Cahiers GUTenberg n° 9 — Juillet 91

Programmer dans un langage
fonctionnel parallele avec continuations

Luc Moreau

Service d’Informatique, Institut d’Electricité Montefiore, B28
Université de Liége, Sart-Tilman, 4000 Liége, Belgique
moreau@montefiore.ulg.ac.be

Résumé

Dans cet article, nous montrons que la méthodologie de program-
mation fonctionnelle avec continuations peut étre appliquée pour
réaliser des applications paralleles. Cette approche est rendue possible
grace a des opérateurs pour le parallélisme qui sont transparents. La
définition de ces opérateurs se base sur une notion de métacontinuation
représentant un ordre d’évaluation séquentiel de gauche a droite. Une
définition d’un langage fonctionnel avec opérateurs transparents pour
le parallélisme est donnée sous forme d’une traduction vers un langage
fonctionnel possédant 4 primitives pour le parallélisme du type CCS.

1. Introduction

On considere habituellement qu’il existe deux tendances pour introduire
explicitement le parallélisme dans les langages fonctionnels. D’une part, des
constructions du type future, pcall peuvent étre ajoutées au langage tout
en conservant ses caractéristiques fonctionnelles (MultiLisp [2], [3]). Cela
signifie que la méthodologie de programmation fonctionnelle ne doit pas
étre modifiée pour développer des applications paralléles. D’autre part, on
peut ajouter des constructions pour créer des processus et des canaux de
communication ainsi que pour communiquer entre processus d’une facon
semblable & CCS [14]; différentes implémentations de ce type furent réalisées
pour ML [15] (PFL [9], CML [22]). Parmi les avantages de cette derniére
approche, ’on peut citer une sémantique non seulement intuitive mais aussi
assez simple [13]. Par contre, elle impose au programmeur d’adopter une
nouvelle méthodologie de programmation pour développer des applications
paralleles car ce langage n’est plus fonctionnel.

Luc Moreau

Afin de pouvoir conserver une méthodologie de programmation
fonctionnelle, il est important que les programmes utilisant les constructions
pour le parallélisme retournent les mémes résultats que les versions
séquentialisées de ces programmes, c’est-a-dire les mémes programmes
desquels les constructions pour le parallélisme ont été retirées. On dénomme
transparence cette propriété des opérateurs de parallélisme. Des lors, on peut
considérer les constructions transparentes comme de simples annotations
pour une exécution parallele.

Le langage Scheme [21] fait lui aussi l'objet d’une parallélisation.
L’approche couramment adoptée est celle qui consiste & conserver les
caractéristiques fonctionnelles en ajoutant la construction future. En outre,
Scheme possede des continuations de premiére classe dont l’expressivité
pour des applications séquentielles a été montrée dans [5], [6], [7].
Malheureusement, l'introduction du parallélisme dans Scheme souleve le
probléeme de la définition de la notion de continuation dans un langage
parallele. Parmi les différentes solutions rencontrées ([11], [8], [10], [4] et
[18]), deux retiennent particulierement l’attention. D’une part, Katz et Weise
[10] proposent une implémentation d’un opérateur future transparent en
introduisant une notion de 1égitimité. D’autre part, Queinnec [18] donne une
sémantique dénotationnelle pour un dialecte de Scheme appelé Polyscheme,
sans pour autant avoir la propriété de transparence mais en proposant un
nouveau style de continuations.

Dans [16], nous avons donné une sémantique opérationnelle pour un
langage fonctionnel avec continuations et constructions transparentes pour
le parallélisme. Cette sémantique est basée sur une notion de continuation
d’ordre supérieure. D’autre part, dans [17], nous faisons une comparaison
entre une sémantique dénotationnelle basée sur une notion de continuation
d’ordre supérieur et une sémantique dénotationnelle basée sur une notion
de légitimité semblable a celle proposée par Katz et Weise dans leur
implémentation. La notion de continuation d’ordre supérieur permet de
réduire le calcul spéculatif par rapport a la notion de légitimité en étant

plus conservative lors de 'application de continuations.

Dans ce papier, nous donnons différents exemples de programmation
avec les continuations et montrons comment ils peuvent étre parallélisés.
En particulier, nous reprenons le style de programmation par coroutines
[6], [7] qui se préte particulierement bien & une parallélisation. En plus, nous
montrons quelles différences peuvent exister entre un langage avec opérateurs
transparents et un langage non transparent tel que PolyScheme proposé

Programmer dans un langage fonctionnel paralléle avec continuations

par Queinnec. Dans une seconde partie, nous introduisons brievement la
notion de continuation d’ordre supérieur et grace a elle, nous donnons
une sémantique opérationnelle d’un langage fonctionnel parallele avec
continuations.

2. A¢ : un langage fonctionnel parallele avec

continuations

Cet article présente une méthodologie de la programmation dans un
langage avec continuations et parallélisme que nous appellerons Aq. 11 est
défini comme le sous-ensemble fonctionnel de Scheme auquel on ajoute
call/cc et des constructions pour le parallélisme. Par défaut, on suppose que
I’évaluation est séquentielle dans un ordre de gauche a droite sauf lorsque
le parallélisme est explicitement introduit par une des trois constructions
suivantes :

Un processus p; évaluant (fork exp) dans une séquence, crée un
processus po évaluant exp, la valeur de 'expression fork est non spécifiée.
Le processus p; continue son évaluation en parallele avec ps.

Un processus p; évaluant l'expression (pcall M N) crée un processus
po évaluant M et un processus p3 évaluant N. Quand les deux valeurs sont
calculées, I'application de la valeur de M & la valeur de N est faite!.

