
ANOTHER IMPLEMENTATION TECHNIQUE FOR APPLICATIVE LANGUAGES

Hugh Glaser and Sean Hayes

1 ABSTRACT

Data flow has sometimes been proposed as an evaluation mechanism for
applicative languages, its focus on data dependency and the pure functional
nature of certain models can make it an attractive choice. Few machines have
been buil t however, and those that have fall short of being ideal
general-purpose applicative language computers. This paper will present a
particularly simple data flow model which is similar to supercombinator
reduction, supporting higher order functions, garbage collection and a form o!
lazy evaluation in a clear and natural manner.

The paper will also show how the model can be made to execute on a
Conventional processor. Such a method has shown significant speed increases
over other available methods of evaluating functional programs, and the
hardware implementat ion holds the promise of a machine that executes
applicative languages at a comparable speed to conventional hardware
executing control flow programs. In addition, unlike other proposed models, the
extensions to a multi-processor machine are natural and well defined, with the
potential of even greater speedups.

The work reported in this paper was carried out at:
Department of Computing, Westfield College London and then King's College London

Both authors are now at:
Department of Computing, Imperial College, 180 Queen's Gate, London, UK

71

ANOTHER IMPLEMENTATION TECHNIQUE FOR APPLICATIVE LANGUAGES

2 INTRQDUCTION

In the search for efficient implementations of functional languages, researchers have
looked at a number of alternatives to the tradit ional von Neumann execution
mechanism [Vegdahl]. One of the aims of using a different approach is to take
advantage of the lack of side effects in functional languages. Reflection of this
characteristic in the underlying architecture should allow a good method of distributio~
of computation amongst the processors of a multi-processor machine. Data flow model~
have been proposed as suitable evaluation mechanisms to exploit parallelism, and
much work has been done on both models and associated architectures [Kabn]
[Treleaven et al.].

The work in the Department of Computing at King's College London (then at Westfield
College) started with the design of a theoretical data flow model and proceeded with
the specification of both the textual functional language and the graphical programmin~
system which is naturally associated with it [Hankin] [Hankin & Glaser]. It was expectec
that any architecture design that resulted from this work should be well orientated
towards functional languages and furthermore have a sound theoretical basis.

One such architecture has been developed [French & Glaser] and a first prototype
machine, known as the TUKI, built. The work reported here is a method of
implementing a refinement of the architecture by software emulation, which we call
the C-TUKI.

The paper begins with a discussion of the underlying model of acyclic, once-used dat~
flow and describes how instructions derived from this notation can be implemented or
a serial machine. A software emulation of the machine is described which makes it
possible to efficiently compile applicative languages for conventional architectures. The
final section of the paper reports on some of the results obtained, and directions for
future research.

3 THE ABSTRACT MACHINE

In this section we will describe the data flow model and show how it is being used to
implement supercombinator reduction. The primitive operations of the model are
described, and we look at how a partially ordered graph may be converted into a linea:
stream of instructions. These instructions are then shown to be a basis for stack based
execution of applicative programs. Finally we give a complete description of the
abstract machine in the form of pattern matching rewrite rules.

3.1 Data-flow Models and Sunercombinators

The notion of data flow is based on the concept of a network of processes connected b)
data paths. In a purely functional data flow model the processes act solely on the data
arriving on their input data paths, and the data that is sent on the output data paths is
no more than a function of the input data. Data flow programs are usually represented
as two dimensional pictures, where boxes or circles represent processes or function~
and arrows represent data dependencies.

72

For example, the lambda expression:

~.aob. +(,* a a) (* b b)

is represented as a data flow graph by:

In the model used here, which is based on [Hankin], the graphs are restricted to be
acvc l ic , that is the input of a process can never be affected by its output. As a result of
this restriction the graphs are once used, in that only one datum traverses any
particular data path, and when a process has sent data on its outputs it ceases to exist
The graphs are d y n a m i c , which means that they can be extended as functions are
called, by inserting a copy of the graph of the called function into the graph being
executed. Such data flow graphs are just another way of representing lambda
expressions, and in effect form a machine code for arbitrary combinators.

