Correctness of a Distributed-Memory Model for
Scheme

Luc Moreau*

University of Southampton
L.Moreau@ecs.soton.ac.uk

Abstract. We propose a high-level approach to program distributed applications;
it is based on the annotation future by which the programmer specifies which ex-
pressions may be evaluated remotely in parallel. We present the CEKDS-Machine,
an abstract machine with a distributed memory, able to evaluate Scheme-like future-
based programs. In this paper, we focus on the issue of task migration and prove
that task migration is transparent to the user, i.e. task migration does not change
the observable behaviour of programs.

1 Introduction

Distributed systems are omnipresent: local area networks and the success of the Internet in
the past years are particular illustrations of the ubiquity of distributed computing. A major
research focus in this area has been the design of new languages or programming paradigms
to develop distributed applications, like e.g. PVM [10], MPI [8], Nexus [9], Cilk [1]. We
argue that those systems were designed to build high-performance distributed applications,
and that they favour efficiency over ease of programming. Therefore, these languages or
paradigms overwhelm the programmer with the burden of dealing with the complexity of
distribution. Some approaches even impose programming styles, with which the programmer
may not be familiar; e.g. Cilk [1] demands programs written in continuation-passing style.

Mostly-functional languages like Scheme and SML have traditionally provided the pro-
grammer with abstraction, expressiveness, first-class citizenship of objects, and automatic
garbage collection. We believe that there is a niche for a high-level approach to distributed
computing. Following Halstead’s work on MultiLisp [11], we extend a Scheme-like language
with an annotation future by which the programmer specifies which expressions may be
evaluated in parallel, possibly remotely. By definition, annotations must be transparent, i.e.
annotated programs return the same result as in the absence of annotations. This approach
is abstract because it hides the intricacies of distribution by giving the programmer the
illusion that a distributed system is programmable as a sequential one.

We consider the idealised Scheme-like language defined in Figure 1. It is a purely func-
tional language, extended with a primitive makeref to create boxes, with primitives deref,
setref! to read and modify them, and with a primitive callcc to capture first-class contin-
uations. In addition, there is a construct (future M) to create a producer-consumer type
of parallelism [11]. Intuitively, the evaluation of (future M) immediately returns an object
called placeholder, while another task evaluates the argument M in parallel. The purpose
of the latter task, called the producer, is to compute and then store the value of M in the
placeholder. The task using the placeholder is called the consumer.

For a long time, this approach has been characterised by a lack of formal semantics
due to the difficulty of providing transparent annotations for parallelism in the presence of
first-class continuations and side-effects. Recently, the author [20] defined the semantics of
future for the language of Figure 1. The goal of this paper is to extend this semantics to a
distributed framework (the proof of its correctness is available in a technical report [21]).

More specifically, the contributions of this paper are the following. i) We define
a distributed architecture able to evaluate future-based programs; ii) We prove that

* This research was supported in part by the Engineering and Physical Sciences Research Council,
grant GR/K30773. Author’s address: Department of Electronics and Computer Science, Univer-
sity of Southampton, Southampton SO17 1BJ. United Kingdom.

P e A% (Program)
M € Ay =V | (M M) | (if M M M) | (future M) (Term)
VeValuey =:=p | f | =z | (A\.M) (Syntactic Value)
p € BConst = {true, false,nil,0,1,...} (Basic Constant)
f € FConst = {cons, car,cdr, makeref, deref, setref!, callcc} (Functional Constant)
z€Vars = {z,y,2...} (Variable)

Fig. 1. Syntax of Ay

task migration is transparent to the programmer, i.e. task migration does not change the
observable behaviour of programs; i) This result is the reference semantics that we
can use to design and prove the correctness of program optimisations. The architecture
is described in Section 2. Section 3 discusses related work and is followed by concluding
remarks.

2 The Architecture

In this section, we present the CEKDS-Machine, an abstract machine with a distributed
store, which extends Felleisen and Friedman’s CEK and CEKS machines [4, 5], and the
F-PCKS-machine [20]; its state space is formally described in Figure 2.

Some operations like deref, i.e. reading the content of a box, are rather complex. Indeed,
as deref is strict?, it touches its argument, checks whether it is legitimate to access the
content of the box received in argument, and finally, reads the box content. In order to
distinguish these three operations, we add two primitives touch and sync to Agekas, the
language accepted by the CEKDS-machine; besides, we translate every program of A; into
a term of Agergs by the function X' of Figure 2, which makes the touch and sync operations
explicit.

In our distributed architecture, computational resources are called sites and are uniquely
identified by site names. A site has its own memory and can run several tasks that share
the site memory. A world is the set of sites that can be used to evaluate a program; sites
in a world communicate by exchanging messages. More specifically, in a site, we distinguish
active tasks, i.e. tasks that can be run, from suspended tasks, i.e. tasks that wait for a
message or a synchronisation. As far as communications are concerned, a site is equipped
with two spools of messages: the input spool contains pending input messages, while the
output spool contains the messages that remain to be transmitted.