Un processus p; évaluant I'expression (future exp) crée un processus
po évaluant exp; la valeur de la forme future est un placeholder qui est
une structure de donnée destinée a recevoir une valeur, la valeur calculée
par le processus po. Lorsque le placeholder contient une valeur on dit qu’il
est résolu. Dans MultiLisp, on fait une distinction entre les fonctions strictes
demandant des placeholders résolus afin d’utiliser la valeur qu’ils contiennent
et les fonctions non strictes ne demandant pas que les placeholders soient
résolus. Si un processus applique une fonction stricte & un placeholder non
résolu, il est suspendu jusqu’a sa résolution. Dans A, nous supposerons que
toutes les fonctions sont non strictes (4 la maniére des fonctions Scheme
vis-a-vis d’une valeur retardée par delay); on introduit une seule fonction
stricte forcant la suspension d’un processus lorsqu’un placeholder n’est pas
résolu : touch (I’équivalent de force pour les streams).

L'Comme on le verra plus loin, p; est arrété apres avoir créé ps et ps; un de ceux-ci
réalisera ’application et 'autre sera aussi arrété.

Luc Moreau

3. Exemples de programmation

Nous allons donner quelques exemples de programmes fonctionnels et
montrer comment ils peuvent étre étendus en des versions paralléles.

3.1. La fonction search-first

Le premier exemple consiste en une recherche en profondeur de gauche a
droite d’une S-expression & la recherche d’un atome satisfaisant un prédicat
donné. Une version séquentielle est donnée par

(define (search-first tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)

(cond ((atom? tree) (if (pred tree)
(exit tree)

>0
(else (begin (loop (car tree))

(loop (cdr tree))))))))
(loop tree)))))

Lorsqu’un atome satisfaisant le prédicat est trouvé, la continuation exit
existant & ’entrée de la fonction search-first est appliquée. Cette version
peut étre légerement modifiée en tenant compte du caractére de premiere
classe et de durée de vie infinie des continuations. Lorsqu’on trouve un atome
satisfaisant le prédicat, on le retourne ainsi que la continuation existant a ce
moment :

(define (search-first tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((atom? tree) (if (pred tree)
(call/cc
(lambda (next)
(exit (list tree next))))
>0))
(else (begin (loop (car tree))
(loop (cdr tree))))))))
(loop tree)))))

Programmer dans un langage fonctionnel paralléle avec continuations

L’intérét de cette version est que, apres avoir trouvé le premier atome
vérifiant le prédicat, il est possible de reprendre le calcul et de trouver le
second en appliquant la continuation next.

Afin de paralléliser ce programme, on peut effectuer des recherches sur
le sous-arbre de gauche et le sous-arbre de droite en parallele au lieu de les
faire séquentiellement. Cela peut étre fait en annotant le premier appel de la
fonction loop sur le sous-arbre de gauche & 'aide de la construction fork.

(define (search-first tree pred)
(call/cc
(lambda (exit)
(letrec ((loop (lambda (tree)
(cond ((atom? tree) (if (pred tree)
(call/cc
(lambda (next)
(exit (list tree next))))
*0))
(else (begin (fork (loop (car tree)))
(loop (cdr tree))))))))
(loop tree)))))

Lorsqu’un processus évalue ’expression (fork (loop (car tree))),un
nouveau processus est créé pour évaluer ’expression (loop (car tree)) en
parallele. Dans cet exemple, la construction fork est plus appropriée que
la construction future car on n’attend pas que l’expression (loop (car
tree)) dans la forme begin retourne une valeur.

D’apres sa définition, la construction fork crée un processus pour évaluer
son argument. Il se pourrait que les conditions de course soient telles qu’un
atome soit trouvé dans un sous-arbre de droite avant qu’un atome ne
soit trouvé dans un sous-arbre de gauche et que la continuation exit soit
appliquée & un atome qui n’est pas le premier dans l'ordre gauche-droite. En
fait, il n’en n’est rien : fork a été défini comme une construction transparente
et un programme utilisant la construction fork doit retourner le méme
résultat que le méme programme sans la construction fork. Par conséquent,
une continuation ne sera réellement appliquée dans un sous-arbre de droite
que si la recherche dans le sous-arbre de gauche correspondant s’est terminée
par un échec. La version parallele du programme conserve donc la méme
propriété que la version séquentielle : c’est toujours ’atome le plus a gauche
satisfaisant le prédicat qui est retourné.

De plus, comme nous le verrons plus tard, lorsqu’on applique une
continuation, les processus qui s’exécutent en parallele ne sont pas

Luc Moreau

suspendus. Ainsi, dans cet exemple, lorsqu’on a trouvé un atome satisfaisant
le prédicat pred, les processus lancés en parallele continuent la recherche
d’autres atomes. On est en présence d’un calcul spéculatif : bien que l'on
ne sache pas si les atomes suivants seront demandés, leur recherche se fait
quand méme parallelement au calcul obligatoire.

A présent, pour afficher tous les atomes d’une S-expression satisfaisant
un prédicat, on définit la fonction :

(define (display-atoms tree pred)
(let ((a-leaf (search-first tree pred)))
(if (null? a-leaf)
’end
(begin (display (car a-leaf))
((cadr a-leaf) ’())))))

Dans cette fonction la recherche dans l’arbre est lancée une premiere
fois. Tant que le résultat obtenu est une liste formée d’un atome et d’une
continuation pour reprendre le calcul, ’atome est affiché et la continuation
est appliquée pour obtenir I’atome suivant.

