M Y eet R iR Y M B A,y BTy AT Ty BT A TR R T AT R R Ty M e YT IY D

The PCKS-Machine: an Abstract Machine
for Sound Evaluation of Parallel Functional
Programs with First-Class Continuations

Luc Moreau

Institut d’Electricité Montefiore, B28. Université de Liége, Sart-Tilman, 4000 Liege,
Belgium. moreau@montefiore.ulg.ac.be

Abstract. The PCKS-machine is an abstract machine that evaluates
parallel functional programs with first-class continuations. Parallelism is
introduced by the construct pcall, which provides a fork-and-join type of
parallelism. To the best of our knowledge, the PCKS-machine is the first
implementation of such a language that is proved to have a transparent
construct for parallelism: every program using such a construct returns
the same result as in the absence of this construct. This machine is also
characterised by the non-speculative invocation of continuations whose
interest 1s illustrated in an application.

1 Introduction

The programming language Scheme [13] is often extended to parallelism by
adding constructs like future, fork, or pcall, which explicitly indicate where
evaluations can proceed in parallel [5]. These constructs are expected to be
transparent, i.e. a program using such constructs is supposed to return the same
result as in the absence of these constructs. Thus, these constructs can be re-
garded as annotations for parallel execution that do not change the meaning of
programs. Consequently, parallel programs can be developed in two phases: first,
a sequential program is written using the functional programming methodology;
second, annotations for parallelism are added without changing the semantics.
This approach also avoids the programmer to concentrate on parallelism-specific
problems like deadlocks, race conditions, and non-determinism.

This approach has been studied at length. It began with the implementa-
tion of MultiLisp by Halstead [4] using the future construct; it was followed by
Miller’s MultiScheme [8], an extension of Scheme based on the same construct.
The latter highlighted the difficulty of defining first-class continuations in a par-
allel setting. Katz and Weise [6] proposed a definition of the future construct
that was suitable for first-class continuations, and they suggested a notion of
legitimacy to guarantee the transparency of this construct; their propositions
were successfully implemented by Feeley [1].

However, practice is ahead of theory in this field: two theoretical points have
never been studied. First, there is no formalisation of the intuitive statement
“a parallel program is expected to return the same result as in the absence of
constructs for parallelism.” Second, to the best of our knowledge, no implemen-
tation was proved to be correct, probably due to a lack of formal criteria with
respect to which the correctness can be established.

In a previous paper [11], we answered the first question by designing a calcu-
lus that models sequential and parallel evaluations. In this framework, a parallel

and a sequential evaluation of the same expression yield observationally equiva-
lent results. Intuitively, two expressions are observationally equivalent if we can
replace one by the other without being able to distinguish which one is used (as
far as termination is concerned).

The goal of this paper is to answer the second question about the correctness
of an implementation. Therefore, we designed the PCKS-machine, a parallel ab-
stract machine that implements this calculus; it models a MIMD machine with
a shared memory similar to those used in the mentioned implementations. We
proved that this machine 1s sound with respect to the above notion of observa-
tional equivalence.

This paper is organised as follows. In Section 2, we give an application that
uses parallelism and first-class continuations. In Section 3, we present the cal-
culus that we previously designed and the notion of observational equivalence
used to prove the correctness of our implementation. In Sections 4 and 5, we de-
scribe the PCKS-machine, an implementation of this calculus. Some properties
of the machine are stated in Section 6. The correctness of the implementation
is a two-step proof. First, in Section 7, we prove that there is a translation of a
PCSK-machine into a term of the calculus. Second, in Section 8 we prove that
any transition of the PCSK-machine preserves the observational equivalence in
the calculus. We compare our approach with related work in Section 9.

2 Example

Let us consider the problem of searching and displaying the leaves of a tree
that satisfy a given predicate. For efficiency reasons, we expect the leaves to be
searched in parallel, but we want them to be printed in the same order as in a
sequential depth-first search. Leaves are searched and displayed by the functions
search and display-leaves given below.

The expression (call/cc exp) packages up the current continuation as an
“escape procedure”, also called a reified continuation, and applies exp on it;
this action 1s called capturing or reifying a continuation. Hence, in the function
search, exit will be bound to the reification of the continuation that is current
when entering search. Invoking a reified continuation on a value v, i.e. applying
it as a regular function, resumes the computation where the continuation was
captured with v the value of the call/cc expression. When a leaf satisfies the
predicate pred, the continuation exit is invoked on a list containing this leaf
and a reification of the current continuation; the immediate effect is the exit of
the function search with this list as value. In the inductive case, the annotation
fork initiates the searches in the left and right subtrees in parallel.

(define (search tree pred)
(call/cc (lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((leaf? tree) (if (pred tree)
(call/cc (lambda (next)
(exit (list tree next))))
*O))
(else (begin (fork (loop (tree->left tree)))
(loop (tree->right tree))))))))
(loop tree)))))

The function display-leaves begins the search with a call to the function
search. After receiving and displaying a leaf, the function display-leaves in-
vokes the received continuation to obtain the following leaf.

(define (display-leaves tree pred)

(let ((a-leaf (search tree pred))) 5 search for the first leaf
(if (null? a-leaf)
>end
(begin (display (car a-leaf)) 3 display the leaf
((cadr a-leaf) >()))))) ;5 search for the next one

The semantics we propose guarantees that the function search displays the
same results in the same order as the sequential version of search (obtained by
removing the fork annotation). The search of leaves would be interleaved with
their displaying in the sequential version, while it is performed speculatively
with respect to their displaying in the parallel version. The search is said to be
speculative because the function search recursively traverses the tree in parallel
without knowing whether the results to be found are needed.