A store is a finite function, also represented as a set of pairs, associating locations with
store contents. In our distributed architecture, each site has its own procedure of memory
allocation, and its proper task naming mechanism. Hence, we use the notion of qualified
location or task name, to unambiguously refer to a location or a task in the world. We now
appreciate how site-names uniquess is important to define qualified locations or task names.

We abstract a task by a triple composed of a computational state, a legitimacy [15, 20]
used to implement first-class continuations and side-effects, and a name. A computational
state is a configuration of the CEK-machine [4], which can be either Ev(M, p, k) representing
the evaluation of a term M in an environment p with a continuation s, or Ret(V, k) meaning
the return of a value to a continuation. The continuation, implemented as a data structure
called continuation code, represents what remains to do after evaluating M in Ev(M, p, k).
In conventional languages, the continuation is nothing else but the evaluation stack. The
environment is a finite function mapping variables to values.

In Figure 3, transitions between computational states specify how to evaluate the purely
functional and sequential subset of the language extended with first-class continuations;
details can be found in [4, 20, 22, 19]. Figure 4 shows the transitions that involve a collabo-
ration of a task with its site. According to (fork), the evaluation of a future allocates a new
placeholder ph and creates a new task, with a name 77, which speculatively evaluates the

2 A strict function applied to a placeholder, accesses the value that the producer task has stored
in the placehoder; this operation, called touching the placeholder, can suspend the current task
when the placeholder has not received a value yet.

w u={my,...,mn} (World) Explicit translation: X' : Ay — Acekas
meM =:=(T,0,s,5,1,0) (Site) X[z] =z if ¢ € Vars U BConst U NStP
t € Task == {(C,{,T) (Task) X[car] = Az.(car (touch z))
0 € Store ::= {(a1 X1)...(an Xn)}Store) X[cdr] = Az.(cdr (touch z))
X x=V | L | £ (Store Content) X [deref] = Az.(deref (sync (touch z)))
seS = {s1,82,...} (Site Name) X [setref!] = Azyza.(setref! (sync (touch z1)) z2)
TeT = {r,72,...} (Task Name) X'[(future M)] = (future XY[M])
u = (1, s) (Qualified Task Name) X[(Mi M2)] = (Amima.(touch m1)ma2) X[M1] X [M-]
a w={(a,s) (Qualified Location) X[(Az.M)] = (A\z.X[M])
Xﬂ(lf M1 MQ Mg)]] = (If (touch XH:M1]]) X[[MQ]] XlIMg]])

C € CoSt ::= Ev(M, p, k)(Computational State) Unload[c, W] = ¢

| Ret(V, k) Unload|(cons V1 Va), W] = (cons Unload[V1, W]
p € Env == {(z1 V1) ...(z,V,) Environment) Unload[V2, W)])
T = {q1,.-.,qn} (Input Spool) Unload[A\x.M,W] = procedure
(0] = {q1,.-.,qn} (Output Spool) Unload[b, W] = box
q R | A (Message) Unload|fe, W] = procedure
T = {t1,...,tn} (Active Tasks Set) Unload[(co k), W] = cont
S = {t1,...,tn} (Suspend Set) Unload[(ph «, s), W] = UnloadW[{a,s)], W]

U {Rlv"me}

M€ Aceras ==Vs | (M M) (Term) Free Task Name:

| (it M M M) | (future M) FN(T) = {r,(C,¢,7) € T}
Ve € SValue ==c | = | (Az.M) (Syntactic Value)
W € PValue ==c | (cl Xz.M,p) | fe (Proper Value) Store Operations:

| (cons V' V) | (cok) | b Py {(aV)}=0U {(aV)}
V €Value ==W | ph (Runtime Value) with a ¢ DOM ()
ph == (ph a, s) (Placeholder) 6(a) =V if (a« V) €0
b € Bozx == (bx a, s, 0) (Box) Ol :=V] = (0\ {(a 8(a))})
l € Leg u= (leg a, s) (Legitimacy) U{(a V)}
ceConst ==p | f (Constant)
fe € PApp == (cons V) | (setref! V) (Partial Application) Global reference:
g€ AValue == (cl Xe.M,p) | f | fc | {co k)Applicable Val.) W[(a, s)] = 6(s)
p € BConst = {true, false,nil,0,1,...,void} (Basic Constant) if (7,s,6,5,1,0) € W
f € FConst = {cons,car,cdr, makeref, deref, (Func. Cstnt)

setref!, callcc, sync, touch} Environment Operations:
fn € NStP = {cons, makeref,callcc} (Non Strict Primitives) p(z) =V if (z V) € p
x € Vars = {z,y,z...} (User Variable) plz < V] = (p\ {(z V')})
Kk € CCode ::= (init) | (k funV) (Continuation code) U{(z V)}

| (s arg M p) | (x cond(M, M,p)) it (2 V') € p

| (s det (ph,0)) | (x leg (£,0)) ple < Vl=pU{(x V)}
R € Req == Req(s, u,rc) (Request) if x ¢ DOM(p)
rc € RC u=rtouch(a) | rdet(a,V,,f) (Request Contents)

| deref(c) | rset(a, V) | rleg(¢,£)
A€ Ans == Ans(u, ac) (Answer)
ac € AC == rtouch(V) | rdet(X) (Answer Contents)

| rset(X) | deref(V) | rleg

Itouch(W,0,s) = W L~og b
Itouch({ph a, s),6,s) = ltouch(6(),0,s) if O(a) # L (leg a,s) ~5 L if () # L and (a) ~g ¢
Itouch({ph a, s),6,s) = (ph a,s) if O(a) = L
Itouch({ph a, s1),0,s) = (ph a,s1) if s1 # s L~ b