Il est & noter que la fonction display-atoms peut tout aussi bien faire
appel & la version séquentielle de search-first qu’a la version parallele.
Dans le premier cas, I'affichage des atomes et leur recherche sont entrelacés
a la maniere de coroutines. Dans le second cas, la version parallele de
search-first autorise le calcul spéculatif. Les atomes seront donc cherchés
en parallele avec leur affichage et la recherche pourra devancer 'affichage
(suivant la stratégie de scheduling utilisée).

3.2. Le probleme du producteur et du consommateur

Dans l'exemple précédent, la fonction display-atoms n’est pas
considérée comme une coroutine par la fonction search-first car c’est
toujours la méme continuation exit qui y est appliquée. Par contre,
search-first est bien reprise par la continuation next 1& ou elle avait été
interrompue.

Considérons a présent le probléeme du producteur et du consommateur
dont une version séquentielle est écrite dans un style coroutine. Contraire-
ment a [6], [7], nous travaillons dans un langage purement fonctionnel. Une
coroutine est appelée a I'aide de la fonction resume qui lui transmet une

Programmer dans un langage fonctionnel paralléle avec continuations

paire (continuation de la coroutine appelante et valeur & transmettre & la
coroutine appelée).

(define (resume coroutine value)
(call/cc (lambda (k)
(coroutine (list k value)))))

(define producer
(lambda (producer-job)
(lambda (consumer)
(letrec ((loop (lambda (n pair)

(let* ((pair (resume (car pair) n))

(new-value (producer-job n)))

(loop new-value pair)))))
(loop O consumer)))))

(define consumer
(lambda (producer consumer-job)
(letrec ((loop (lambda (producer)
(let* ((pair (resume producer ’any))

(producer (car pair))
(n (cadr pair)))

(consumer-job n)

(loop producer)))))

(loop producer))))

Le systeme de coroutines affichant les nombres de 1 & I'infini est lancé par
la fonction run :

(define (run)
(consumer (producer (lambda (n) (+ n 1)))
(lambda (n) (display n) (newline))))

Il existe différentes facons de paralléliser le code. Une possibilité est
de reprendre la coroutine consommateur en parallele avec le calcul de
I’élément suivant dans le producteur. On remarquera qu’il est nécessaire
d’utiliser explicitement I'opérateur touch. En effet, avec la sémantique des
continuations d’ordre supérieur que nous donnons plus loin, on garantit la
transparence de pcall mais future n’est transparent que lorsque combiné
avec touch. Dans cet exemple, lorsqu’on appelle une coroutine en parallele
avec future, la valeur pair retournée par celle-ci devra étre précédé de
touch lorsqu’elle sera effectivement utilisée.

Luc Moreau

(define producer
(lambda (producer-job)
(lambda (consumer-value)
(letrec ((loop (lambda (n pair)
(let* ((pair (future (resume (car (touch pair)) n)))
(new-value (producer-job n)))
(loop new-value pair)))))
(loop O consumer-value)))))

Cette solution autorise du calcul spéculatif (dépendant des stratégies de
scheduling) mais il est aussi possible d’introduire du parallélisme sans avoir
de calcul spéculatif. En effet, on peut effectuer le producer-job en parallele
avec la reprise du consommateur dans le producteur mais les calculs des
éléments suivants ne seront faits qu’a la demande du consommateur.

(define producer
(lambda (producer-job)
(lambda (consumer-value)
(letrec ((loop (lambda (n pair)
(pcall loop (producer-job n)
- (resume (car pair) n)))))
(loop O consumer-value)))))

Le programmeur a donc la possibilité de déterminer le type de
parallélisme qu’il veut (spéculatif ou non) en choisissant les expressions &
évaluer en parallele et les constructions de parallélisme.

3.3. visit : une comparaison des styles de programmation de
Ac et de PolyScheme

Dans [18], Queinnec donne un exemple de recherche dans un arbre dans
le style PolyScheme. Nous le reprenons mais, contrairement a la version
originale, nous faisons apparaitre explicitement les appels paralleles a 1’aide
de la notation pcall* indiquant par la qu’elle n’a pas la méme sémantique
que notre pcall car elle n’est pas transparente.

Programmer dans un langage fonctionnel paralléle avec continuations

(define visit
(lambda (tree do)
(if (atom? tree)
(call/cc (lambda (return)
(pcall* list (return tree)
- (return (do tree)))))
(begin (visit (car tree) do)
(visit (cdr tree) do)))))

(call/cc (lambda (exit)
(prog2 (visit a-tree exit)
(local-end))))

La fonction visit applique son second argument do & chaque atome
de la S-expression tree. L’exploration se fait en profondeur, de gauche a
droite mais il n’est pas garanti que la fonction do sera appliquée aux feuilles
dans cet ordre la. En effet, dans (pcall* list (return tree) (return
(do tree))) les deux applications se font en parallele, et le résultat de
I'application de do & tree n’est pas attendu avant de reprendre ’exploration
a l'aide de (return tree). Par conséquent, (return tree) pourrait lancer
I’évaluation d’un do sur la feuille suivante alors que ’application sur la feuille
courante n’a pas encore commenceé.

La solution proposée par Queinnec consiste & poursuivre ’exploration
apres avoir appliqué do. C’est donc au programmeur d’appliquer ezplicite-
ment la continuation c regue en argument dans do.