Combinators are simply lambda expressions with no free variables [Curry & Feys], the
prefix "super" coined by Hughes, is used to distinguish the general class from the S, K, I
family due to Curry and described by Turner [Turner 1979]. Although a form of the
lambda calculus, restricted to combinator expressions, could be used directly as a
programming language, it is more convenient to use a richer programming language, fo
example Hope [Burstall et al.] or Miranda [Turner 1984], and convert programs to the
simpler form by removing free variables and nested lambda expressions [Hughes]. The
simpler form can then be converted to the data flow machine code.

3,2 The Primitive Operation,s

The primitive operations of the data flow model fall into three groups. The first of
these are the pure data routing primitives.

The simplest is the source node, with no inputs and only one output, which is used to
introduce constants into the graphs. These are drawn from the integers, booleans, and
other primitive types. It can also produce function identifiers which are the names ot
data flow graphs. Identifiers may be bound to some parameters and later expanded
into their defining data flow graphs, with the parameters placed on the input arcs.

The copy node has one input and reproduces the value that appears on the input on
both output arcs.

The switch is used to control the flow of data, particularly in conditional expressions
where it acts as a guard preventing the passage of parameters into the unselected

73

branch of the conditional. The left input of a switch is evaluated to obtain a boolean, iI
the value is true the Ieft output arc is selected to receive the value from the other
input, if the value is false the right output is selected. The unselected arc is left
undef ined .

The merge, unlike that in the formal model, is uncontrolled and selects one of its inputs
to be sent onto the output arc. The node is deterministic however, selecting the right
input only if the left input has no input value to use. This is the only node that can
produce output if one of its inputs is undefined, all others, including the bind operation
described below, have all outputs undefined whenever any input is undefined.

In the physical realisation of the model, arcs that are to be left undefined actually carr3
the data value K I L L , which allows the merge to act deterministically.

The sink is a notional operator that takes one or two inputs and has no outputs, this
node is sometimes used as the destination for switch nodes in graph diagrams to clarify
which output of the switch is being used when the other is not required.

The second group are the structure forming operations.

The most important is the bind operation which takes two inputs: the left one is a
functional, either a function identifier or the result of a previous bind, the right is a
parameter to be bound to the functional. The result is another functional which may
later be expanded into its defining graph. In the model all functions are treated in a
curried fashion and are bound to one argument at a time. Higher order functions are
natural result, as the mechanism for collecting parameters can be used to store excess
arguments. The excess are used when the first function returns a function which
requires them.

The other operations in this class are the list and stream (including i/o) operations and
are not specified further.

The third group of operators are the usual primitive functions like plus, minus, equals:
etc..

These operators are strict in both their operands. This means that when presented with
function bindings, they cause them to be converted to data flow graphs and evaluated
to basic values.

Execut ion of graphs in this model proceeds in a data-dr iven, ra ther than
demand-driven, fashion but this presents no obstacle to supporting lazy semantics:
since the values flowing along arcs may be unevaluated function bindings or recipes fo:
building structures. These are evaluated as far as necessary only when they enter
strict operator (from the third group, or the left input of a switch node). This allows u~,
to support lazy lists and streams, and gives a fine control over the evaluation time of
p a r a m e t e r s .

For example a safe eager evaluation mechanism can be achieved by inserting a stricl
identity node just after switches controlling parameters. In the expression:

74

f(l,bigfunction(aeb~c))
where

f is [x,y]
if condition-invelving-x

then ...y...y...y
else 0

endf

wend

Strictness analysis [Mycroft] cannot show at compile time that y is definitely required.
But by putting a strict identity after the switch that controls y it will be evaluated as
soon as the condition is found to be true, so that only copies of the value of y, rathe1
than pointers to a suspension, are propagated.

A completely lazy system is achieved by reducing the set of strict operators to a singk
n e e d operator, treating the rest as two place functions.

