U BasicValues U Placeholders U Unique U Booleans U {any}
(z,e,a) € Functions
[a,(z,M,a')] € Placeholders
{a,v} € Unique
#t,#f € Booleans
BasicValues = {spawn,eq?, send,receive,channel}

Luc Moreau. Figure 16. Semantic objects



(K,1,5) | Plp, : '] = (K',T',S") | P'lp, : €"]
(K,I,S) | Plpn: (vi...vie er...ej)] = (K',I',S") | P'lpn : (v1...v; " e1...¢j)]

where 0 <7 <2and 0<j7<2and1<i+75<2.

(K,I,S) | Plpy : ((z,e,a)v)] g (K,I,S) | Plpy : e{v/x}]

aé S
(K,1,S) | Plpy, : (lambda (x) M)] A (K,1,SU{a}) | Plpy : (z, M, a)]

kd K
(K,I,S) | Plpy : (channel)] chy (K U{k},I1,S) | Plpy : k]
qg1

(K, 1,8) | Plpy : (spawn((),e,0))] ™ (K,1U{q},S) | Plpn : any]lp, : ¢]

ke K
(K,I,8) | Plpy : (send k v)][pm : (receive k)] %" (K, I,S) | Pp, : any][py, : v]

e

(K,I,S) | Plpy : (eq?(z1,e1,a1)(z2, €2, x2))] A (K,I,S) | Plpp: a1 = ag]

aé S
(K,I1,S) | Plpn : (make-placeholder v)] = (K,1,S U{a}) | Plpn : [, v]]

(K,I1,S) | Plpy, : (placeholder-value [a,v])] = (K, I,S) | Plpn : v]
(K,1,S) | Plpy : (placeholder? v)] — (K,I,S) | Plp, : v € Placeholder — #t,#f]

(K,I,S) | Plpn : ] = <K,71,7’SI> | Pl[pn L #1]
(K,1,S) | Plp, : (if e €1 e2)] = (K", T',S") | P'[py, : e1]

(K,1,S) | Plpy : e] = (K'. I', ") | P'[pn, : #f]
(K,1,S) | Plp, : (if e €1 e2)] = (K", T',S") | P'[py, : €3]

Luc Moreau. Figure 17. Reduction rules for A/,
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