(define visit
(lambda (tree do)
(if (atom? tree)
(call/cc (lambda (return)
(return (do tree return))))
(begin (visit (car tree) do)
(visit (cdr tree) do)))))

(define (print-square tree)
(visit tree (lambda (leaf c)
(begin (fork (display (square leaf)))
(c leaf)))))

Dans notre approche des coroutines, la visite d’un arbre est faite par la
fonction producer; elle transmet toutes les valeurs au consommateur dans
I’ordre de la recherche et il est possible de faire la recherche en parallele et
de facon spéculative :

Luc Moreau

(define (producer tree)
(lambda (consumer-value)
(letrec ((loop (lambda (tree consumer-pair)
(if (atom? tree)

(future (resume (car (touch consumer-pair)) tree))

(loop (cdr tree)
(future (loop (car tree) consumer-pair)))))))

(resume (car (touch (loop tree consumer-value))) ’eot)))))

La fonction 1oop du producer a pour valeur un placeholder qui, lorsqu’il
sera résolu, contiendra une paire (continuation du consommateur/valeur
transmise par le consommateur). Lorsqu'un producer arrive au bout d’un
arbre, il produit le symbole eot supposé différent de tous les autres.

(define consumer
(lambda (producer pred do)
(letrec ((loop (lambda (producer)
(let* ((pair (resume producer ’any))

(producer (car pair))

(n (cadr pair)))

(if (pred n)
(begin (do n)
(loop producer)))))))
(loop producer))))

(define (run)
(consumer (producer ’((1 . 2) . 3))
(lambda (x) (not (eq? x ’eot)))
(lambda (n) (display (square n)) (newline))))

Ici, il est garanti que les feuilles sont transmises dans l'ordre & la
fonction do car comme les problémes de production et consommation sont
indépendants, ils peuvent étre exécutés séparément. On ne crée donc pas un
processus pour exécuter en parallele la fonction do : la coroutine consumer
exécute séquentiellement la fonction do sur toutes les feuilles tandis que la
coroutine producer parcourt ’arbre en parallele et de fagon spéculative.

3.4. Le probléeme samefringe

Un dernier exemple de programmation parallele est le probleme
samefringe ou l'on compare les feuillages de deux arbres binaires. La
solution proposée est une parallélisation de la version séquentielle consistant
en trois coroutines : une coroutine de comparaison et deux coroutines

10

Programmer dans un langage fonctionnel paralléle avec continuations

retournant le feuillage des arbres. Les recherches dans les arbres sont
effectuées par la coroutine producer vue a la section précédente et la
comparaison est faite grace & compare dont voici le code :

(define compare
(lambda (col co2)
(letrec ((loop (lambda (col co2)
(let* ((resultl (resume col ’any))
(col (car resultl))
(al (cadr resultl))

(result2 (resume co2 ’any))
(co2 (car result2))
(a2 (cadr result2)))
(cond ((and (eq? ’eot al) (eq? ’eot a2)) #t)
((equal? al a2) (loop col co02))
(else #£))))))
(Loop col co2))))

(define samefringe
(lambda (t1 t2)
(compare (producer tl)
(producer t2))))

4. Aj; : un langage fonctionnel avec des primitives de

communication a la CCS

Ac est le nom du langage fonctionnel avec continuations et opérateurs
transparents pour le parallélisme dont nous venons de donner des exemples
de programmation. Dans [16], nous donnons une sémantique opérationnelle
de A¢ par une traduction de ce langage vers un langage fonctionnel que
I'on a appellé A//; il ne possede pas de continuations mais des primitives
de base pour le parallélisme dans la philosophie CCS [14]. Une sémantique
opérationnelle pour un ML parallele avec des primitives de communication
semblables est donnée dans [13]. Ces primitives sont au nombre de quatre :

(fork thunk) La fonction fork prend en argument un thunk (fonction sans
argument) et crée un nouveau processus appliquant ce thunk. La valeur
de fork est non spécifiée.

(channel) Les processus échangent des données sur des canaux. La fonction
channel retourne un nouwvel objet appelé channel identifier sur lequel
des communications peuvent étre faites.

11

Luc Moreau

(send channel value) Les communications sont synchrones comme dans
CCS. Afin de réaliser une communication, il doit y avoir un processus
envoyant une valeur sur un canal et un processus attendant une valeur
sur le méme canal. La valeur de la fonction send est non spécifiée.

(receive channel) La valeur de la fonction receive est la valeur
transmise sur channel par le processus ayant envoyé une donnée
durant une communication synchrone.

5. Des continuations “symétriques” pour le parallélisme

Dans une premiere étape, on donne & la figure 1 une traduction du sous-
ensemble séquentiel de A¢ (M N), (lambda (x) M), x, (call/cc M) auquel
on ajoute la construction pour le parallélisme (pcall M N). Une traduction
est donnée par un ensemble de regles ayant le schéma : [Term]=exp. Le
membre de gauche de la régle est un terme de A¢ entre crochets et le membre
de droite est une expression dans A/,. Une telle regle doit étre lue comme “le
texte de la traduction de Term est exp, dans lequel toute occurrence de [e]
doit étre remplacée par le texte de la traduction de e et toutes les nouvelles
variables introduites dans exp sont supposées ne pas entrer en collision avec
celles déja existantes”.

Les quatres premieres regles définissent la sémantique des expressions
séquentielles et sont habituellement appelées traduction “continuation
passing style” [1]. On y remarque la forme des continuations de M et
N dans l'application séquentielle : la continuation de M évalue N et la
continuation de N réalise 'application. Ces continuations spécifient un ordre
total d’évaluation de gauche & droite. Par contre, pour une application
parallele de M & N, deux processus sont créés pour évaluer M et N en parallele.
Les continuations sont définies selon la méme technique que celles proposées
Queinnec dans sa définition de PolyScheme [18]. La continuation de M (resp.
N) sauve dans un emplacement cm (resp cn) une fonction, lit une autre
fonction fn (resp. fm) dans 'emplacement cn (resp. cm) et applique cette
fonction fn (resp. fm) & la valeur de M (resp. N) et la continuation courante
k. Si N (resp. M) n’est pas encore évalué, cette fonction fn (resp. fm) est la
valeur initiale se trouvant dans emplacement cn (resp. cm) et le processus
évaluant M (resp. N) est arrété faute de code & exécuter. Il est garanti
qu'un seul des deux processus fera ’application car les emplacements cm
et cn sont considérés comme une section critique. Les canaux cn et cm