(leg a, s1) ~w Lif 0, (o) # L
and W[(a, s1)] ~w ¢

Fig. 2. State Space of the CEKDS-machine

Ev((M N),p,k) —cex EV(M, p, (k arg N, p)) (operator)

Ev(Az.M, p,k) —cer Ret((cl Az. M, p), k) (lambda)

Ev(c, p,k) —cer Ret{c, k) (constant)

Ev(z, p,k) —cer Ret{p(z), k) (variable)

Ret(V, (k arg N, p)) —cer EV(N, p, (k fun V)) (operand)

Ret(V, (k fun (cl Az.M, p))) —cer EV(M, plz + V], k) (apply)
Ev((if M M, M), p,k) —cer Ev(M, p, (k cond (M1, M2, p))) (predicate)
Ret(V, (k cond (M1, Ma,p))) —cer Ev(Ma2,p,k) if V = false (if else)
—cek EV(M1,p,k) if V # false (if then)

Ret(V, (k fun callcc)) —cer Ret{{co k), (k fun V)) (capture)

Ret(V, (x' fun {(co k))) —cer Ret(V, k) (invoke)
Ret(V, (k fun V1)) —cer Ret((Vi V), k) if Vi € PApp (partial apply)

Ret(V, (k fun (cons V1))) —cer Ret{(cons V1 V), k) (cons)
Ret((cons Vi V2),(k fun car)) —ccr Ret(Vi, k) (car)
Ret((cons Vi V), (k fun cdr)) —cer Ret(Va, k) (cdr)
Ret(V, (k fun f)) —ccr Ret(d(f, V), r) (9)

Ret(V, (k fun V1)) —cer Ret{error, (init)) if Vi ¢ AValue (apply error)

Fig. 3. Transitions between computational states

continuation of future with the placeholder ph. After transition, the initial task 7 evaluates
the argument of future. We shall explain later the purpose of the legitimacies £ and /.

A new box can be created by applying the functional constant makeref on a value. As a
result, a new location is allocated in the local store, and a new box object, which refers to
the new location and the site name, i.e. the qualified location, is returned.

In order to illustrate the behaviour of the machine, we consider the operation of reading
a box, which will lead us to explain some rules of Figures 4, 5, 6, and 7; similar comments
apply to box modification. A task considers that a box is local if the site name held in the
box is the name of the current site. According to (deref local) in Figure 4, if the box is local,
the value contained in the local store at the given location can be returned. Otherwise, rule
(deref remote) adds to the output spool a request addressed to the site that allocated the
box; in addition, the task is suspended, which is modelled by its transfer from the set 7" of
runnable tasks to the set S of suspended tasks. We represent requests as triples composed
of the destination site, the qualified name of the requesting task, and the message itself
describing the type of the request. In the present case, the message deref(a’) means that the
distant site is asked to supply the content of location a.

Sites communicate according to the rules of Figure 5. In rule (migrate request), two
sites exchange requests by moving them from the output spool of the source site to the
input spool of the destination site. Figure 6 shows how a site handles incoming requests. In
the case of rule (request deref), the content of the location is packaged up into an answer
which must return back to the task that initiated the request; we again can see the interest
of the qualified task name which indicates the name of the site that emitted the request.
The answer is entered in the output spool and is migrated, like a request, by rule (migrate
answer). Figure 7 shows the rules that handle incoming answers. The arrival of the answer
deref (V) awakens the task waiting for this answer by transferring it back to the set of
runnable tasks, with the value V' as the content of the box.

Rule (fork) allows us to create new tasks on the current site. In Figure 5, rule (migrate
task) shows that a task may be migrated from a site 1 running more that one active task
to a site 2 without any active task. We see that a task is migrated by transferring its
computational state, i.e. among others its continuation, and its legitimacy.

