
The PCKS�Machine� an Abstract Machine
for Sound Evaluation of Parallel Functional
Programs with First�Class Continuations

To appear in the proceedings of ESOP ��� Edinburgh� April ��� Lecture Notes in Computer Science� Springer�Verlag�

Luc Moreau

Institut d�Electricit�e Monte�ore� B��� Universit�e de Li�ege� Sart�Tilman� 	

 Li�ege�
Belgium� moreau�montefiore�ulg�ac�be

Abstract� The PCKS�machine is an abstract machine that evaluates
parallel functional programs with �rst�class continuations� Parallelism is
introduced by the construct pcall� which provides a fork�and�join type of
parallelism� To the best of our knowledge� the PCKS�machine is the �rst
implementation of such a language that is proved to have a transparent
construct for parallelism� every program using such a construct returns
the same result as in the absence of this construct� This machine is also
characterised by the non�speculative invocation of continuations whose
interest is illustrated in an application�

� Introduction

The programming language Scheme ���� is often extended to parallelism by
adding constructs like future� fork� or pcall� which explicitly indicate where
evaluations can proceed in parallel ���� These constructs are expected to be
transparent � i�e� a program using such constructs is supposed to return the same
result as in the absence of these constructs� Thus� these constructs can be re�
garded as annotations for parallel execution that do not change the meaning of
programs� Consequently� parallel programs can be developed in two phases� 	rst�
a sequential program is written using the functional programming methodology

second� annotations for parallelism are added without changing the semantics�
This approach also avoids the programmer to concentrate on parallelism�speci	c
problems like deadlocks� race conditions� and non�determinism�

This approach has been studied at length� It began with the implementa�
tion of MultiLisp by Halstead ��� using the future construct
 it was followed by
Miller�s MultiScheme �
�� an extension of Scheme based on the same construct�
The latter highlighted the di�culty of de	ning 	rst�class continuations in a par�
allel setting� Katz and Weise ��� proposed a de	nition of the future construct
that was suitable for 	rst�class continuations� and they suggested a notion of
legitimacy to guarantee the transparency of this construct
 their propositions
were successfully implemented by Feeley ����

However� practice is ahead of theory in this 	eld� two theoretical points have
never been studied� First� there is no formalisation of the intuitive statement
�a parallel program is expected to return the same result as in the absence of
constructs for parallelism�� Second� to the best of our knowledge� no implemen�
tation was proved to be correct� probably due to a lack of formal criteria with
respect to which the correctness can be established�

In a previous paper ����� we answered the 	rst question by designing a calcu�
lus that models sequential and parallel evaluations� In this framework� a parallel

�

and a sequential evaluation of the same expression yield observationally equiva�
lent results� Intuitively� two expressions are observationally equivalent if we can
replace one by the other without being able to distinguish which one is used �as
far as termination is concerned��

The goal of this paper is to answer the second question about the correctness
of an implementation� Therefore� we designed the PCKS�machine� a parallel ab�
stract machine that implements this calculus
 it models a MIMD machine with
a shared memory similar to those used in the mentioned implementations� We
proved that this machine is sound with respect to the above notion of observa�
tional equivalence�

This paper is organised as follows� In Section �� we give an application that
uses parallelism and 	rst�class continuations� In Section �� we present the cal�
culus that we previously designed and the notion of observational equivalence
used to prove the correctness of our implementation� In Sections � and �� we de�
scribe the PCKS�machine� an implementation of this calculus� Some properties
of the machine are stated in Section �� The correctness of the implementation
is a two�step proof� First� in Section �� we prove that there is a translation of a
PCSK�machine into a term of the calculus� Second� in Section
 we prove that
any transition of the PCSK�machine preserves the observational equivalence in
the calculus� We compare our approach with related work in Section ��

� Example

Let us consider the problem of searching and displaying the leaves of a tree
that satisfy a given predicate� For e�ciency reasons� we expect the leaves to be
searched in parallel� but we want them to be printed in the same order as in a
sequential depth�	rst search� Leaves are searched and displayed by the functions
search and display�leaves given below�

The expression �call�cc exp� packages up the current continuation as an
�escape procedure�� also called a rei	ed continuation� and applies exp on it

this action is called capturing or reifying a continuation� Hence� in the function
search� exit will be bound to the rei	cation of the continuation that is current
when entering search� Invoking a rei	ed continuation on a value v� i�e� applying
it as a regular function� resumes the computation where the continuation was
captured with v the value of the call�cc expression� When a leaf satis	es the
predicate pred� the continuation exit is invoked on a list containing this leaf
and a rei	cation of the current continuation
 the immediate e�ect is the exit of
the function search with this list as value� In the inductive case� the annotation
fork initiates the searches in the left and right subtrees in parallel�

�define �search tree pred�
�call�cc �lambda �exit�
�letrec ��loop �lambda �tree�

�cond ��leaf� tree� �if �pred tree�
�call�cc �lambda �next�

�exit �list tree next����
�����

�else �begin �fork �loop �tree��left tree���
�loop �tree��right tree��������

�loop tree�����

�

The function display�leaves begins the search with a call to the function
search� After receiving and displaying a leaf� the function display�leaves in�
vokes the received continuation to obtain the following leaf�

�define �display�leaves tree pred�
�let ��a�leaf �search tree pred��� 	 search for the �rst leaf
�if �null� a�leaf�

�end
�begin �display �car a�leaf�� 	 display the leaf

��cadr a�leaf� �������� 	 search for the next one

The semantics we propose guarantees that the function search displays the
same results in the same order as the sequential version of search �obtained by
removing the fork annotation�� The search of leaves would be interleaved with
their displaying in the sequential version� while it is performed speculatively
with respect to their displaying in the parallel version� The search is said to be
speculative because the function search recursively traverses the tree in parallel
without knowing whether the results to be found are needed�

Results are displayed as in a sequential implementation because� in the
PCSK�machine� a continuation is invoked only if its invocation preserves the se�
quential semantics� This mechanism of invocation is said to be non�speculative

it is explained in Section � and discussed in Section ��

� The CPP�Calculus

The CPP�calculus ����� ��� is an extension of Plotkin�s call�by�value ��calculus
with the control operator callcc� The set of terms M of the CPP�calculus� called
�cpp� is de	ned by the following grammar�

M ��
 V j �M M� j �callcc M� j ���M� V ��
 c j x j ��x�M� j h��K� ��i

An application is a juxtaposition of terms �M M �� a callcc�application is of
the form �callcc M � �the term M is called a receiver�� and a prompt construct
is ���M � �with � a name�� A value V can be a constant c� a variable x� an
abstraction ��x�M �� or a continuation point h��K� ��i� representing a rei	ed
continuation� A captured context K� � and a context C� � are de	ned by�

K� � ��
 � � j K�� �M � j K�V � �� j K�callcc�k�� �� j K����� ��� j K���v�� ��V �

C� � ��
 � � j C�� �M � j C�M � �� j C�callcc� �� j C����� ��� j C��v�� �� j C�h�� � �i�

In the CPP�calculus �standing for Continuation Point and Prompt�� contin�
uations have a semantics that makes them suitable for parallelism�

�� A continuation can be invoked only if one knows that it is invoked in a
sequential implementation�Thus� the invocation of a continuation requires to
wait for the values of all expressions that are evaluated before this invocation
in a sequential implementation�

�� A continuation can be captured independently of the evaluation order�

We can observe that the invocation of a continuation seriously reduces par�
allelism �as opposed to the capture of a continuation�� The 	rst rule can be
improved in the particular case of a downward continuation�

	

� A continuation k is downward if k is always part of the continuation that is in
e�ect when k is invoked� A downward continuation is always invoked in the
extent of the callcc by which it was rei	ed� In a sequential implementation�
this usage of a continuation can be implemented by simply popping the stack
to the desired control point� In a parallel implementation� the invocation of a
downward continuation only requires to wait for the values of the expressions
that are evaluated before this invocation� but are evaluated in the extent of
the callcc by which the continuation was rei	ed�

We can use the following strategy to detect the invocation of a downward
continuation� When a continuation is rei	ed� it is given a fresh name �� and a
mark with the same name is pushed on the stack
 when a continuation with a
name � is invoked� it is said to be downward if there is a mark with the name
� in the stack� The same technique is used in the calculus
 a continuation point
h��K� ��i receives a fresh name � at the time of its creation� and a prompt
���M � has the role of a mark with a name � in the stack�

��x�M�V � MfV�xg with V a value �C��

�ab� � ��a� b� if this is de�ned �C��

Capture of a continuation
callcc M � callcc �k����M h�� k� ��i� with a fresh � �C��

M�callcc N� � callcc �k���f�f �N hp� k�f � �p�i��M �C	�

�callcc M�N � callcc �k��M hp� k�� �p N�i�N �C��

���f�f�callcc N��M� � callcc �k����f�f�N hp� k�f � �p�i��M� �C��

���callcc M� � callcc �k����Mhp� k����� �p��i� �C��

h�� �callcc M�i � h�� �M hp� � �pi�i �C��

callcc M �T M hp� � �pi �C��

Invocation of a continuation
M�h��K� ��i V � � �h��K� ��i V � with M�V values �C�
�

�h��K� ��i V �N � �h��K� ��i V � with V a value �C���

��� �h��K� ��i V � � �h��K� ��i V � with V a value �C���

���h��K� ��i V � � V with V a value �C���

h�� h��� K�� ���i �K�� ���i � h��K��K�� ���i �C�	�

�h��K� ��i V ��
T K�V � with V a value �C���

Simpli�cation of a prompt and of a callcc�application
���V � � V with V a value �C���

callcc �k�M � M with k �� FV �M� �C���

Fig� �� Reduction system with continuation points and prompts� �cpp

Figure � displays the transitions that can be performed in the CPP�calculus�
Rule C� is Plotkin�s call�by�value ��reduction� and Rule C� is the ��reduction�
The rules C� to C� concern the capture of continuations� Using Rule C�� a callcc�
application �callcc M � can be transformed into the application of the receiver

�

M to the continuation point h�� k� ��i� which is the representation of a rei	ed
continuation� This continuation point is given a fresh name �� which is also given
to a prompt wrapping this application� Intuitively� the prompt represents a mark
in the stack� The following rules are used to build� step�by�step� a representation
of the continuation in the continuation point� The rules C� to C� have a left�
hand side in which a callcc�application appears� and they have a right�hand side
that is a callcc�application� Such rules are said to bubble�up a callcc�application
from the inside of an expression towards its top level� When a callcc�application
reaches the top level of an expression� Rule C� applies the receiver on the initial
continuation hp� � �pi� Since this rule can only be applied at the top level� we
mark it by a superscript T � and we call it a top level rule� According to this
set of rules� a continuation can be captured when it appears in operator or in
operand position of an application� or inside a prompt� Hence� the capture of a
continuation is not dependent of an evaluation order�

Rules C�� to C�� describe the invocation of a continuation h��K� ��i on a
value V � The left�hand sides of these rules have an invocation of a continuation
as a subexpression� and the right�hand sides of the 	rst three equations are an
invocation of the same continuation� the invocation of a continuation prunes
its surrounding context� In Rule C��� the operator is required to be a value in
order to preserve the left�to�right evaluation order� When a continuation with a
name � is invoked inside a prompt with the same name� this continuation is a
downward continuation
 by Rule C��� its invocation can be reduced to the value
on which the continuation was invoked� When the invocation of the continuation
reaches the top level� the top level rule C�� installs the captured context K� �
and 	lls it with the value on which the continuation was invoked�

A reduction �cpp is de	ned as the compatible closure of the rules of Fig� ��
M � C�P � �cpp N � C�Q�� with P � Q �except C�� C���� A computation�
��

cpp� is either a reduction or an application of a top level rule�

M ��
cpp N � M �cpp N � M

C�
� N �M

C��
� N

and we note ���
cpp its re�exive� transitive closure� The evaluation process is

abstracted by a relation evalcpp � evalcpp�M � � V if M ���
cpp V with V a value�

From a programmer�s point of view� two behaviours can be observed as far as
termination is concerned� either a program terminates or it does not terminate�
Consequently� we can say that two expressions M and N have indistinguishable
behaviours� if for all contexts C� �� either C�M � and C�N � both terminate or both
do not terminate� This leads to the formal de	nition of observational equivalence�

De�nition� �Observational Equivalence�� M ��cpp N i� forall context
C� �� such that C�M � and C�N � are programs� either both evalcpp�C�M �� and
evalcpp�C�N �� are de	ned or both are unde	ned�

Parallel evaluation can be performed in the calculus using the following rule�
which evaluates the subexpressions of an application in parallel�

M �cpp M
�� N �cpp N

� � �M N ��cpp �M
� N ��

� The PCKS�Machine� a Parallel Machine

Felleisen and Friedman ��� proposed the CEK�machine to evaluate functional
programs with a control operator like callcc� We generalise the CEK�machine to

�

multiple processes and parallel evaluation� the PCKS�machine models a MIMD
�Multiple Instruction Multiple Data� machine with a shared memory� The letters
PCKS stand for Parallel machine with each process composed of a Control string
and a continuation K �representing a program counter and a stack� respectively�
and sharing a common Store�

A con�guration of the PCKS�machine describes the complete state of a ma�
chine
 by convention� a con	guration is represented by curly letters M�Mi� � � ��
A con	gurationM is a pair hP� �i� composed of a set of processes P and a store
�� Each process is composed of a control string and a continuation code�

A control string is either an expression of �pcks or the distinguished symbol
z� The language accepted by the machine is noted �pcks and is de	ned by the
following grammar�

M ��
 V j �M M� j �callcc M� j �pcall M M� V ��
 c j x j ��x�M� j h�� �i

The term �M M � is called a sequential�application as opposed to the term
�pcall M M �� called a parallel�application� For the former� the operator is evalu�
ated before the operand� then the application is performed� For the latter� both
the operator and the operand are evaluated in parallel� then the application is
performed�� Continuation points h�� �i are pairs composed of a name � and a
continuation code � that is a p�continuation to be described below�

A continuation code represents the rest of the computation to be performed
by a process� We distinguish between two kinds of continuation codes� p�con�
tinuation and d�continuation�

A p�continuation � is of the form �init� j ��� fun V � j ��� arg N� j ��� cont� j
��� name �� j ��� left ��m� �n�N�� j ��� right ��m� �n��� where �� is also a p�
continuation� The continuation code �init� represents the initial continuation�
The code ��� fun V � means that the expression being evaluated is the operand of
an application whose operator has the value V � The code ��� arg N � means that
the expression being evaluated is the operator of a sequential application whose
operand N is still to be evaluated� The code ��� cont� means that the expression
being evaluated is the receiver of a callcc�application� There is also a mark that
delimitates the extent of a callcc�application� but this mark is represented by
the code ��� name �� instead of a prompt as in the CPP�calculus� The codes
��� left �	m� 	n� N �� and ��� right �	m� 	n�� are used when evaluating the
operator and the operand of a parallel application� respectively�

A d�continuation � is of the form ��� forked ��i� �j�� j ��� stopl �� j
��� stopr �� j ��� stop�� where �� is also a p�continuation� Such continuation
codes are used in dead processes� The 	rst code appears after forking processes�
The second and third code appear when a process is stopped because it requires
the content of an empty location 	� The last code appears when a process is
stopped after returning the 	nal value�

In the above de	nitions� we say that � is a one�step extension of ��
 we write
it � � ��� The re�exive� transitive closure of �� called extension� is written w�

� The annotation fork is derived from the annotation pcall�

�begin �fork M� N� � �callcc ��k� �pcall �let ��x M�� ��u�u�� �k N� ���

�

By convention� lower�case letters p� pi� � � � designate processes� and capital
letters P� Pi� � � � represent sets of processes� A process p is either active or dead �

� An active process� hM��ip� with M an expression of �pcks and � a p�
continuation� is a process that evaluates M with the continuation ��

� A dead process� hz� �ip� with � a d�continuation� is a process that has ter�
minated its evaluation�

The second component of a con	guration is a store � that binds locations to
their contents� Locations� usually represented by 	i� 	j� � � � letters� belong to a
set of locations Loc
 they model addresses in a real computer� The content of a
location can be a value of �pcks or a data structure �c
 v� that we present in the
following section� As usual� ��	m� denotes the content of the store � at location
	m
 ��	m� � V denotes the store � after updating the location 	m with the
value V � We write � to designate the content of an empty location�

� Evaluation with the PCKS�Machine

Transitions of the PCKS machine are described by a relation on the set of ma�

chine con	gurations� We write Mi
pcks
�� Mj when the PCKS�con	guration Mi

reduces to the PCKS�con	guration Mj� Such a global transition relation can
be expressed in term of a local relation �p that associates one process pk and
a store �i to a set of processes Ppk and a store �j� hpk� �ii �p hPpk � �ji� The
relation �p is called the process transition relation� Note that the relation �p

associates a process pk �and a store� to a set of processes Ppk �and a store��
There is a transition from the con	gurationMi to the con	gurationMj if there
is a transition �p of one process of Mi

Mi � hPi� �ii
pcks
�� Mj � hPj� �ji � �pk � Pi� hpk� �ii �p hPpk � �ji� Pj � Pinfpkg� Ppk

We write
pcks
��

�

for the re�exive� transitive closure of
pcks
�� �

The process transition relation�p for the evaluation of sequential expressions
is displayed in Fig� �� In order to lighten the notation� a transition hpk� �ii �p

hPpk � �ji is written pk �p p�k� �i�	� � V � when the resulting set of processes
Ppk contains a single process p�k� and when the store �j results from an update
of the store �i at location 	�

Rules M� to M� concern the evaluation of sequential� purely functional ex�
pressions as in the CEK�machine �except for the substitution instead of an envi�
ronment�� A sequential application �MN � forces the evaluation of M before the
evaluation of N by Rule M�� By Rule M�� when a value is returned to the initial
continuation� the current process is stopped� and the returned value is stored
in location �� which is� by convention� the location aimed at receiving the 	nal
result of a computation�

The rules M� to M
 concern the rei	cation of continuations� According to
Rule M�� a callcc�application begins the evaluation of its receiver with a contin�
uation code �� cont�� When a value is returned to such a continuation code� this
value is applied to the rei	cation of the current continuation by Rule M�� As in
the CPP�calculus �Rule C��� the continuation point is given a fresh name �� and
a continuation code �� name �� with the same name � is left as a prompt in
the CPP�calculus� Rule M
 corresponds to Rule C���

�

h�MN�� �ipk �p hM� �� arg N�ipk �M��

hV� �� arg N�ipk �p hN� �� fun V �ipk �M��

hV� �� fun ��x�M��ipk �p hMfV�xg� �ipk �M��

hb� �� fun a�ipk �p h��a� b�� �ipk if ��a� b� is de�ned �M	�

hV� �init�ipk �p hz� ��init� stop�ipk � ��
�� V �M��

hcallcc M� �ipk �p hM� �� cont�ipk �M��

hV� �� cont�ipk �p hh���i� ��� name �� fun V �ipk new � �M��

hV� �� name ��ipk �p hV� �ipk �M��

hV� ��� fun V �� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk �M��

hV� ��� cont� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk �M�
�

hV� ��� arg N� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk �M���

hV� ��� name ��� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk �M���

hV� ��init� fun h��� ��i�ipk �p hV� ��ipk �M���

hV� ��� name ��� fun h��� ��i�ipk �p hV� �ipk �M�	�

Fig� �� Evaluation of sequential expressions in the PCKS�machine

Rules M� to M�� concern the invocation of a continuation point h��� ��i on
a value V � By rules M� to M�� the current continuation code is unconditionally
pruned until either an init or name continuation code is reached� On the one
hand� if an init code is reached� Rule M�� invokes the continuation as Rule C���
On the other hand� if a name code with the name �� is reached� we are invoking
a downward continuation� and Rule M�� behaves as Rule C���

Rule M�� introduces parallelism
 the evaluation of a parallel application
�pcall MN � creates two new processes pi� pj to evaluate M and N in parallel�
The operator and the operand are given the continuations �� left�	m� 	n� N ��
and �� right�	m� 	n�� respectively� A left continuation code indicates that the
term being evaluated is an operator while a right continuation code indicates
that the term is an operand� Both codes refer to two new empty locations 	m

and 	n� which are� by construction� supposed to receive the values of M and N
respectively� If 	m is empty �resp� 	n�� it means that the value of the operator
�resp� the operand� is not yet computed�

hpcall MN��ipk �p f hz� �� forked��m� �n��ipk � hM� �� left ��m� �n�N��ipi � �M���

hN� �� right ��m� �n��ipj g with fresh locations �m� �n

Now� let us suppose that V is the value obtained by the process evaluating the
operand N � In Rule M��� we consider two cases according to the content of
location 	m�

� The location 	m is empty� i�e� the operator has not yet returned a value�
After storing the value V in location 	n� the process evaluating the operand
is stopped�

� The location 	m is not empty� i�e� both the operand and the operator have
returned a value� the application can be performed with the content of 	m�

�

hV� �� right ��m� �n��ipk �p if ���m�
 	� ���n�� Vhz� �� stopr �n�ipk �M���

hV� �� right ��m� �n��ipk �p if ���m�
 V �� ���n�� VhV� �� fun V ��ipk

The symmetric case concerns the evaluation of the operator M yielding a value
V � Let us suppose that the location 	m is empty� Rule M�� also distinguishes
between two cases according to the content of 	n� Either 	n is empty and the
application cannot be performed� or 	n contains the value of the operand on
which V can be applied�

hV� �� left ��m� �n�N��ipk �p if ���n�
 	� ���m�� Vhz� �� stopl �m�ipk �M���

hV� �� left ��m� �n�N��ipk �p if ���n�
 V �� ���m�� VhV �� �� fun V �ipk

Now� let us consider the invocation of a continuation h��� ��i on a value
V with the continuation codes left and right� According to Rule M�
� a con�
tinuation code left can always be pruned regardless of the location 	n� After
application of Rule M�
� if the process evaluating the operand N has not ob�
tained a value� it is said to become speculative� because its result is not known to
be needed later� By Rule M��� the code right cannot be pruned if the location
	m is empty� i�e� the operator is not yet evaluated �as in Rule C���� Thus� we
stop the process and store in 	n a data structure �h��� ��i
V �� which represents
the suspension of the invocation of a continuation h��� ��i on a value V �

hV� ��� left ��m� �n�N�� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk �M���

hV� ��� right ��m� �n�� fun h��� ��i�ipk �p hz� �� stopr �n�ipk �M���

if ���m�
 	� ���n�� �h��� ��i�V �

hV� ��� right ��m� �n�� fun h��� ��i�ipk �p hV� �� fun h��� ��i�ipk if ���m� �
 	

As soon as the operator yields a value� RuleM�� helps in resuming the invocation
of the continuation�

hV� �� left ��m� �n�N��ipk �p if ���n�
 �h��� ��i�V ���
���m�� V

hV �� �� fun h��� ��i�ipk �M�
�

In the rules M��� M��� we supposed that the location 	m was empty� i�e� it
was the 	rst time a value was passed to the continuation code �� left �	m� 	n� N ���
Otherwise� if the location 	m is not empty� the continuation is said to be mul�
tiply invoked � The operand N must be reevaluated to preserve the sequential
semantics� Hence� in Rule M��� we evaluate again the operand N �

hV� �� left ��m� �n�N��ipk �p if ���m� �
 	hN� �� fun V �ipk �M���

By de	nition of the PCKS�machine� all transitions �p are atomic� i�e� for
each rule� the operations for verifying the side�conditions� for creating processes�
and for updating the store are performed in a single step�

A computation with the PCKS�machine begins with an initial con	guration
Minit and terminates as soon as a 	nal con	gurationMf is reached� An initial
con�guration Minit � hfhM� �init�i�g� �i is composed of a single initial process
and an empty store� where M is the program to evaluate� A �nal con�gura�
tion Mf � hPf � �f i is such that� the set of processes Pf contains the process
hz� ��init�stop�ipk � and the store �f contains a value in the location ��

�

In the following sections� we show that the machine and the calculus compute
the same results� We proceed in two steps to prove such a property� First� we
de	ne a translation of a machine con	guration into a term of �cpp� Second� we
prove that� for any transition of the PCKS�machine from a con	gurationM� to
a con	guration M�� the translation of M� reduces to the translation of M� in
the CPP�calculus �up to observational equivalence�� The translation is de	ned
in Section �� and the equivalence is proved in Section
� But 	rst� we state some
properties of the machine�

� Classes of Processes and Speculative Computation

Every time a pcall construct is reduced by Rule M��� the number of processes
increases by �� but the number of active processes only increases by �� Since
the number of processes with a continuation �� forked�	m� 	n�� is equal to the
number of applications of Rule M��� this number increased by one is an upper
bound on the number of active processes in a con	guration�

During evaluation of a parallel application �pcall M N �� let us suppose that
the evaluation of the operator M is not terminated� The process evaluating the
operator performs the actions that would be performed in a sequential order�
while the operand is evaluated in advance of the sequential order� A process
begins a computation in advance of the sequential order if it has a continuation
of the type �� right�	m� 	n�� with an empty location 	m� It remains in advance
of the sequential order until the operator gets evaluated� When the operator
is evaluated� the location 	m receives a value� and the process evaluating the
operand is now executing the actions that would be performed in the sequential
order� �We just have to replace �� left�	m� 	n� N �� and �� right�	m� 	n�� by
�� arg N � and �� fun V � respectively� where V is the content of 	m��

Let us consider a process p� with a continuation �� and a process p� �
hM���ip� that is obtained by reducing p� �or its descendants�� The process p�
is not in advance of the sequential order with respect to ��� if p� performs the
actions that would be performed by p� in a sequential evaluation� In such a case�
�� is said to be a sequential extension of ��� written �� ws ��� satisfying

�� ws ��
� �� � �� �

�
�� �� ��� right ��m� �n��
 �� � ��

�� � ��� right ��m� �n��
 ���m� �
 	
and �� ws ��

Now� we introduce the concept of class to specify the processes that preserve
the sequential order with respect to a given continuation� We represent a class Ci
by a pair h	ui� �uii� where the location 	ui is expected to receive �or contains�
a result� and the continuation �ui waits for the result to be stored in 	ui� In a
con	guration M � hP� �i� we de	ne the following classes� the initial class C� is
h�� �init�i
 for each process hz� �� forked�	m� 	n��ipk � such that ��	m� � �� a
new class C is de	ned by the location 	n and the continuation �� right�	m� 	n���
A process hM��ipk belongs to a class Ci � h	ui� �uii if its continuation is a
sequential extension of �ui� � ws �ui� This notion of class speci	es the number
of active processes in a con	guration�

Lemma �� Let C�� � � � �Cn be the set of classes of the con�guration M � hP��i with
each class de�ned by Ci � h�ui� �uii� let Pi be the set of processes belonging to class
Ci� The set of processes Pi form a partition of P � P
 P� � � � � � Pn� and �i� j �
� � � � n� Pi � Pj
 ��

��

Moreover� a set of processes Pi contains a single active process if and only if the content
of the store at location�ui is 	� A set of processesPi does not contain any active process
i� the content of the store at location �ui is not 	�

It is usual to distinguish between two kinds of computations� A mandatory
computation is a computation whose result is needed to return the 	nal result�
A speculative computation is a computation whose result is not known to be
needed for the 	nal result �at the time this computation is initiated�� but which
is launched� hoping that it will be later mandatory� We also de	ne such notions
for the PCKS�machine� Intuitively� a process pi is said to be speculative with
respect to pj if pj has pruned �using Rule M�
� the continuation waiting for the
value of process pi�

De�nition� �Speculative Process or Result�� Let Ci � h	ui� �uii and
Cj � h	uj� �uji such that �ui � �� right�	�i� 	ui�� with � ws �uj�
The active process pi of class Ci �or the result ��	i� 	� �� is speculative with
respect to a class Cj � written pi � Cj �or ��	i� � Cj� if either

� the class Cj has no active process because location 	uj is not empty� or�
� the continuation of the active process of Cj is not an extension of �� �j 	w ��

� Mapping a PCKS�Machine to a Term of the Calculus

We translate a con	guration of the PCKS�machine into a term of the CPP�
calculus� This translation is composed of three phases� process rebuilding� process
merging and continuation point simpli	cations�

The process�rebuilding function has the following signature� �� ��p � process �
process� Intuitively� this function undoes transitions of the PCKS�machine that
concerned sequential expressions�

��hM�� contipk ��p
 h��x�callcc x� M��ipk
��hM�� name �ipk ��p
 h���M�� �ipk

��hM�� fun F ipk ��p
 hFM��ipk
��hM�� arg Nipk ��p
 hMN��ipk

The process�merging function makes a new process from processes that were
forked while evaluating a pcall� and also returns a binding between a location
and a value � Its signature is�

���� �� �� ���m� � process
 process
 process
 store� �process
 binding�

It takes three processes and a store
 it returns a process and a binding� The
binding associates a value to a location 	m allocated to receive the value of an
operator by RuleM��� The process�merging function is de	ned by 	ve equations�

��hz��� forked��i� �j��ipk � hMi� �� left��i� �j�N��ipi � hMj� �� right��i� �j��ipj � ���m���

 � h���fi��fi Mj�� Mi�� �ipk � ��i� fi� �

��hz��� forked��i� �j��ipk � hz� �� stopl��i��ipi � hMj� �� right��i� �j��ipj � ���m ���

 � h����i� Mj�� �ipk � ��i� ���i�� �

��hz��� forked��i� �j��ipk � hMi� �� left��i� �j�N��ipi � hz� �� stopr �j�ipj � ���m ���

�
� h���fi��fi ���j��� Mi�� �ipk � ��i� fi� � if ���i�
 	
� h�Mi N�� �ipk � ��i� ���i�� � if ���i� �
 	

��hz��� forked��i� �j��ipk � hz� �� stopr��j��ipi � hMj � �� right��i� �j��ipj � ���m �	�

 � h����i� Mj�� �ipk � ��i� ���i�� �

��hz��� forked��i� �j��ipk � hMi� �� left��i� �j�N��ipi � hz� �� stopl �i�ipj � ���m ���

 � h�Mi N�� �ipk � ��i� ���i�� �

��

In ���� the processes created by Rule M��� with continuations �� forked
�	i� 	j��� �� left�	i� 	j� N ��� and �� right�	i� 	j�� are translated into a process
with a continuation � and a control string ���fi��fi Mj��Mi�� which is observa�
tionally equivalent to �MiMj�� If a continuation is captured in Mj � it references
the value of Mi� Thus� we introduce a parameter fi as in Rule C� �where f
is referenced by the operator and the continuation�� and we return a binding
�	i� fi� between the location 	i and the parameter fi� respectively intended to
receive or to be bound to the value of Mi�

In ��� and ���� we proceed similarly with the continuations left and right
respectively replaced by stopl and stopr � In ���� we take care to detect whether
a value has already been passed to the left code in order to use the operand N
in the result as in Rule M��� In ��� and ���� we consider the cases of multiple
invocations�

The two phases �process rebuilding� and �process merging� are iteratively
used according to the following algorithm� The translation algorithm requires a
con	guration of the PCKS�machine M � hP� �i� and an initially empty store
�c� Two results are expected� mandatory � which is the mandatory computation�
and speculative� which is a set of speculative computations� Initially speculative
is an empty set and mandatory is unde	ned� Each invocation of the merging
function� at step �� extends the store �c with the new binding�

�� if hz� ��init� stop�ipk � P then mandatory � ��
�� Proceed with P � P n fpkg�
�� if hM� �init�ipk � P then mandatory �M � Proceed with P � P n fpkg�
�� if �pi � hM� �� right��m� �n��ipi and pi is speculative� speculative� speculative�
fMg� Proceed with P � P n fpig� The expression M is said to be �associated� to
the class de�ned by h�n� �� right��m� �n��i�

	� if ��ui that is not marked and that contains a speculative result ����ui� � Cj��
then proceed with speculative� speculative�f���ui�g� and mark �ui as visited�
The content ���ui� is said to be �associated� to the class de�ned by location �ui�

�� if �pi� ��pi��p
 p�i� then proceed with P � Pfp�i�pig�
�� if �pi� pj� pk � P� ��pk� pi� pj� ���m
 �p�k� ��� v��� then proceed with P � P n
fpi� pj� pkg � fp

�

kg and �c���� v�
�� stop if there is no active process in P � or no unmarked location �ui�

Resulting terms may be composed of continuation points or suspensions of
invocations �hp� ��i
V � that remain to be translated into terms of �cpp� The
translation of continuation points and suspensions of invocations is performed
by the function � The translation is straightforward for most of the terms�
Suspensions of invocations are translated into the invocation of the continuation
on a value� and continuation points are translated by a specialised function S
that maps a continuation code to a CPP context
 it uses the content of the store
�c at location 	i to translate a continuation code �� right �	i� 	j���

�x�M
 �x�M
x
 x

MN
 �M N�
callcc M
 callcc �M�

���M�
 ���M�

�h����i�V �
 �h����i V �

h���i
 h��S��� � ��i

S��� cont��A� ��
 S��� ���x�callcc x� A� ���
S��� name ���A� ��
 S������A� ���
S��� fun F ��A� ��
 S��� �F A� ���
S��� arg N��A� ��
 S��� �A� � N��

S��� left ��i� �j�N���A� ��
 S��� �A� � N��

S��� right ��i� �j���A� ��
 S��� ��c��i� A� ���
S��init��A� ��
 A� �

��

The result of the translation of a machine con	guration� written ��M��� is a
set of expressions
 one of them is called mandatory� while the others are called
speculative� By convention� we write mandatory���M��� to denote the mandatory
expression of the translation� and we write speculative���M��� to denote the set
of speculative expressions of the translation�

It can be easily proved that the translation algorithm terminates� Moreover�
there is one and only one translation of a machine con	guration as long as this
machine con	guration can be reached from an initial con	guration�

Lemma�� Let M be a program� and let Minit � hfhM� initi�g� �i be an initial con�

�guration� Let M be any con�guration reachable from Minit� Minit
pcks
��

�

M� There
exists only one mandatory expression and only one set of speculative expression for
the translation of con�gurationM� i�e� the translation is a function for con�gurations
accessible from the initial con�guration�

If a PCKS�con	guration contains a process hM��ipk � the termM appears as
a subexpression of a term that results from the translation of this con	guration�

Lemma�� Let pk � hM��ipk be a process of a PCKS�con�gurationM� There exists
an applicative context A� �� such that

� if process pk is not speculative� then A�M � � mandatory���M����

� if process pk is speculative� A�M � � speculative���M����

where an applicative context A� � is de�ned by�

A� � ��
 � � j A�V � �� j A�� � M � j A���f�f � ��M � j A����� ���

	 Equivalence of the PCKS�Machine and the CPP�Calculus

Now� we can prove that the PCKS�machine preserves the CPP�calculus�

Theorem�� Let M be an arbitrary program of 	pcks and N be the corresponding
program of 	cpp �obtained by removing the pcall annotations�� Let M� be the machine
con�guration reached from the initial con�guration after n transitions� and let M� be
the machine con�guration reached after n� � transitions�

Minit � hfhM� �init�i�g� �i
pcks
��

n

M�

pcks
�� M� n �

Then� there exist two terms N ��N �� � 	cpp� such that N reduces to the mandatory term
of the translation of M�� which reduces to the mandatory term of the translation of
M� �up to observational equivalence�

N ���
cpp N

� �
cpp mandatory���M�����
��
cpp N

�� �
cpp mandatory���M����

Moreover� if there exist two speculative terms e� and e� of the translations of M� and
M� respectively� 	associated
 to the same class� then e� reduces to e� �up to observa�
tional equivalence��

Let e� � speculative���M����� e� � speculative���M���� be two terms �associated�

to the same class� then there exists e�� such that e� �
�

cpp e
�

�
�
cpp e�

It means that� for the mandatory term� any transition in the PCKS�machine
corresponds to one �or more� transitions in the CPP�calculus �up to observational
equivalence�� For the speculative terms� a transition of the PCKS�machine pre�
serves the observational equivalence in the CPP�calculus�

�	

 Related Work and Conclusion

The CEK�machine was proposed by Felleisen and Friedman ��� as a variant
of Landin�s SECD�machine ���� The CEK�machine evaluates a language that
is based on the control operator C� When C rei	es a continuation� it replaces
the current continuation by the initial one� Unlike callcc� C aborts the current
computation and requires to synchronise processes to capture a continuation�
Although both callcc and C are as expressive� C is less suitable for parallel eval�
uation because it reduces parallelism�

Halstead ��� page ��� gives three criteria for the semantics of parallel con�
structs and continuations in a parallel Scheme� We brie�y recall them here� ���
Programs using call�cc without constructs for parallelism should return the
same results in a parallel implementation as in a sequential one� ��� Programs
that use continuations exclusively in the single�use style should yield the same
results as in sequential Scheme� even if a parallel construct is wrapped around
arbitrary expressions� ��� Programs should yield the same results as in sequential
Scheme� even if a parallel construct is wrapped around arbitrary subexpressions�
with no restrictions on how continuations are used� Our implementation satisfy
these three criteria for both the pcall and fork constructs�

We have based our language on the pcall construct� The future construct
is di�erent because it introduces a call�by�name parameter�passing technique� If
we wish to prove the correctness of an implementation based on the future con�
struct� another calculus and another notion of observational equivalence should
probably be de	ned�

Katz and Weise ���� Feeley ��� proposed and implemented a de	nition of 	rst�
class continuations in a parallel Scheme with the future construct� Besides the
construct chosen� their proposition di�ers from ours by the fact that contin�
uations are invoked speculatively� i�e� without knowing whether they preserve
the sequential semantics� In addition� they introduce a notion of legitimacy that
speci	es whether a result is correct� By de	nition� a process is said to be le�
gitimate if the code it is executing would have been executed by a sequential
implementation in the absence of future�When the evaluation begins� the initial
process is given the legitimacy property� A process with the legitimacy property
preserves it as long as it does not create processes� When a legitimate process
p� forks a process p� �with the future construct�� p� is given the legitimacy
property� and p� loses its legitimacy� The process p� recovers its legitimacy when
the placeholder it receives gets determined by a legitimate process�

In an implementation where continuations are invoked speculatively� one can
expect more speed up� at least theoretically� although more unnecessary compu�
tations might be performed� But the example given in Section � is not guaranteed
to return the results in the left�to�right order if continuations are invoked specu�
latively
 the leaves are only displayed in a left�to�right order when continuations
are invoked non�speculatively� In addition� Katz and Weise propose the concept
of speculation barrier� which suspends all non�legitimate processes at a given
point� This mechanism could be used to display leaves in the left�to�right order
when continuations are invoked speculatively� However� the legitimacy and the
speculation barrier do not appear to be able to model our continuations� Indeed�
the legitimacy can be considered a global property since it requires to 	nd a
legitimacy link between the current process and the initial one� On the contrary�
the non�speculative invocation of a downward continuation that we propose re�

��

quires to detect the legitimacy of the process invoking the continuation with
respect to the process that created this continuation without knowing whether
this latter process is legitimate�

To the best of our knowledge� it is the 	rst time that an implementation of
	rst�class continuations is proved to be correct in a parallel setting� The PCKS�
machine re�ects the computations that can be performed in the CPP�calculus�
Consequently� this machine has the advantages of the calculus� continuations are
captured independently of the evaluation order� and downward continuations
are optimally invoked� But the machine has also its defaults� the machine is
too cautious when invoking an upward continuation �a continuation that is not
downward�� However� in ����� we observed that many continuations have a limited
region of e�ect� �Intuitively� the region of e�ect of a continuation is the part of the
program where this continuation is accessible�� We proved that� when invoking
an upward continuation� it is su�cient to wait for the values of expressions in
its region of e�ect� Therefore� the non�speculative approach gives continuations
a new role� 	rst�class continuations can be considered a way to sequentialise
operations in a parallel program
 they avoid the introduction of new constructs
able to sequentialise processes in programming a language�

Acknowledgements

The anonymous referees are acknowledged for their useful comments to this work�

References

�� Marc Feeley� An E�cient and General Implementation of Futures on Large Scale
Shared�Memory Multiprocessors� PhD thesis� Brandeis University� �����

�� Matthias Felleisen and Daniel P� Friedman� Control Operators� the SECD�Machine
and the ��Calculus� In M� Wirsing� editor� Formal Description of Programming
Concepts III� pages �������� Amsterdam� ����� Elsevier Science Publishers�

�� Matthias Felleisen� Daniel P� Friedman� Eugene E� Kohlbecker� and Bruce Duba�
A Syntactic Theory of Sequential Control� Theor� Comp� Sci�� �������
������ �����

	� Robert H� Halstead� Jr� Implementation of Multilisp � Lisp on a multiprocessor�
In Proceedings of the �
�� ACM Conference on Lisp and Functional Programming�
pages ����� Augustus ���	�

�� Robert H� Halstead� Jr� New ideas in parallel lisp � Language design� implemen�
tation� In T� Ito and Robert H� Halstead� editors� Parallel Lisp � Languages and
Systems� Japan�� LNCS 		�� pages ����� Springer�Verlag� ���
�

�� Morry Katz and Daniel Weise� Continuing Into the Future� On the Interaction of
Futures and First�Class Continuations� In Proceedings of the �

� ACM Confer�
ence on Lisp and Functional Programming� pages ������	� June ���
�

�� P� J� Landin� The mechanical evaluation of expressions� Comp� J�� ���
����
� ���	�
�� James S� Miller� MultiScheme � A parallel processing system based on MIT Scheme�

PhD thesis� MIT� �����
�� Luc Moreau� An operational semantics for a parallel language with continuations�

In D� Etiemble and J��C� Syre� editors� Parallel Architectures and Languages Eu�
rope �PARLE�
��� LNCS �	� pages 	���	�
� Paris� June ����� Springer�Verlag�

�
� Luc Moreau� Sound Evaluation of Parallel Functional Programs with First�Class
Continuations� PhD thesis� University of Li�ege� In preparation�

��� Luc Moreau and Daniel Ribbens� Sound Rules for Parallel Evaluation of a Func�
tional Language with callcc� In ACM conference on Functional Programming and
Computer Architecture� pages �������� Copenhagen� June ����� ACM�

��� Gordon D� Plotkin� Call�by�name� call�by�value and the ��calculus� Theoretical
Computer Science� pages �������� �����

��� Jonathan Rees and William Clinger� editors� Revised� Report on the Algorithmic
Language Scheme� Lisp Pointers� 	��������� July�September �����

��

This article was processed using the LaTEX macro package with LLNCS style

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