12

Programmer dans un langage fonctionnel paralléle avec continuations

(lambda (k) (k %))

(lambda (k) (k (lambda (x ¢) ([M] €))))

(lambda (k) ([M] (lambda (vm) (vm (lambda (v ') (k v)) K))))
(lambda (k) ([M] (lambda (vm) ([N] (lambda (vn) (vm vn k))))))

[x]
[(lambda (x) M)]
[Ccall/ce W]
[m]
[(pcall M)]
(lambda (k)
(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (fork (lambda () ([M] (lambda (vm)
(begin (receive sem)

(write cm (lambda (vn x) (vm vn x)))
(let ((fn (read cn)))
(begin (send sem ’any)
(fn vm K)))IN))
(fork (lambda () ([N] (lambda (vn)
(begin (receive sem)
(write cn (lambda (vm x) (vm vn x)))
(let ((fm (read cm)))
(begin (send sem ’any)
(fm vn K)))IN))
(make-store cm (lambda(vn k) nil))
(make-store cn (lambda(vm k) nil))

(make-store sem ’any))))

Figure 1. Définition de A¢ avec des continuations symétriques

sont nouvellement créés et représentent des emplacements mémoire dont la
définition est donnée & la figure 2.

Selon cette technique, les continuations de M et de N sont symétriques
contrairement a celles de ’application séquentielle qui sont asymétriques.
Dans la suite du texte, on parlera de continuations symétriques ou
asymétriques pour référencer ces deux types de continuations.

Les caractéristiques de A¢ défini suivant la technique des continuations
symétriques (figure 1) sont les mémes que celles de PolyScheme. Elles
peuvent se résumer par :

e tout programme n’appliquant pas de continuation réifiée par call/cc
retourne toujours le méme résultat que la version séquentialisée de ce
programme,

e quand les continuations sont utilisées, des réponses multiples peuvent
étre retournées; il existe toujours une exécution du programme

13

Luc Moreau

(define (make-store c init-value)
(fork (lambda ()
(letrec ((loop (lambda (v)
(begin (send c v)
(receive c))))

(loop init-value)))))

(define (read c) (define (write c v)
(let ((value (receive c))) (begin (receive c)
(begin (send c value) (send ¢ v))))
value)))

Figure 2. Définition d’un store dans A,, a I’aide de processus

qui retourne la méme solution que celle retournée par sa version
séquentialisée,

e pour certains programmes, le nombre de solutions retournées peut
varier d’'une exécution a 'autre.

Si ’on considere I’exemple suivant,

(pcall f1 (call/cc (lambda (k)
(pcall (pcall £2 (k 1)) (1)
(k 2)))))

la continuation k est appliquée? & 1 et 2. Ce programme peut retourner
quatre réponses différentes: le résultat de 'application de £f1 & 1, le résultat
de 'application de f1 & 2, le résultat de 'application de f1 & 1 suivi du
résultat de 'application de £1 a 2, le résultat de 'application de £1 & 2 suivi
du résultat de I’application de £1 & 1, les deux derniéres réponses étant des
résultats multiples.

2Lorsqu’on applique une continuation, on ne suspend pas les processus
s’exécutant en parallele. En effet, une continuation reifiée est du type (lambda
(v k') (k v)); elle abandonne uniquement la continuation du processus courant.

14

Programmer dans un langage fonctionnel paralléle avec continuations

6. Définition de A¢

6.1. La construction pcall

On souhaite que les programmes de A¢ utilisant des constructions
paralleles soient équivalents aux versions séquentialisées de ces programmes.
Par conséquent, le programme 1 doit étre équivalent au programme

(f1 (call/cc (lambda (k)

(2)
((£2 kx 1)) X 2))))

dont la valeur est le résultat de I’évaluation de (f1 1). Dans la sémantique
séquentielle, la continuation k est seulement appliquée & 1 car on a un ordre
d’évaluation de gauche & droite des expressions dans une application.

Nous allons a présent modifier la sémantique donnée dans la section
précédente afin que la continuation k soit appliquée seulement & 1 et non
pas & 2 dans ’exemple 1.

C’est parce que les continuations du “continuation passing style”
définissent un ordre total entre expressions qu’il n’y a pas de parallélisme.
D’autre part, c’est parce que les continuations sont totalement symétriques
dans la définition de pcall (figure 1) qu’elle peuvent toujours étre appliquées
sans respecter la sémantique séquentielle. Le seul ordre d’évaluation est un
ordre partiel : le corps d’une fonction est évalué apres les arguments. La
solution que nous cherchons est un compromis entre ces deux extrémes :
nous conservons les continuations symétriques car elles offrent un maximum
de parallélisme et nous introduisons une notion de continuation d’ordre
supérieur qui représente l'ordre gauche droite; nous l’appelons aussi
métacontinuation.

Sachant que suivant la sémantique donnée dans la section précédente,
seuls les programmes paralleles utilisant explicitement des continuations
peuvent retourner des résultats différents de leurs versions séquentialisées,
la notion de métacontinuation sera utilisée lorsqu’une continuation réifiée
doit étre appliquée. Au moment de I'application d’une telle continuation
dans une expression parallele, la métacontinuation vérifie que toutes les
sous-expressions qui sont évaluées dans la version séquentialisée de cette

15

Luc Moreau

expression au moment de "application de cette méme continuation sont bien
évaluées. Si cette condition est satisfaite, ’application de la continuation peut
se faire sinon, ’application “est suspendue” jusqu’a ce qu’elle soit valide.
Pour ce faire, on définit une notion de left expressions concernant 1’ordre
d’évaluation gauche droite.