Results are displayed as in a sequential implementation because, in the
PCSK-machine, a continuation is invoked only if 1ts invocation preserves the se-
quential semantics. This mechanism of invocation is said to be non-speculative;
it 1s explained in Section 3 and discussed in Section 9.

3 The CPP-Calculus

The CPP-calculus [11], [3] is an extension of Plotkin’s call-by-value A-calculus
with the control operator callec. The set of terms M of the CPP-calculus, called
Acpp, 1s defined by the following grammar.

M=V | (M M) | (callecc M) | #,(M) Vi=clao| Az M) | (o, K[]s)

An application is a juxtaposition of terms (M M), a callcc-application is of
the form (callec M) (the term M is called a receiver), and a prompt construct
is #,(M) (with ¢ a name). A value V can be a constant ¢, a variable x, an
abstraction (Az.M), or a continuation point (¢, K[],), representing a reified
continuation. A captured context K[] and a context C[] are defined by:

K[]:
Cl]=

(V1 KIIMY | KV | KealleeAk.[] | K#o([D] | K[(Ae.[DV]
(Y1 elliMy e]| Cleallec[]] | Cl#([D] | CAe[]]] Cle, []

In the CPP-calculus (standing for Continuation Point and Prompt), contin-
uations have a semantics that makes them suitable for parallelism.

1. A continuation can be invoked only if one knows that it is invoked in a
sequential implementation. Thus, the invocation of a continuation requires to
wait for the values of all expressions that are evaluated before this invocation
in a sequential implementation.

2. A continuation can be captured independently of the evaluation order.

We can observe that the invocation of a continuation seriously reduces par-
allelism (as opposed to the capture of a continuation). The first rule can be
improved in the particular case of a downward continuation.

3 A continuation k is downward if k is always part of the continuation that is in
effect when £ 1s invoked. A downward continuation is always invoked in the
extent of the callcc by which it was reified. In a sequential implementation,
this usage of a continuation can be implemented by simply popping the stack
to the desired control point. In a parallel implementation, the invocation of a
downward continuation only requires to wait for the values of the expressions
that are evaluated before this invocation, but are evaluated n the extent of
the callcc by which the continuation was reified.

We can use the following strategy to detect the invocation of a downward
continuation. When a continuation is reified, it is given a fresh name ¢, and a
mark with the same name is pushed on the stack; when a continuation with a
name ¢ 1is invoked, it is said to be downward if there is a mark with the name
@ in the stack. The same technique is used in the calculus; a continuation point
(¢, K[]p) receives a fresh name ¢ at the time of its creation, and a prompt
#,(M) has the role of a mark with a name ¢ in the stack.

Az M)V — M{V/z} with V a value (C1)
(ab) — &(a,b) if this is defined (C2)
Capture of a continuation

callecc M — callcc Ak.#,(M (@, k[]o)) with a fresh ¢ (C3)
Mcallce N) — callce A.(M.f (N (g, k(f 1)) M (ca)
(callce M)N — callcc Ak.(M (p, k([], N)))N (C5)
((Af.f(callec N))M) — callcc Ak.((ASf-F(N (p, k([1p)))) M) (Cs)
#e(callee M) — callec Ak.#, (M (p, k(#4([1)) (C7)
(g, (callcc M)) — (¢, (M (p,[]p))) (C8)
callece M =T M (p,[1,) (C9)
Invocation of a continuation
M{(e, KT]e) V) — ({» (
(e, K[]e) VIN — (¢, K[]e) V) with V' a value (
#m((%f([]) V) — (e, K[]e) V) with V' a value (
#o({o, K[]o) V) — V with V a value (C13
(o, {1, Kal Jo1) (K2[]o)) — (o, Ka[K2[]e]) (
({p, K[]o) V) =T K[V] with V a value (

Simplification of a prompt and of a callcc-application
#,(V) — V with V a value (C16)

callcc \e.M — M with k & FV(M) (C17)

,K[]e) V) with M,V values

RNy

Fig. 1. Reduction system with continuation points and prompts: —cpp

Figure 1 displays the transitions that can be performed in the CPP-calculus.
Rule C1 is Plotkin’s call-by-value S-reduction, and Rule C2 is the é-reduction.
The rules C3 to C9 concern the capture of continuations. Using Rule C3, a callce-
application (callec M) can be transformed into the application of the receiver

M to the continuation point (¢, k[],), which is the representation of a reified
continuation. This continuation point is given a fresh name ¢, which is also given
to a prompt wrapping this application. Intuitively, the prompt represents a mark
in the stack. The following rules are used to build, step-by-step, a representation
of the continuation in the continuation point. The rules C4 to C7 have a left-
hand side in which a callcc-application appears, and they have a right-hand side
that is a callec-application. Such rules are said to bubble-up a callcc-application
from the inside of an expression towards its top level. When a callcc-application
reaches the top level of an expression, Rule C9 applies the receiver on the initial
continuation {p,[|). Since this rule can only be applied at the top level, we
mark it by a superscript 7', and we call it a top level rule. According to this
set of rules, a continuation can be captured when 1t appears in operator or in
operand position of an application, or inside a prompt. Hence, the capture of a
continuation is not dependent of an evaluation order.