{(c,t,m)} v T,60,5,5,1,0)

—=s ({ (C1,4,7) } U T,0,s,5,1,0) if C —cer C1 (sequential)
({ (Ev{(future M), p,x),¢,7) } U T,0,s,5,1,0)
s <{ <EV<M7/)7 (‘l'i det ph,£1)>,£,‘l'), <REt<ph7”>7Z177—1> } U T,61,s,5,1, O> (fOTk)

with ph = (ph a, s), {1 = (leg a1,s),01 =0 W { (a L) (a1 L) },mn g FN(TUS)U{r}
({ (Ret(V, (k fun makeref)),¢,7) } U T,0,s,5,I,0)
—s ({ (Ret(b,k),¢,7) } U T,01,s,5,1,0) with b = (bx c,5,£),01 =0 {(a V)} (makeref)
({ (Ret({bx a, 5, (), (k fun deref)),l1,7) } U T,0,s1,5,I,0)
—s ({ (Ret(0(a), k), l1,7) } U T,0,s1,5,1,0) ifsi=s (deref local)
—s (T, 0,51,{ (Ret({bx a, 5,0), (x fun deref)),l1,7) } U S,I1,01) if s1 #s (deref remote)
with O1 = { Req(s, (7, s1),deref(a)) } U O
({ (Ret(V, (k fun (setref (bx v, s,¢)))),¢1,7) } U 1,0,51,5,1,0)
—s ({ (Ret(void, k), €1,7) } U T,0la:=V],51,5,1,0) ifsi=s (setref local)
—s (T, 0,51,{ (Ret(V, (k fun (setref (bx a,s,£)))),l1,7) } U S,I,01) (setref remote)
if 51 # s, with O1 = { Req(s, (7, s1),rset(a,V)) } U O
({ (Ret(V, (k det (ph a, s), (leg a1,s))),l2,7) } U T,0,s2,5,1,0)
—s (T1,01,52,51,11,0) if sa =35, 6(a)=L (determine local)
with I = (I U I2), Ty = (T'UTz2),S51 = (S\ (12U Ty)),0: = 0[ar := L] := V]
with I» = {Req(ss, (11, s4), rtouch(a)), Req(ss, (11, s4), rleg((leg a1, s), (1)) € S}
with 75 = {(Ret((ph o, s), (x' fun touch)), f3,71) € S} U
{(Ret(V1, (k' leg ({leg a1,s),4))),L5,71) € S}
—s ({ (Ret(V,K),la,7) } U T,60,52,5,1,0) if sa=s, 6(a)#£L (determine localn)
—s (T, 0,s2,{ (Ret(V, (k det (ph a, s),(leg au1,s))),l2,7) } U 5,1,01) (determine remote)
if s2 # s with O1 = { Req(s, (7, s2), rdet(a, V,a1,¢2)) } U O
({ (Ret(V, (k fun touch)),¢,7) } U T,6,s,5,1,0)

—s {{ (Ret(ltouch(V,0,s),k),4,7) } U T,6,s,5,1,0) (touch local)
if Itouch(V, 0, s) € PValue

—s (T, 0,s,{ (Ret{(ph a, s51), (k fun touch)),?¢,7) } U S,I,0:) (touch remote)
if Itouch(V,0,s) = (ph a, s1), s # s1, with O1 = {Req(s1, (7, s), rtouch(a))} U O

—s (T, 6,s,{ (Ret{{ph a, s1), (k fun touch)),¢,7) } U S,I,0) (touch suspend)

if Itouch(V, 8, s) = (ph a, s1), s = s1, O(a)=L

({ (Ret(V, (k fun sync)),¢,7) } U T,0,s,5,1,0)
—s ({ (Ret(V, (k leg (£,¢1))),¢,7) } U T,0,5,5,1,0) if V =(bx a,s1, 1) (synchronise)
—s ({ (Ret(error, (init)),¢,7) } U T,0,5,5,1,0) if V & Box (synchronise error)
({ (Ret(V, (k leg (¢,¢1))),42,7) } U T,6,s,S,1,0)
—s ({ (Ret(V,k),la,7) } U T,60,5,5,1,0) if {~p ly (leg local)
—s (T,6,s,{ (Ret(V, (k leg ({leg o, 51),(1))),l2,7) } U S,I,01) (leg remote)
if {~p (leg a,s1), s1 # s, with O1 = { Req(s1, (7, s), rleg({leg a, 51),¢1)) } U O
—s (T,0,5,{ (Ret{V, (k leg ({leg a, 8),£1))),l2,7) } U S,I,0) (leg suspend)

if £~ (leg a,s), L +g 1, O(a)=1L

Fig. 4. Site Transitions

{{{ (C1,41,71) } U T1,0,51,51,11,01),(0,02,82,52,12,02)} U W (migrate task)
—e {(T1,0, 51,51, 11,01), ({ (C1,l1,72) },02,52,52,12,02)} U W
if T1 #0, with 72 & FN(S)
{(T1,61,51, 51,11, { Req(sz, (73, 83),7¢) } U O1),(T5,02,s2,52,12,02)} U W (migrate request)
—e {(T1,01,51, 51, 11, 01), (T, 02, s2, S2,{ Req(sz, (13,53),7¢) } U I5,02)} U W
{(T1,61,51,51,11,{ Ans(72, s2,ac) } U O1),(T2,02,s2,52,12,02)} U W (migrate answer)
—e {(T1,01,51,51,11,01),(T5,602,82,S2,{ Ans(T2,52,ac) } U I,02)} U W