On dénomme par le terme left expressions relatives a 'application
d’une continuation, toutes les expressions qui doivent étre évaluées avant
d’appliquer cette continuation. Sik désigne une continuation et (k v) est une
sous-expression e de E, on peut calculer L¢(E) 'ensemble des left expressions

N

relatives a 'application d’une continuation (k v) dans l’expression E par

I'induction suivante:

Le(e)=10 (3)
Le((E)) = (a)
i ébs
e call E N c

Le(E)=a D ﬁe((icall ME)=a U {u} @ W
Le((call/cc (lambda (x) E))) ={ g seatkx) g

B Le(((lambda (x) E) M)) =
Le(B)=a O { Le((pcall (lambda (x) E) M) =« 5)

La reégle 4.d ajoute M & l'ensemble des left expressions de E dans
I’expression (pcall M E) et la regle 4.e limite les left expressions a la portée
dynamique du call/cc qui a capturé k. Cela permet & une fonction d’utiliser
de facon interne une continuation sans devoir se synchroniser avec le reste
du programme dans lequel elle est appelée. Dans I’exemple 1, cela permet
d’appliquer k sans que £1 soit évalué. La regle 5 lie la notion de left expression
a la regle d’application d’une fonction.

On peut donc exprimer les contraintes que l'on impose lors de
I’application d’une continuation :

Une continuation peut étre appliquée dans la sémantique
paralléle si et seulement si toutes les “left expressions” ont été

évaluées et ont retourné une valeur.

Cette contrainte définit un nouvel ordre partiel d’évaluation, sous-
ensemble de lordre partiel défini par les continuations symétriques, et

16

Programmer dans un langage fonctionnel paralléle avec continuations

contenant ’ordre total défini par la traduction “continuation passing style” :
non seulement toutes les sous-expressions d’une application doivent étre
évaluées avant le corps de la fonction mais toutes les left expressions
relatives a l'application d’une continuation doivent aussi étre évaluées
avant d’appliquer cette continuation. Il faut remarquer que les contraintes
introduites pour respecter la sémantique séquentielle n’interviennent que
lorsqu’on applique une continuation.

La traduction de A¢ avec la construction pcall est donnée a la figure 3.
A présent, le résultat de la traduction est une fonction & deux arguments :
une continuation et une métacontinuation. La premiere représente “la suite
du calcul” dans le sens défini & la section précédente et la seconde est
chargée de vérifier les contraintes en cas d’application d’une continuation.
Une continuation réifiée est de la forme (lambda (v ¢ v) ((v k) v)),
c’est-a-dire que lorsqu’on applique une telle continuation, on compose la
métacontinuation courante vy avec la continuation implicite capturée x. La
métacontinuation y procede de la fagon suivante: elle recherche d’abord la
plus proche des left expressions qui ne soit pas évaluée. S’il n’y en a pas,
le résultat de cette composition est x. Sinon, soit E cette expression, E
faisant partie de I’expression (pcall E N). Elle sauve comme valeur de N,
la fonction (lambda (vm c¢) ((y) v)) dans cn associé a N. Lorsque E
sera évalué, la continuation de E applique la fonction fn rangée dans cn et
reprend 'application de la continuation en poursuivant la vérification des
left expressions suivantes.

6.2. La construction fork

fork est une construction parallele qui doit apparaitre dans une
séquence. Elle crée un processus qui évalue son argument. Dans la séquence
(begin (fork expl) exp2), expl est évaluée en parallele avec exp2 et la
valeur de expl n’est pas utilisée. Mais notre sémantique doit garantir que si
une continuation est appliquée dans exp2, elle peut échapper de exp2 si et
seulement si elle est appliquée dans la définition séquentielle, c’est-a-dire si
expl est évaluée et a retourné une valeur.

A présent que nous avons défini pcall dans notre langage, il est simple
de définir fork. fork doit apparaitre dans une séquence qui est en fait du
“sucre syntaxique” pour une application d’une lambda. La définition donnée
a la figure 4 empéche tout échappement de N & moins que M ne soit évalué
et ait retourné une valeur. La valeur de la séquence (la valeur de M) est

17

Luc Moreau

retournée seulement lorsque N est évalué.

[x]
[(lambda (x) M)]
[(call/cc M)]

(lambda (kK 7v) (kK x))
(lambda (k) (k (lambda (x &) ([M] K ¥))))
(lambda (K %)

(let ((f (lambda (v ¢ 7) ((y) v)))

(7' (lambda (cont) (if (eq? cont k) cont (v cont))))))
([M] (lambda (vm) (vm £ K ")) 7))

(lambda (k 7)

([M] (lambda (vm) ([N] (lambda (vn) (vm vn Kk 7))

7))

M n]

)

[(pcall M M]

(lambda (k 7)

(let ((cn (channel)) (cm (channel)) (sem (channel)))
(begin (fork (lambda () ([M] (lambda (vm)

(begin (receive sem)

(write cm (lambda (vn x) (vm vn K 7)))
(let ((fn (read cmn)))
(begin (send sem (lambda (cont s f)
(lambda (s)
(begin(s v)
((y cont) v)))))
(fn vm £ ¥)))))
Y)))
(fork (lambda () ([N] (lambda (vn)
(let ((f (receive sem)))
(begin (write cn (lambda (vm k) (vm vn K 7)))
(let ((fm (read cm)))
(begin (send sem f)
(fm vn K ¥Y))))))
(lambda (cont)
(let ((f (receive sem)))
(f cont
(lambda (v) (send sem f))
(lambda (v)
(begin (write cn (lambda (vm Kk 7)
((y cont) v)))
(send sem £)))))))))
(make-store cm (lambda(vn k) nil))
(make-store cn (lambda(vm k) nil))
(make-store sem (lambda (cont s f) £)))))