Rules C10 to C15 describe the invocation of a continuation (p, K[],) on a
value V. The left-hand sides of these rules have an invocation of a continuation
as a subexpression, and the right-hand sides of the first three equations are an
invocation of the same continuation: the invocation of a continuation prunes
its surrounding context. In Rule C10, the operator is required to be a value in
order to preserve the left-to-right evaluation order. When a continuation with a
name ¢ is invoked inside a prompt with the same name, this continuation is a
downward continuation; by Rule C13, its invocation can be reduced to the value
on which the continuation was invoked. When the invocation of the continuation
reaches the top level, the top level rule C15 installs the captured context K|]
and fills 1t with the value on which the continuation was invoked.

A reduction —), is defined as the compatible closure of the rules of Fig. 1:
M = C[P] —5p N = C[Q], with P — @ (except C9, C15). A computation,

—P , 18 either a reduction or an application of a top level rule:

Cpp’
M—=, N=M—.,, N U MQN UMC—1>5N
and we note —77 its reflexive, transitive closure. The evaluation process is

abstracted by a relation evalcpp: evalcpp(M) =Vit M —>‘Z; V' with V a value.

From a programmer’s point of view, two behaviours can ﬁe observed as far as
termination is concerned: either a program terminates or it does not terminate.
Consequently, we can say that two expressions M and N have indistinguishable
behaviours, if for all contexts C[], either C[M] and C[N] both terminate or both

do not terminate. This leads to the formal definition of observational equivalence.

~

Definition1 (Observational Equivalence). M =2,,, N iff forall context
C[], such that C[M] and C[N] are programs, either both evalepp (C[M]) and
evalepp (C[N]) are defined or both are undefined.

Parallel evaluation can be performed in the calculus using the following rule,
which evaluates the subexpressions of an application in parallel.

M —epp M',N —epp N' = (M N) —epp (M" N)

4 The PCKS-Machine: a Parallel Machine

Felleisen and Friedman [2] proposed the CEK-machine to evaluate functional
programs with a control operator like callcc. We generalise the CEK-machine to

multiple processes and parallel evaluation: the PCKS-machine models a MIMD
(Multiple Instruction Multiple Data) machine with a shared memory. The letters
PCKS stand for Parallel machine with each process composed of a Control string
and a continuation K (representing a program counter and a stack, respectively)
and sharing a common Store.

A configuration of the PCKS-machine describes the complete state of a ma-
chine; by convention, a configuration is represented by curly letters M, M,,
A configuration M is a pair (P, o), composed of a set of processes P and a store
o. Each process 1s composed of a control string and a continuation code.

A control string is either an expression of Ay .z, or the distinguished symbol
1. The language accepted by the machine is noted A,., and is defined by the
following grammar.

M=V | (M M) | (callecc M) | (pcall M M) Vi=clo| Az M) | (o, k)

The term (M M) is called a sequential-application as opposed to the term
(peall M M), called a parallel-application. For the former, the operator is evalu-
ated before the operand, then the application is performed. For the latter, both
the operator and the operand are evaluated in parallel, then the application is
performed’. Continuation points (¢, k) are pairs composed of a name ¢ and a
continuation code k that is a p-continuation to be described below.

A continuation code represents the rest of the computation to be performed
by a process. We distinguish between two kinds of continuation codes: p-con-
tinuation and d-continuation.

A p-continuation « is of the form (init) | (x' funV) | (s’ arg N) | (s’ cont) |
(x' name @) | (s’ left (am,an, N)) | (k' right (am,a,)), where £’ is also a p-
continuation. The continuation code (init) represents the initial continuation.
The code (x’ fun V) means that the expression being evaluated is the operand of
an application whose operator has the value V. The code (k' arg N) means that
the expression being evaluated is the operator of a sequential application whose
operand N is still to be evaluated. The code (k' cont) means that the expression
being evaluated is the receiver of a callcc-application. There is also a mark that
delimitates the extent of a callcc-application, but this mark is represented by
the code (k" name ¢) instead of a prompt as in the CPP-calculus. The codes
(&' left (v, an, N)) and (k" right (am, an)) are used when evaluating the
operator and the operand of a parallel application, respectively.

A d-continuation & is of the form (s’ forked (a;,a;)) | (&' stop, «) |
(' stop, @) | (s’ stop), where &’ is also a p-continuation. Such continuation
codes are used in dead processes. The first code appears after forking processes.
The second and third code appear when a process is stopped because it requires
the content of an empty location «. The last code appears when a process is
stopped after returning the final value.

In the above definitions, we say that & is a one-step extension of ’; we write
it ¥ 3 &’. The reflexive, transitive closure of 7, called extension, is written .

! The annotation fork is derived from the annotation pcall.

(begin (fork M) N) = (callecc (Ak. (peall(let ((¢ M)) (Au.w)) (kK N))))

By convention, lower-case letters p,p;, ... designate processes, and capital
letters P, P;, ... represent sets of processes. A process p is either active or dead.

— An active process, (M,k),, with M an expression of A,.;s and xk a p-
continuation, is a process that evaluates M with the continuation k.

— A dead process, (}, &), with £ a d-continuation, is a process that has ter-
minated its evaluation.