Fig. 5. Communications between sites

<T70757S7{ Req(57<7—’ 52>7deref(a)) } U 170)

—s (T,0,s,5,1,{ Ans(t, s2,deref(0(a))) } U O) (request deref)
(T,0,s,S,{ Req(s, (T, s2),rset(e, V')) } U I,0)

—s (T,61,s,5,1,{ Ans(r,s2,rset) } U O) with 6; = 0[a:=V] (request set)
(T,6,s,S,{ Req(s, (T, s2), rdet(c, V,1,£)) } U I,0)

—s (T1,01,5,51,11,{ Ans(t, s2,rdet(6())) } U O) if 6(a)=L (request det first)

with Ih = (I U L), Ty = (TUT),S1 = (S\ (I2 U T»)),61 = 0la := V][ay := (]
with I = {Req(ss, (71, s4), rtouch(a)), Req(ss, (11, s4), rleg({leg a1, s), (1)) € S}
with 7o = {(Ret({ph «, s), (x fun touch)),l1,71) € S} U

{(Ret(V2, (k leg ((leg a1, s),01))),l2,71) € S}

—s (T,0,s,5,I,{ Ans(T, s2,rdet(8(a))) } U O) if O(a)#L (request det mult)
(T,0,s,S,{ Req(s, (r, s2), rtouch(a)) } U I,0)

—s (T,0,s,5,1,{ Ans(r, s2, rtouch(ltouch({ph a, s),6,s))) } U O) (request touch local)
if Itouch({ph v, s),6,s) € PValue, sz # s

—s (T, 0,s,5,{ Ans(t, s2, rtouch(Itouch({ph «, s),6,s))) } U I,0) (request touch local')
if Itouch({ph a, s),8,s) € PValue, s2 =s

—s (T,0,s,5,1,{ Req(ss, (1, s2), rtouch(a1)) } U O) (request touch remote)
if Itouch((ph «, s),8,s) = (ph ai,ss), s # s3

—s (T,0,s,{ Req(s, (7, s2),rtouch(a1)) } U S,I,0) (request touch suspend)

if Itouch((ph a, s),0,s) = (ph a1,s), O(a1)=L
<T7 0,s,5, { Req(57 <T7 82>7 rleg(&Zl)) } u I, O)

—s (T,0,s,5,1,{ Ans(r,sa,rleg) } U O) if l~sp l1,50# s (request leg local)

—s (T1,0,s,5,{ Ans(r,s2,rleg) } U I,0) if {~sg {1,520 =5 (request leg local)

—s (T,0,s,5,1,{ Req(ss, (1,s2),rleg((leg a, s3),£1)) } U O) (request leg remote)
if £ ~g (leg a,s3), s # s3

—s (T,0,s,{ Req(s, (7, s2),rleg({leg , s3),01)) } U S,I,0) (request leg suspend)

if £~ (leg a,s), O(a)=L, (gl

Fig. 6. Handling of Requests

According to (fork), the effect of evaluating (future M) is to allocate a placeholder that
a new task speculatively passes to its continuation. The original task, which evaluates M,
acts as a producer for the placeholder value, while the new task acts as a consumer.

A producer task has obtained the value V of a future argument, when V' is returned to
a continuation code of the form (x det ph,{); the producer task is then expected to store V'

(T, 0,s,{ (Ret(V,(k fun deref)),¢,7) } U S,{ Ans(r,s,deref(V1)) } U I,0)

—s ({ (Ret(V1, k), 0,7y } U T,0,s,5,1,0) (answer deref)
(T,0,s,{ (Ret(V,(k fun (setref b))),¢,7) } U S,{ Ans(r,s,rset) } U I,0)

—s ({ (Ret({void, k), ¢, 7) } U T,6,s,5,1,0) (answer rset)
(T, 0,s,{ (Ret(V,(r det ph,?)),lr,7) } U S,{ Ans(r,s,rdet(X)) } U I,0)

—s(T,6,s,5,1,0) if X=L1 (answer det first)

—s ({ (Ret(V,k),l1,7) } U T,0,s,5,1,0) if X#L (answer det mult)
(T, 0,s,{ (Ret(ph, (x fun touch)),t,7) } U S,{ Ans(r,s,rtouch(V)) } U I,0)

—s ({ (Ret(V,k),¢,7) } U T,6,s,5,1,0) (answer touch)
(T,0,s,{ (Ret(V, (x leg (¢,01))),l2,7) } U S,{ Ans(r,s,rleg) } U I,0)

—s ({ (Ret(V,k),l2,7) } U T,6,s,5,1,0) (answer leg)

Fig. 7. Handling of Answers

in the placeholder ph; this operation is called determining the placeholder. Depending on
whether the current task is running on the site where the placeholder was allocated, rules
(determine local) or (determine remote) take care of assigning the value V' to the place-
holder ph. However, placeholders are not boxes because they are defined as datastructures
that can receive one value at most [11]; placeholders are like single-assignment variables in
CC+ [2] and PCN [7]. As opposed to conventional languages, the language A; has first-
class continuations which allow the programmer to write expressions that “return” multiple
values; in other words, in Ay, different values can be passed to the same continuation. As a
result, we distinguish the case where a placeholder is not assigned, in rules (determine local)
and (request det first), from the case where it is already assigned, rules (determine localn)
and (request det mult). In the former case, the placeholder is updated and the producer task
ends its evaluation. In the latter case, the value is returned to the continuation of future,
as if no future had existed, following Katz and Weise’s implementation [15, 3, 20]. Let us
observe that transitions are atomically executed in order to ensure a sound behaviour of
(determine local) and (determine localn).