Figure 3. Définition de A¢ avec les métacontinuations

18

Programmer dans un langage fonctionnel paralléle avec continuations

[(begin (fork M) N)] = [((lambda (x) N) (fork M))]
= [(call/cc (lambda (k)
(pcall (let ((x M)) (lambda (u) u)) (k N))))]

Figure 4. Translation rule for fork

6.3. La construction future

A la figure 5, on trouve la traduction de I'expression (M (future N)).
Contrairement a (pcall M N), c’est toujours la continuation de M qui
fait 'application. Si N n’est pas encore évalué, I'application se fait & un
placeholder qui est ici une structure de données contenant une fonction.
Lorsque l'opérateur touch est appliqué a un placeholder, la fonction qui y
est contenue est appliquée et force la lecture d’une valeur sur le canal val.
Une méme valeur est constamment envoyée sur ce canal par un processus
emitter : il s’agit de la premiére valeur transmise a la continuation de N
et envoyée sur vali. Les autres valeurs envoyées sur vali sont simplement
réceptionnées par un processus sink. emitter et sink sont deux fonctions
qui, respectivement, envoie toujours la méme valeur sur un canal et regoit
des valeurs sur un canal.

Si N retourne plus d’une fois, la continuation de N applique la valeur de M
a la valeur de N et non pas au placeholder. Cela correspond a la sémantique
donnée par [10] et préserve bien la propriété qu’'un placeholder ne peut
contenir qu’une seule valeur.

Queinnec dans [20] donne aussi une définition de future. Notre approche
differe de la sienne car le mécanisme de gestion de la queue associée & un
placeholder n’est pas explicite mais se trouve caché dans la sémantique de
la fonction receive qui suspend les processus ’exécutant si aucune valeur
n’est envoyée sur le canal.

7. Comparaisons avec d’autres travaux

Dans cet article, nous reprenons un style de programmation avec
coroutines. Ce style avait déja été proposé comme application des
continuations dans [6] et [7]. Il existe deux différences essentielles par rapport
a ces articles : sachant que nous travaillons avec un langage purement

19

Luc Moreau

fonctionnel, il n’est pas possible d’utiliser la fonction make-coroutine
retournant une closure qui altére son état local. D’autre part, dans [6],
[7], les coroutines sont étudiées dans un cadre séquentiel alors que nous les

[(M (future M)] =
(lambda (k 7)
(let ((cn (channel)) (cm (channel)) (sem (channel))
(val (channel)) (vali (channel)))
(begin (fork (lambda () ([M] (lambda (vm)
(begin (receive sem)
(write cm (lambda (vn k v) (vm vn K 7)))
(let ((fn (read cmn)))
(begin (send sem (lambda (cont s f)
(lambda (s)
(begin(s v)
((y cont) v)))))
(fn vm K v)))))
Y)))
(fork (lambda () ([N] (lambda (vn)
(let ((f (receive sem)))
(begin (send vali vn) HEELE
(write cn (lambda (vm x) (vm vn K 7)))
(if (not(eq? (receive val) vn)) IR
(let ((fm (read cm)))
(begin (send sem f)
(fm vn Kk 7)))
(send sem £)))))
(lambda (cont)
(let ((f (receive sem)))
(f cont
(lambda (v) (send sem f))
(lambda (v)
(begin (write cn (lambda (vm Kk 7)
((y cont) v)))
(send sem £)))))))))
(make-store cm (lambda(vn k v) ()))
(make-store cn (lambda(vm K)
(vm (make-placeholder (lambda () (receive val))) k 7¥)))
(make-store sem (lambda (cont s f) f))
(let ((the-future-value (receive vali))) ;o okkk
(begin (fork (lambda () (emitter val the-future-value)))
(fork (lambda () (sink vali))))))))

(define (touch object) (if (placeholder? object) (touch ((cdr object))) object)))

Figure 5. Traduction de (M (future N)) et définition de touch

20

Programmer dans un langage fonctionnel paralléle avec continuations

présentons dans un cadre parallele.

Nous avons également montré la différence entre les styles de
programmation d’un langage avec constructions transparentes pour le
parallélisme et d’un langage avec constructions non transparentes tel que
PolyScheme. L’avantage de notre approche réside dans le fait qu’il suffit
simplement d’annoter des programmes développés selon une approche
fonctionnelle classique.

PolyScheme a été initialement proposé par C. Queinnec. La figure
1 donne une sémantique utilisant la méme technique de continuations
que celle employée dans PolyScheme. Les figures 3, 4 et 5 y ajoutent
des métacontinuations pour assurer la transparence des opérateurs de
parallélisme. Dans [18] et [20], le caractere “unfair” de PolyScheme est
évoqué lorsque plusieurs résultats sont retournés. Des conditions sur
I’application de continuations sont donc ajoutées afin de préserver le nombre
de résultats. Cette approche est totalement opposée a la notre ot ’on ajoute
des contraintes sur les continuations afin de s’assurer un seul résultat, le
méme que celui retourné par la version séquentielle.

Une autre approche pour assurer la transparence des opérateurs est celle
proposée par Katz et Weise dans [10]. Ils décrivent une implémentation basée
sur une notion de [égitimité. Un processus est 1égitime si le code qu’il exécute
est exécuté par une implémentation séquentielle en I’absence de future. Le
processus initial est légitime.