The second component of a configuration is a store ¢ that binds locations to
their contents. Locations, usually represented by a;, o, ... letters, belong to a
set of locations Loc; they model addresses in a real computer. The content of a
location can be a value of 4,5, or a data structure [¢; v] that we present in the
following section. As usual, o (o,) denotes the content of the store o at location
am; 0(am) — V denotes the store o after updating the location «y,, with the
value V. We write L to designate the content of an empty location.

5 Evaluation with the PCKS-Machine

Transitions of the PCKS machine are described by a relation on the set of ma-

chine configurations. We write M, reks M; when the PCKS-configuration M;
reduces to the PCKS-configuration M;. Such a global transition relation can
be expressed in term of a local relation —, that associates one process p, and
a store o; to a set of processes P,, and a store o;: {pg,0:) —p (Pp,,0;). The
relation —, is called the process transition relation. Note that the relation —,
assoclates a process py (and a store) to a set of processes P, (and a store).
There is a transition from the configuration M, to the configuration M; if there
is a transition —, of one process of M;

cks
M = (P, o) ' My = (P, 05) & Tpi € Piy (pr, 06) —p (Poy, 05), Py = P\{pr}U Py,

"
We write P for the reflexive, transitive closure of Peks

The process transition relation —, for the evaluation of sequential expressions
is displayed in Fig. 2. In order to lighten the notation, a transition {py,o;) —p
(Pp,,0;) is written py —p p),05(a) < V, when the resulting set of processes
P, contains a single process p), and when the store o; results from an update
of the store o; at location «.

Rules M1 to M5 concern the evaluation of sequential, purely functional ex-
pressions as in the CEK-machine (except for the substitution instead of an envi-
ronment). A sequential application (M N) forces the evaluation of M before the
evaluation of N by Rule M1. By Rule M5, when a value is returned to the initial
continuation, the current process is stopped, and the returned value is stored
in location 0, which is, by convention, the location aimed at receiving the final
result of a computation.

The rules M6 to M8 concern the reification of continuations. According to
Rule M6, a callcc-application begins the evaluation of its receiver with a contin-
uation code (k cont). When a value is returned to such a continuation code, this
value 1s applied to the reification of the current continuation by Rule M7. As in
the CPP-calculus (Rule C3), the continuation point is given a fresh name ¢, and
a continuation code (k name) with the same name ¢ is left as a prompt in

the CPP-calculus. Rule M8 corresponds to Rule C16.

((MN), E)p,, —p (M, (k arg N))p, (M1)

(V. (k arg N))p, —p (N, (x fun V)),, (M2)

(V, (k fun (Az.M)))p, —p (M{V/z}, K)p, (M3)

(b, (k fun a))p, —p (6(a,b), &)p, if 6(a,b) is defined (M4)

(V. (init))p, —p (1, ((init) stop)),, ,o(0) =V (M5)

(callcc M, k)p, —p (M, (k cont)),, (M6)

(V, (k cont))p, —p {{¢, k), ((k name ¢) fun V)),, new ¢ (M7)

(V. (k name ©))p, —p (V, K)p, (M8)

(V. (s fun V') fun (po, 50)))p, —p (V. (x fun (o, x0)))p, (M9)
(V. (s cont) fun (o, £0)))p, —p (V. (£ fun (o, ko)))p, (M10)
(V.((r arg N) fun (go, ko0)))p, —p (V, (x fun (eo, ko)), (M11)
(V (s name ¢1) fan (g, ko)), —p {V: (5 Fan (o, 50}, (M12)
(V (mit) fum (g0, ko)) —p (V5 Robn, (M13)

(V (s name go) fun (g, K0}, —p (V: K, (M14)

Fig. 2. Evaluation of sequential expressions in the PCKS-machine

Rules M9 to M14 concern the invocation of a continuation point (pg, Kg) on
a value V. By rules M9 to M12 the current continuation code is unconditionally
pruned until either an init or name continuation code is reached. On the one
hand, if an init code is reached, Rule M13 invokes the continuation as Rule C15.
On the other hand, if a name code with the name g is reached, we are invoking
a downward continuation, and Rule M14 behaves as Rule C13.

Rule M15 introduces parallelism; the evaluation of a parallel application
(pecall MN) creates two new processes p;,p; to evaluate M and N in parallel.
The operator and the operand are given the continuations (x left(o,, an, N))
and (x right(a,, ay)) respectively. A left continuation code indicates that the
term being evaluated is an operator while a right continuation code indicates
that the term is an operand. Both codes refer to two new empty locations o,
and «,,, which are, by construction, supposed to receive the values of M and N
respectively. If «,, is empty (resp.), it means that the value of the operator
(resp. the operand) is not yet computed.

(pcall M N, &)y, —p { (%, (rk forked(am, an)))p,, (M, (k left (am, an, N))}p,, (M15)
(N, (x right (am, an))>pj} with fresh locations o, an

Now, let us suppose that V is the value obtained by the process evaluating the
operand N. In Rule M16, we consider two cases according to the content of
location ay,.

— The location «,, is empty, i.e. the operator has not yet returned a value.
After storing the value V in location «,, the process evaluating the operand
is stopped.

— The location ay, is not empty, i.e. both the operand and the operator have
returned a value, the application can be performed with the content of .