Strict primitives introduce synchronisations between the consumer task of a placeholder
and its producer task: they require their arguments to be proper values, i.e. values different
from placeholders; strict primitives are said to touch their argument. The translation X
makes the touch action explicit by the call to touch, whose purpose is to return a proper
value. We use an auxiliary function ltouch, displayed in Figure 2, which touches a value with
respect to a local store # of a site s. The function ltouch can return three results: a proper
value, an undetermined placeholder that was allocated on site s, or a placeholder that was
allocated on a different site. In the first case, the touch operation succeeds (touch local);
in the second case, the task is suspended as long as the placeholder remains undetermined
(touch suspend); in the third case, a request rtouch(a) is sent to the remote site (touch
remote). The remote site behaves similarly: it can return a proper value, suspend the request,
or pass it to another site. Tasks or requests that are suspended when touching a placeholder
are reactivated when this placeholder gets determined, cfr. (determine local) or (request det
first). Let us observe that the touch operation can initiate exchanges of messages between
sites; as soon as a proper value is found, it is directly returned back to the site that started
the operation, thanks to the qualified task name.

So far, our explanations have ignored legitimacies. Following Katz and Weise [15], we
use a notion of legitimacy to keep track of the control flow that would exist if evaluation
was sequential. An initial legitimacy is allocated when we start to evaluate a program, and
each new task is given a new legitimacy. Legitimacies, like placeholders, are datastructures
whose only slot can receive one value at most; unlike placeholders, legitimacies are not first-
class values. When a placeholder gets determined, the consumer task becomes dependent
on the value of the placeholder; hence, the legitimacy of the producer task, recorded in the

continuation (k det ph £), is stored into the legitimacy of the consumer task. As evaluation
proceeds, chains of legitimacies get formed into memory. The relation £; ~»§ (5 states that
there is a path from legitimacy ¢; to legitimacy f5 in the local store # of site s, which means
that control has flowed from a task with legitimacy £2 to a task with legitimacy /;.

As we want future to be an annotation, every program should return the result that it
would produce when evaluated sequentially in the absence of future. The solution adopted
in our semantics is to perform causally-dependent [24] box accesses in the same order as
in a sequential implementation; the solution relies on legitimacies. The translation of the
primitive deref, Az.(deref (sync (touch z))), touches and then applies sync on its argument.
The primitive sync behaves as the identity function if the legitimacy of the current task
leads to the legitimacy associated with the box. In other words, sync acts as a synchro-
nisation barrier by ensuring that all accesses to the box (read or write) that a sequential
implementation would have performed before the current access are actually done in the
parallel machine, and all accesses that a sequential implementation would perform after the
current one remain to be performed by the parallel machine. The primitive sync suspends
a task that illegitimately tries to access a box; it will be reactivated by (determine local) or
(request det first).

In order to determine when a computation ends, the initial configuration contains a
box aimed at receiving the final value. Consistent box accesses guarantee that the box will
receive the legitimate final value (if there exists one).

It should be observed that using legitimacies to synchronise box accesses does not impose
a total order on those operations, but a partial order. This property ensures that parallelism
can exist for programs written in a mostly-functional style, where one generally considers
that side-effects are performed locally in different modules or functions.

Wi H;;m Wa if Wi —=cWa, or Wi ={mi}UW, Wa={m2}UW, mi — ma,
with m =1 if £ ~»w, o, with £ the legitimacy of the task related to the transition
m =0 otherwise

' . ot
Wy = mEm) G W ST W and Wa "™ Wy (transitive)

Conventions: Wi —gs Wa if Wi =57 Wa; Wy =5, Wy if Wi =5 Wa,n > 0;
Wi =1 Wa if Wi =™ Wa,n > 0.
Initial world for P, InitWorld[P] = {mo,m1,...,m,}, with

Initial Store: 6p = {(ao L) (a1 L)} Initial Legitimacy: ¢o = (leg a1, so)
Initial Box: bo = (bx aw, 0, {o) Initial Environment: po = {(z bo)}
mo = ({(Ev{((\wv.(setref! (sync x) v)) X[P]), po, (init)), Lo, 70) }, s0, 60,0, 0,)
Empty Sites: m; = (0,s;,0,0,0,0) i=1,...,n

Final World: Final[Wy] if Ws[(ao, s0)] # L.