Nous avons introduit une notion de continuation d’ordre supérieur
pour donner une sémantique & Ac. Une présentation complete en est faite
dans [16]. Cette notion est également comparée & une notion de légitimité
semblable & celle de Katz et Weise dans [17]. Ces deux approches different au
niveau du calcul spéculatif. Suivant 'approche de la 1égitimité, un maximum
de calcul se fait spéculativement et lorsqu’un résultat est retourné, on vérifie
qu’il correspond & celui qui serait retourné par un ordre d’évaluation gauche
droite. Les métacontinuations sont utilisées au cours de 'application d’une
continuation afin de vérifier s’il est 1égitime de la réaliser; elles permettent
de déterminer au moment de l'exécution si un calcul est légitime ou non.
La notion de métacontinuation permet de définir les constructions pcall
et fork transparentes. Quant a future, elle demande & l'utilisateur de la
combiner avec la construction touch, ce qui peut se faire simplement comme
on I’a vu dans certains exemples.

21

Luc Moreau

8. Conclusions

Les exemples donnés a la section 3 montrent qu’il est possible de
définir un langage fonctionnel avec des constructions pour le parallélisme ne
modifiant en rien la sémantique des programmes méme si des continuations
sont utilisées; ces constructions peuvent étre considérées comme des
annotations pour le parallélisme.

Une sémantique pour ce type de langage fut donnée. Elle utilise une
notion de continuation d’ordre supérieur qui assure qu’une continuation peut
étre appliquée afin de respecter la sémantique séquentielle.

Enfin, d’un point de vue pratique, on n’a pas étudié le scheduling qui
pause des problemes dans le cadre du parallélisme spéculatif. Des solutions
existent telles que les sponsors proposées dans [4] et [19]; elles pourraient
étre combinées avec notre méthode.

9. Remerciements

Ce travail fut réalisé lors d’une visite du Laboratory for Foundations
of Computer Science, University of Edinburgh. Je tiens & remercier Rod
Burstall qui a rendu possible cette visite, ainsi que Daniel Ribbens pour
les nombreuses discussions que nous avons eues. Je tiens aussi & remercier
David N. Turner et Christian Queinnec pour les lectures qu’ils ont faites
d’une version précédente.

Références bibliographiques

[1] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990
ACM conference on LISP and functional programming, pages 151-1160, June 1990.

[2] Robert H. Halstead, Jr. Multilisp : A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538, October
1985.

[3] Robert H. Halstead, Jr. Parallel symbolic computing. IEEE Computer, pages 3543,
August 1986.

[4] Robert H. Halstead, Jr. New ideas in parallel lisp : Language design, implementation.
In T. Ito and Robert H. Halstead, editors, Parallel Lisp : Languages and Systems.
US/Japan Workshop on Parallel Lisp. Japan., pages 2-57. Lecture Notes 441 in
Computer Science. Springer-Verlag, 1990.

22

Programmer dans un langage fonctionnel paralléle avec continuations

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. T. Haynes and D. P. Friedman. Embedding continuations in procedural objects.
ACM Transactions on Programming Languages and Systems, 9(4):582-598, October
1987.

C. T. Haynes, D. P. Friedman, and M. Wand. Continuations and coroutines. In
Proceedings of the 1984 ACM conference on LISP and functional programming, pages
293-298. ACM, 1984.

C. T. Haynes, D. P. Friedman, and M. Wand. Obtaining coroutines with
continuations. Comput. Lang., 11(3/4):143-153, 1986.

Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Second ACM
SIGPLAN Symposium on Principles € Practice of Parallel Programming, pages 128—
136, March 1990.

Soren Holmstrom. PFL : A functional language for parallel programming and its
implementation. Technical Report 7, Chalmers University, 1983.

Morry Katz and Daniel Weise. Continuing into the future: On the interaction of
futures and first-class continuations. In Proceedings of the 1990 ACM conference on
LISP and functional programming, pages 176-184, June 1990.

James S. Miller. MultiScheme : A parallel processing system based on MIT Scheme.
PhD thesis, MIT, 1987.

James S. Miller and B. S. Epstein. Garbage collection in MultiScheme. In T. Ito
and Robert H. Halstead, editors, Parallel Lisp : Languages and Systems. US/Japan
Workshop on Parallel Lisp. Japan., pages 138-160. Lecture Notes 441 in Computer
Science. Springer-Verlag, 1990.

R. Milner, D. Berry, and D. Turner. A semantics for ML concurrency primitives.
In Proceedings of the nineteenth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 1992.

Robin Milner. Communication and Concurrency. Series in Computer Science.
Prentice-Hall, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT
Press, 1990.

Luc Moreau. An operational semantics for a parallel language with continuations.
Technical report, Université de Liege, 1991.

Luc Moreau and Daniel Ribbens. Higher order continuations or legitimacy in a
denotational semantics of parallel scheme. Technical report, Université de Liege,
1991.

Christian Queinnec. Polyscheme, a semantics for a concurrent scheme. In High

Performance and Parallel Computing in Lisp Workshop, Twickenham, England,
November 1990. Europal.

23

Luc Moreau

[19]

[20]

24

Christian Queinnec. CD Lisp. Technical report, Ecole Polytechnique, 1991.

Christian Queinnec. Crystal Scheme. A language for massively parallel machines. In
Symposium on High Peformance Computers, Montpellier, 1991.

Jonathan Rees and William Clinger. Revised® report on the algorithmic language
scheme. Technical report, MIT AI Lab and Indiana University Comp. Science, 1986.

J. H. Reppy. First-class synchronous operations in Standard ML. Technical report,
Cornell University, Department of Computer Science, 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