(V, (k right (am, an)))p, —p (I, (K stop, an))p, if o(am) = 1L,0(an) =V (M16)
(V, (k right (am, an)))p, —p (V. (k fun V/)>pk if o(am) =V, o(an) =V

The symmetric case concerns the evaluation of the operator M yielding a value
V. Let us suppose that the location ay, 1s empty. Rule M17 also distinguishes
between two cases according to the content of «,,. Either «,, i1s empty and the
application cannot be performed, or «, contains the value of the operand on
which V' can be applied.

(V, (£ left (am, an, N))p, —p (I, (8 stop, am))p, if o(an) = L,o(am) =V (M1T7)
(V, (5 left (m, an, N))p, —p (V' (5 fun V), if o(an) = V' o(am) — V

Now, let us consider the invocation of a continuation {@g,xg) on a value
V with the continuation codes left and right. According to Rule M18, a con-
tinuation code left can always be pruned regardless of the location a,,. After
application of Rule M18, if the process evaluating the operand N has not ob-
tained a value, 1t is said to become speculative, because its result is not known to
be needed later. By Rule M19, the code right cannot be pruned if the location
@ is empty, i.e. the operator is not yet evaluated (as in Rule C10). Thus, we
stop the process and store in ay, a data structure [{pg, ko); V], which represents
the suspension of the invocation of a continuation (g, ko) on a value V.

(V. (5 left (am, an, N)) fun (o, £0)))p, —p (V, (& fun (eo, ko)))p, (M18)
(V. (s right (am, an)) fun (go, ko)))p, —p (§,(k stop, an))p, (M19)
if o(am)=1,0(an) — [{¢vo,ko); V]
(V. (s right (am, an)) fun (go, k0)))p, —p (V. (K fun (o, ko)))p, if o(am) # L

As soon as the operator yields a value, Rule M20 helps in resuming the invocation
of the continuation.

<V’ (K left (a/m’ Un, N))>Pk —p <V/’ (K fun <‘PO’ K0>)>Pk if a'(a/") = [(990’ K0>; V/]’ (MZO)
olam) =V
In the rules M17, M20, we supposed that the location «,, was empty, 1.e. it
was the first time a value was passed to the continuation code (& left (o, e, N)).
Otherwise, if the location a,, is not empty, the continuation is said to be mul-
tiply invoked. The operand N must be reevaluated to preserve the sequential
semantics. Hence, in Rule M21, we evaluate again the operand N.

(V, (k left (am, an, N))p, —p (N, (k fun V)),, if o(am)# L (M21)

By definition of the PCKS-machine, all transitions —, are atomic, i.e. for
each rule, the operations for verifying the side-conditions, for creating processes,
and for updating the store are performed in a single step.

A computation with the PCKS-machine begins with an initial configuration
Minit and terminates as soon as a final configuration M is reached. An nitial
configuration Min; = ({{M, (init))o}, 0) is composed of a single initial process
and an empty store, where M 1s the program to evaluate. A final configura-
tion My = (Py, o) is such that, the set of processes P; contains the process
(1, ((init)stop)),,, and the store o; contains a value in the location 0.

10

In the following sections, we show that the machine and the calculus compute
the same results. We proceed in two steps to prove such a property. First, we
define a translation of a machine configuration into a term of A.p,. Second, we
prove that, for any transition of the PCKS-machine from a configuration M to
a configuration Mo, the translation of M reduces to the translation of M5 in
the CPP-calculus (up to observational equivalence). The translation is defined
in Section 7, and the equivalence is proved in Section 8. But first, we state some
properties of the machine.

6 Classes of Processes and Speculative Computation

Every time a pcall construct is reduced by Rule M15, the number of processes
increases by 2, but the number of active processes only increases by 1. Since
the number of processes with a continuation (x forked(ayy,, ay,)) is equal to the
number of applications of Rule M15, this number increased by one is an upper
bound on the number of active processes in a configuration.

During evaluation of a parallel application (pcall M N), let us suppose that
the evaluation of the operator M is not terminated. The process evaluating the
operator performs the actions that would be performed in a sequential order,
while the operand is evaluated in advance of the sequential order. A process
begins a computation in advance of the sequential order if it has a continuation
of the type (% right(ay, ay,)) with an empty location a,,. It remains in advance
of the sequential order until the operator gets evaluated. When the operator
is evaluated, the location ay, receives a value, and the process evaluating the
operand is now executing the actions that would be performed in the sequential
order. (We just have to replace (x left(am,, apn, N)) and (x right(am, an)) by
(k arg N) and (x fun V) respectively, where V is the content of ayy.)

Let us consider a process p; with a continuation x; and a process ps =
(M K?2>p2 that is obtained by reducing p; (or its descendants). The process ps
i1s not in advance of the sequential order with respect to xq, if ps performs the
actions that would be performed by p; in a sequential evaluation. In such a case,
ko 18 said to be a sequential extension of k1, written ko s %1, satisfying

k2 Z (&' right (am, an)) A k2 3 &'
k2 = (&' right (am, an)) A o(am) # L

Ko ds Kl <= Ke =K1 V { andfc'gsm

Now, we introduce the concept of class to specify the processes that preserve
the sequential order with respect to a given continuation. We represent a class C;
by a pair (o, ky;), where the location ay,; is expected to receive (or contains)
a result, and the continuation ,; waits for the result to be stored in «y;. In a
configuration M = (P, o), we define the following classes: the initial class C; is
(0, (init)); for each process (i, (x forked(w,,, @n)))p,, such that o(ay,) = L, a
new class C is defined by the location «, and the continuation (x right(ay,, ay)).
A process (M, k)p, belongs to a class C; = (ay;, ky;) if its continuation is a
sequential extension of ky;, £ Js Ky;. This notion of class specifies the number
of active processes in a conﬁguratlon

Lemma 2. Let Cy,...,Cy be the set of classes of the configuration M = (P, o) with
each class defined by C; = (o, Kuy); let P be the set of processes belonging to class
Ci. The set of processes P; form a partition of P: P = PLU...UP,, and Vi,5 €
l...n, NP =0.