W if there exists Wo, Wy, such that Wy = InitWorld[P], Wo — 5, Wy,
Final]Wy] with W = Unload(Wp[{ao, s0)], Wy)

1 ifVie N,IW; € World,ni,mi € N,W; =50 Wii1 such that m; > 0
Wo = InitWorld[P)

evalys (P) =

Fig. 8. Evaluation Relation

We now have all the components to define an evaluation relation that associates pro-
grams with their observable behaviour. The function Unload replaces each function, box,
or continuation by a tag; in addition, Unload touches every placeholder appearing in the
result. As values can be spread over different sites, Unload takes the world in argument.

Divergence should be defined with the greatest care, because future has the ability to
create new tasks, but the scheduler may elect to evaluate any of them. One task only is
mandatory; all the others are speculative. A task with legitimacy ¢ is mandatory if £ leads

to the initial legitimacy £y in the current world W, which is written £ ~»y fo. Figure 8
defines the relation —:™ [6] to denote reductions that involve n steps among which m are
mandatory. According to the evaluation relation evalys, a program is said to be divergent,
i.e. its value is L, if it leads to an infinite transition sequence that regularly often contains
mandatory transitions.

The soundness of the CEKDS-machine is estalished by proving that its evaluation rela-
tion evaly, is equal to the sequetial evaluation function of the CEK-Machine.

Theorem 1 (Soundness) evaly, = evaly, O

3 Discussion and Related Work

This paper builds upon previous work about annotations for parallelism in functional lan-
guages. For a long time, research has focused on implementation issues and efficient designs
[15, 3, 28, 14, 13, 11, 18]. Parallelism by annotations has been formalised recently only.
Flanagan and Felleisen [6] have defined the semantics of future in a purely functional lan-
guage. The author [19, 20] has proposed a semantic framework for continuations and side-
effects in a language with the annotations pcall, fork, and future. This paper is the first to
present a formal semantics for futures, side-effect, first-class continuations, and distribution.
Our research is part of a project which aims at building a Virtual Multicomputer [23], which
provides a soft architecture to support distributed applications, transcending the details of
hardware architecture. The “distribution by annotation” paradigm is our contribution to
this virtual multiprocessor, which provides the user with the view that a distributed network
of computers is programmable as a sequential processor.

Both compile-time and runtime improvements could boost the performance of our ar-
chitecture. Our semantics is a dynamic semantics, and there are opportunities to improve it
using static analysis. Flanagan and Felleisen’s [6] touch analysis remove provably redundant
touch operations in purely functional future-based programs, using a set-based analysis [12];
extending their analysis to side-effects and first-class continuations would be desirable for
the CEKDS-machine. Similarly, an analysis removing unnecessary sync operations would
greatly reduce the cost of synchronisations associated with side-effects.

As far as the runtime system is concerned, a realistic implementation needs a distributed
garbage collection; the approach “garbage collecting the world” [16] appears to be a suitable
candidate. Similarly, we have to address the issue of process collection. Miller’s MultiScheme
[17] task collection is done during garbage collection: a task can be reclaimed if the place-
holder that it determines is accessible from the gc roots.

According to Figure 4, every future creates a new task on the current site. This process
creation strategy is referred to as eager task creation [11, 18, 3]. However, future-based
programs can generate far more tasks than the number of sites in a CEKDS-world. In order
to avoid the expensive cost of task creation, a lazy task creation [18, 3] strategy can be used:
it postpones the creation of a task until a processor is ready to run it. A simple modification
of our rules could make this strategy explicit. Though rule (migrate task) does not enforce
any migration strategy, we think that task stealing [1, 3] would be appropriate; according
to this strategy, a processor that becomes idle steals a task from a heavily loaded processor.

Queinnec’s ICSLA [27, 24, 26, 25] is a dialect of Lisp offering primitives for paral-
lelism, transparent migration of objects, and maintenance of their cache coherence over
the network. Queinnec’s purpose is different from ours: as he does not rely on transparent
annotations, he does not preserve the sequential meaning of programs. However, he pro-
poses a caching mechanism which is certainly lacking in our CEKDS machine. Although
his notion of coherency is not suitable to the CEKDS machine because it is not relative to
the sequential evaluation, the protocol that he proposes with lazy propagation of updated
values is an interesting technique that would be worth investigating for our semantics.

4 Conclusion

Traditional approaches to distributed computing favour high-performance over ease of pro-
gramming. We believe that there is a need for a high-level paradigm to program distributed
systems. By supplying transparent annotations to create remote computations, we provide

the programmer with the illusion that a distributed system is programmable like a sequen-
tial one, because the runtime system itself takes care of task and data migrations, race
conditions, or critical sections.

This paper is the first step in this direction: we propose an abstract machine with a
distributed store and prove that task migration is transparent to the user. Work is under
way to refine this semantics and to precisely investigate the issue of data migration and
distributed garbage collection within this framework.

References

1. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, C. E. Leiserson, Keith H.
Randall, and Y. Zhou. Cilk: an Efficient Multithreaded Runtime System. In PPOPP’95, 1995.