11

Moreover, a set of processes P; contains a single active process if and only if the content
of the store at location ay; is L. A set of processes P; does not contain any active process
tff the content of the store at location ay; s not L.

It is usual to distinguish between two kinds of computations. A mandatory
computation is a computation whose result is needed to return the final result.
A speculative computation is a computation whose result is not known to be
needed for the final result (at the time this computation is initiated), but which
is launched, hoping that it will be later mandatory. We also define such notions
for the PCKS-machine. Intuitively, a process p; is said to be speculative with
respect to p; if p; has pruned (using Rule M18) the continuation waiting for the
value of process p;.

Definition 3 (Speculative Process or Result). Let C; = (o, ky;) and
Cj = (awj, fuj) such that w,; = (k right(ag;, au;)) with £ g k.

The active process p; of class C; (or the result o(oy) # L) is speculative with
respect to a class C;, written p; $ C; (or o(a;) $ C;) if either

— the class C; has no active process because location «,; is not empty, or,
— the continuation of the active process of C; is not an extension of x: &; A «.

7 Mapping a PCKS-Machine to a Term of the Calculus

We translate a configuration of the PCKS-machine into a term of the CPP-
calculus. This translation is composed of three phases: process rebuilding, process
merging and continuation point simplifications.

The process-rebuilding function has the following signature: [[, : process —
process. Intuitively, this function undoes transitions of the PCKS-machine that
concerned sequential expressions:

[(M,k cont)y,], = {(Az.callcc ©) M, &)y, [(M,k fun F), J, = (FM,K)p,

[{(M,x name @)y, Jp = (#c(M), K)p, [{(M,r arg N)p,Jp = (MN, &)y,

The process-merging function makes a new process from processes that were
forked while evaluating a pcall, and also returns a binding between a location
and a value . Its signature is:

[, -, s Jm- : process x process x process x store — (process x binding)
It takes three processes and a store; it returns a process and a binding. The
binding associates a value to a location a,, allocated to receive the value of an
operator by Rule M15. The process-merging function is defined by five equations:
[[(1’ (K forked(ai’ a]))>Pk’ <Mi’ (K left(ai’ Ay, N))>Pm <MJa (K I'ight(a/,', a]))>Pj’ a]]m(l)

= (((Mfifi My)) M), K)pys (@i, fi))

[[(1’ (K forked(ai, a]))>Pk’ <I’ (K Stopl(ai)»}’m <MJ’ (K right(ai, a]))>Pj ’ a]]m (2)
= (((o(as) My),), (i o(as)))
[[i (K forked(ai, a]))>Pk’ <Mi’ (K left(ai’ Ay, N))>Pm <I’ (K stop, a/J)>Pj) a]]m (3)
U o)) M, (@ fi)) i ofan = L

(((Mi N),K)p,, (@iyo(ai))) if o(ai) # L
[{%, (s forked(ai, a;)))p,, (£, (x stop, (@;)))p,, (M, (r right(as, a]))>Pj ;0]m (4)
= (((o(as) My),), (i o(as)))
[[(1’ (K forked(ai, a]))>Pk’ <Mi’ (K left(ai’ Ay, N))>Pm <I’ (K stop, ai)>Pj’ a]]m (5)

= (<(Ml N)’K>Pk’ (ai’a(ai)))

12

In (1), the processes created by Rule M15, with continuations (x forked
(i,), (k left(cy, oj, N)), and (k right(a;, «;)) are translated into a process
with a continuation « and a control string ((Afi.(f; M;))M;), which is observa-
tionally equivalent to (M; ;). If a continuation is captured in M;, it references
the value of M;. Thus, we introduce a parameter f; as in Rule C4 (where f
is referenced by the operator and the continuation), and we return a binding
(o, fi) between the location «; and the parameter f;, respectively intended to
recelve or to be bound to the value of M;.

In (2) and (3), we proceed similarly with the continuations left and right
respectively replaced by stop; and stop,. In (3), we take care to detect whether
a value has already been passed to the left code in order to use the operand N
in the result as in Rule M21. In (4) and (5), we consider the cases of multiple
invocations.

The two phases “process rebuilding” and “process merging” are iteratively
used according to the following algorithm. The translation algorithm requires a
configuration of the PCKS-machine M = (P, o), and an initially empty store
o.. Two results are expected: mandatory, which is the mandatory computation,
and speculative, which is a set of speculative computations. Initially speculative
is an empty set and mandatory is undefined. Each invocation of the merging
function, at step 6, extends the store o, with the new binding.

1. if {1, ((init) stop)),, € P then mandatory — o(0). Proceed with P — P\ {px}.

2. if (M, (init)),, € P then mandatory — M. Proceed with P — P\ {px}.

3. if 3p; = (M, (k right(am, an)))p, and p; is speculative, speculative — speculativeU
{M}. Proceed with P — P\ {p:}. The expression M is said to be “associated” to
the class defined by {an, (k right(am,, axn))).

4. if day,; that is not marked and that contains a speculative result (cr(aui) $ C]),
then proceed with speculative «— speculative U {o(ay;)}, and mark a.,, as visited.
The content a(aui) is said to be “associated” to the class defined by location ay;.

5. if 3ps, [ps]p = pi, then proceed with P — P{p!/p:}.

6. if Ipi,p;j,px € P[px, pi; pj; 0lm = (ph, (o, v)), then proceed with P «— P\
{pi,pys i} U A{pi} and oc(a) — o.

7. stop if there is no active process in P, or no unmarked location «,,;.

Resulting terms may be composed of continuation points or suspensions of
invocations [(p, ko); V] that remain to be translated into terms of A.p,. The
translation of continuation points and suspensions of invocations is performed
by the function . The translation is straightforward for most of the terms.
Suspensions of invocations are translated into the invocation of the continuation
on a value, and continuation points are translated by a specialised function &
that maps a continuation code to a CPP context; it uses the content of the store
o. at location «; to translate a continuation code (x right (o, «;)).

Ae.M = Az M S((k cont), A[]) = S(«, (Az.callcc z) A[]))
T=o S((x name @), A[]) = S(x, #,(A[1))
MN = (M N) S((k fun F), A[]) = S(x, (F A[]))
callcc M = callec (M) S((k arg N), A[]) = S(x, (A[] N))
FoO0) = #,(00) S((x 1eft (ar,a,, M), A[]) = S(x. (A[])
(¢, k0); V] = ({¢, ko) V) S((r right (i, a;)), A[]) = S(#, (ge(ai) A[]))
(.5 = (2. 8(x,[1) S((init), A[]) = A[]

13

The result of the translation of a machine configuration, written [M], is a
set of expressions; one of them is called mandatory, while the others are called
speculative. By convention, we write mandatory([M]) to denote the mandatory
expression of the translation, and we write speculative([M]) to denote the set
of speculative expressions of the translation.

It can be easily proved that the translation algorithm terminates. Moreover,
there 1s one and only one translation of a machine configuration as long as this
machine configuration can be reached from an initial configuration.

Lemmad4. Let M be a program, and let Min;; = ({{M,init)o}, 8) be an initial con-

.
figuration. Let M be any configuration reachable from Minit: Minit p»c—l? M. There

exists only one mandatory expression and only one set of speculative expression for
the translation of configuration M, i.e. the translation is a function for configurations
accessible from the initial configuration.

If a PCKS-configuration contains a process (M, &), , the term M appears as
a subexpression of a term that results from the translation of this configuration.

Lemmab. Let pp = (M, &), be a process of a PCKS-configuration M. There exists
an applicative context A[], such that

— if process pi. is not speculative, then A{M| = mandatory([M]),

— if process pi. is speculative, A{M| € speculative([M]).
where an applicative context A[] is defined by:

All==T1 1 AIVLT | AILT M] | AL STDM] | Al#([])]
8 Equivalence of the PCKS-Machine and the CPP-Calculus

Now, we can prove that the PCKS-machine preserves the CPP-calculus.

Theorem 6. Let M be an arbitrary program of Apcke and N be the corresponding
program of Acpp (obtained by removing the pcall annotations). Let My be the machine
configuration reached from the initial configuration after n transitions, and let My be
the machine configuration reached after n + 1 transitions.

Mimie = (UM, (init))o), 9 %257 M B M, n> 0

Then, there exist two terms N', N € Acpp, such that N reduces to the mandatory term
of the translation of M1, which reduces to the mandatory term of the translation of
My (up to observational equivalence)

N —>Z;p N =pp mandatory([Mi]) —>Z;p N =0 mandatory([Ma2])

Moreover, if there exist two speculative terms e1 and es of the translations of My and
My respectively, “associated” to the same class, then e reduces to ez (up to observa-
tional equivalence).

Let e1 € speculative([M1]), ez € speculative([M-]) be two terms “associated”

. ' * ’
to the same class, then there exists e; such that ex — ., en Zepp €2

It means that, for the mandatory term, any transition in the PCKS-machine
corresponds to one (or more) transitions in the CPP-calculus (up to observational
equivalence). For the speculative terms, a transition of the PCKS-machine pre-
serves the observational equivalence in the CPP-calculus.

14

9 Related Work and Conclusion

The CEK-machine was proposed by Felleisen and Friedman [2] as a variant
of Landin’s SECD-machine [7]. The CEK-machine evaluates a language that
is based on the control operator C. When C reifies a continuation, it replaces
the current continuation by the initial one. Unlike callcc, C aborts the current
computation and requires to synchronise processes to capture a continuation.
Although both callcc and C are as expressive, C is less suitable for parallel eval-
uation because 1t reduces parallelism.

Halstead [5, page 19] gives three criteria for the semantics of parallel con-
structs and continuations in a parallel Scheme. We briefly recall them here. (1)
Programs using call/cc without constructs for parallelism should return the
same results in a parallel implementation as in a sequential one. (2) Programs
that use continuations exclusively in the single-use style should yield the same
results as in sequential Scheme, even if a parallel construct is wrapped around
arbitrary expressions. (3) Programs should yield the same results as in sequential
Scheme, even if a parallel construct is wrapped around arbitrary subexpressions,
with no restrictions on how continuations are used. Qur implementation satisfy
these three criteria for both the pcall and fork constructs.