2. K. M. Chandy and Kesselman C. CC++: A Declarative, Concurrent, Object Oriented Pro-
gramming Notation. Technical Report CS-92-01, California Institute of Technology, 1992.

3. Marc Feeley. An Efficient and General Implementation of Futures on Large Scale Shared-
Memory Multiprocessors. PhD thesis, Brandeis University, 1993.

4. M. Felleisen and D. Friedman. Control Operators, the SECD-Machine and the A-Calculus. In
Formal Description of Programming Concepts I1I, pages 193—217, 1986. Elsevier Pub.

5. Matthias Felleisen and Daniel P. Friedman. A Reduction Semantics for Imperative Higher-
Order Languages. In PARLE’87, LNCS 259, pages 206—223. Springer-Verlag, 1987.

6. Cormac Flanagan and Matthias Felleisen. The Semantics of Future and Its Use in Program
Optimization. In POPL’95. Also in Technical Reports 238, 239, Rice University, 1994.

7. 1. Foster, R. Olson, and S. Tuecke. Productive Parallel Programming: The PCN Approach.
Scientific Programming, 1(1):51-66, 1992.

8. Message Passing Interface Forum. A Message-Passing Interface Standard. Technical report,
University of Tennessee, Knoxville, Tennessee, June 1995.

9. I. Foster, C. Kesselman, and S. Tuecke. The Nexus Apporach to Integrating Multithreading
and Communications. Math. and Comp. Sci. Division, Argonne National Laboratory, 1995.

10. Al Geist and al. PVM 3 User’s Guide and Reference Manual. Technical report, Oak Ridge
National Laboratory, Knoxville, Tennessee, May 1993.

11. Robert H. Halstead, Jr. New Ideas in Parallel Lisp : Language Design, Implementation. In
Parallel Lisp : Languages and Systems, LNCS 441, pages 2-57, 1990.

12. Nevin Heintze. Set-Based Analysis of ML Programs. In Proceedings of the 1994 ACM Confer-
ence on Lisp and Functional Programming, pages 306317, Orlando, Florida, June 1994.

13. Takayasu Ito and Manabu Matsui. A Parallel Lisp Language Pailisp and its Kernel Specifica-
tion. In Parallel Lisp : Languages and Systems, LNCS 441, pages 58-100, 1990.

14. Takayasu Ito and Tomohiro Seino. On Pailisp Continuation and its Implementation. In Pro-
ceedings of the ACM SIGPLAN workshop on Continuations CW92, pages 73-90, 1992.

15. Morry Katz and Daniel Weise. Continuing Into the Future: On the Interaction of Futures and
First-Class Continuations. In LFP’90, pages 176-184, June 1990.

16. Bernard Lang, Christian Queinnec, and José Piquer. Garbage Collecting the World. In
POPL’92, pages 39-50, Albuquerque, New Mexico, 1992.

17. James S. Miller. MultiScheme : A Parallel Processing System Based on MIT Scheme. PhD
thesis, MIT, 1987.

18. Eric Mohr, David A. Kranz, and Robert H. Halstead. Lazy Task Creation : a Technique for
Increasing the Granularity of Parallel Programs. In LFP’90, pages 185-197, June 1990.

19. Luc Moreau. Sound Evaluation of Parallel Functional Programs with First-Class Continua-
tions. PhD thesis, University of Liege, June 1994. Also available by anonymous ftp from
ftp.montefiore.ulg.ac.be in directory pub/moreau.

20. Luc Moreau. The Semantics of Scheme with Future. In In ACM SIGPLAN International
Conference on Functional Programming (ICFP’96), Philadelphia, May 1996.

21. Luc Moreau. Correctness of a Distributed-Memory Model for Scheme. Technical report M96/3,
University of Southampton, 1996.

22. Luc Moreau and Daniel Ribbens. The Semantics of pcall and fork. In PSLS 95 - Parallel
Symbolic Langages and Systems, LNCS 1068, Beaune, France, October 1995.

23. Julian Padget. Controlling (Virtual) Multicomputers. In Massively Parallel Computer Systems
(MPCS’94), pages 102-112. IEEE Computer Society Press, 1994.

24. Christian Queinnec. Locality, Causality and Continuations. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming, Orlando, Florida, June 1994.

25. Christian Queinnec. Sharing mutable objects and controlling groups of tasks in a concurrent
and distributed language. In TPPP’94, LNCS 700, pages 70-93, Sendai (Japan), 1994.

26. Christian Queinnec. DMEROON: a Distributed Class-based Causally-coherent Data Model:
Preliminary Report. In Parallel Symbolic Languages and Systems., LNCS 1068, 1995.

27. C. Queinnec and D. De Roure. Design of a Concurrent and Distributed Language. In Parallel
Symbolic Computing: Languages, Systems and Applications, LNCS’748, p. 234-259, 1992.

28. Pete Tinker and Morry Katz. Parallel Execution of Sequential Scheme with ParaTran. In
LFP’88, pages 28-39, 1988.

This article was processed using the IXTEX macro package with LLNCS style