We have based our language on the pcall construct. The future construct
is different because it introduces a call-by-name parameter-passing technique. If
we wish to prove the correctness of an implementation based on the future con-
struct, another calculus and another notion of observational equivalence should
probably be defined.

Katz and Weise [6], Feeley [1] proposed and implemented a definition of first-
class continuations in a parallel Scheme with the future construct. Besides the
construct chosen, their proposition differs from ours by the fact that contin-
uations are invoked speculatively, i.e. without knowing whether they preserve
the sequential semantics. In addition, they introduce a notion of legitimacy that
specifies whether a result is correct. By definition, a process is said to be le-
gitimate if the code it is executing would have been executed by a sequential
implementation in the absence of future. When the evaluation begins, the initial
process 1s given the legitimacy property. A process with the legitimacy property
preserves it as long as it does not create processes. When a legitimate process
p1 forks a process ps (with the future construct), ps is given the legitimacy
property, and p; loses its legitimacy. The process p; recovers its legitimacy when
the placeholder it receives gets determined by a legitimate process.

In an implementation where continuations are invoked speculatively, one can
expect more speed up, at least theoretically, although more unnecessary compu-
tations might be performed. But the example given in Section 2 is not guaranteed
to return the results in the left-to-right order if continuations are invoked specu-
latively; the leaves are only displayed in a left-to-right order when continuations
are invoked non-speculatively. In addition, Katz and Weise propose the concept
of speculation barrier, which suspends all non-legitimate processes at a given
point. This mechanism could be used to display leaves in the left-to-right order
when continuations are invoked speculatively. However, the legitimacy and the
speculation barrier do not appear to be able to model our continuations. Indeed,
the legitimacy can be considered a global property since it requires to find a
legitimacy link between the current process and the initial one. On the contrary,
the non-speculative invocation of a downward continuation that we propose re-

15

quires to detect the legitimacy of the process invoking the continuation with
respect to the process that created this continuation without knowing whether
this latter process is legitimate.

To the best of our knowledge, it is the first time that an implementation of
first-class continuations is proved to be correct in a parallel setting. The PCKS-
machine reflects the computations that can be performed in the CPP-calculus.
Consequently, this machine has the advantages of the calculus: continuations are
captured independently of the evaluation order, and downward continuations
are optimally invoked. But the machine has also its defaults: the machine 1is
too cautious when invoking an upward continuation (a continuation that is not
downward). However, in [10], we observed that many continuations have a limited
region of effect. (Intuitively, the region of effect of a continuation is the part of the
program where this continuation is accessible.) We proved that, when invoking
an upward continuation, it is sufficient to wait for the values of expressions in
its region of effect. Therefore, the non-speculative approach gives continuations
a new role: first-class continuations can be considered a way to sequentialise
operations in a parallel program; they avoid the introduction of new constructs
able to sequentialise processes in programming a language.

Acknowledgements

The anonymous referees are acknowledged for their useful comments to this work.
References

1. Marc Feeley. An Efficient and General Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. PhD thesis, Brandeis University, 1993.

2. Matthias Felleisen and Daniel P. Friedman. Control Operators, the SECD-Machine
and the A-Calculus. In M. Wirsing, editor, Formal Description of Programming
Concepts 111, pages 193-217, Amsterdam, 1986. Elsevier Science Publishers.

3. Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce Duba.
A Syntactic Theory of Sequential Control. Theor. Comp. Sci., 52(3):205-237, 1987.

4. Robert H. Halstead, Jr. Implementation of Multilisp : Lisp on a multiprocessor.
In Proceedings of the 1984 ACM Conference on Lisp and Functional Programming,
pages 9—17, Augustus 1984.

5. Robert H. Halstead, Jr. New ideas in parallel lisp : Language design, implemen-
tation. In T. Ito and Robert H. Halstead, editors, Parallel Lisp : Languages and
Systems. Japan., LNCS 441, pages 2-57. Springer-Verlag, 1990.

6. Morry Katz and Daniel Weise. Continuing Into the Future: On the Interaction of
Futures and First-Class Continuations. In Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 176—184, June 1990.

7. P. J. Landin. The mechanical evaluation of expressions. Comp. J., 6:308-320, 1964.

8. James S. Miller. Mult:Scheme : A parallel processing system based on MIT Scheme.
PhD thesis, MIT, 1987.

9. Luc Moreau. An operational semantics for a parallel language with continuations.
In D. Etiemble and J.-C. Syre, editors, Parallel Architectures and Languages Fu-
rope (PARLE’92), LNCS 14, pages 415-430, Paris, June 1992. Springer-Verlag.

10. Luc Moreau. Sound Evaluation of Parallel Functional Programs with First-Class
Continuations. PhD thesis, University of Liege, In preparation.

11. Luc Moreau and Daniel Ribbens. Sound Rules for Parallel Evaluation of a Func-
tional Language with callcc. In ACM conference on Functional Programming and
Computer Architecture, pages 125-135, Copenhagen, June 1993. ACM.

12. Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, pages 125-159, 1975.

13. Jonathan Rees and William Clinger, editors. Revised* Report on the Algorithmic
Language Scheme. Lisp Pointers, 4(3):1-55, July-September 1991.

16

This article was processed using the IATpX macro package with LLNCS style

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