For example:

=>

3.3 Partial to Tom! Orderin~

In the graphs seen so far the data dependencies define a partial ordering and not the
total ordering of instructions required by serial machines. In a mult i-processor
machine this property is advantageous in exploiting potential parallelism, as two
operations not dependent on each other can be executed concurrently. For the single
processor machine we are considering however, the graphs must be converted into
totally ordered form.

For example:

sumsq

is converted to:

copy 2.1eft 2.right
copy 2.1eft 2.right
mu!t 2.1eft
mult l.right
plus

75

The numbers represent offsets from the current instruction, the modifier . l e f t or
• r i g h t determines whether they are the left or right input values of the target
ins t ruc t ion .

There are two possible methods of conversion using tree searching algorithms (ignoring
duplicate visits); the first is a depth first pre-order (or post-order) tree walk, the
second is a reversed, breadth-first, analysis. Both maintain the property that data flow,
in one direction only, allowing sequential execution, but the pre-order walk produces
the best code for serial machines and is the method used here, with the extra condition
that nodes dependent on the parameters appear before any others in the program.

In the example above a true pre-order walk would put the second c o p y instruction
after the m u l t instruction, but the machine requires that nodes dependent on the
parameters must appear first.

3.4 Stack Based Execution

This section illustrates the steps in the execution of a function m a i n which calls the
s u m s q function above after binding parameters 6 and 5 to it.

The program is put onto the program stack; an instruction on this stack consists of an
opcode and two relative offsets from the instruction into the data stack, these offsets
are the slots into which the result of the instruction will be placed. The data stack
contains two fields which contain the inputs for their corresponding instruction, the
program stack and data stack run in lock step so that the top entry of each can be
paired up to execute.

Initially the data stack consists only of "holes" waiting for data from the preceding
instructions, and the program stack contains only the instructions for m a i n , and the
instruction which caused the m a i n function to be started (represented here by n e e d) .

s [x] represents a source instruction for x.

I
I sumsq
I
I
I

data stack program stack

s[sumsq]

s[6]
bind

s[5]
bind
need

s[6]
bind

s[5]
bind

_ need

2.1eft

l.right

2.1eft
I. right
l.left
result

l.right
2.1eft
l.right
l.left

result

76

I sumsq
I
I
I _ _

I
I sumsq(6)

l

I sumsq (6)
I.

l~umsq{6,5)

6 I
I

i
__I

bind I 2.1eft
s[5] I l.right
bind I l.left
need I result

s[5] i l.right
bind I l.left

___D~ed a ~.UlD

bind t l.left
I need I result

I need I result

The function m a i n returns the fully bound functional s u m s q (6 t 5) , which is then the
input for the n e e d instruction. This instruction is assumed strict and therefore causes
the function binding to be evaluated. The code for s u r a s q is stacked onto the program
stack, the bound parameters are put into the left inputs of the first two data stack
entries and execution begins again.

5
6

6 I 6
5 I 5

I
F

5 I 5
36 l

I

36 I 25

61 I

copy
copy

+

need

copy

+

n e e d

+

ne~L_____

+

need

+

need

ne@d

2.1eft I 2.right
2.1eft I 2.right
2.1eft t
l.right [
l.left I
result I

2.1eft I 2.right
2. left I
1 o right I
i. left I
result I

2 .left l
i. right i
1. left I
result I

1. right
i. left
result

1. left
result

result

The n e e d instruction finally has the value which it can use.

In the example above we have shown function bindings being entered into the dat~
stack, in an abstract description this presents no problem, but there are two good
reasons why in a real machine bindings should be represented as references to
another, heap based, memory organ called the function or bind store. The benefits ar~
that only fixed sized objects are stored in the data stack, and more importantly, should
a binding ever be copied it need only be evaluated once, as the property of referential
transparency allows the binding to be overwritten by its value, allowing other
references to the same binding to simply pick up the computed value.

Since it is impossible to create cycles in the bind store we can conveniently use
reference count garbage collection. Garbage collection issues are ignored in the abstrac~

77

presentation that follows, where we assume an infinite number of possible function
store entries.

32..5 The Abstract Machin~ Description

The abstract machine is best described as a triple (P, D, F) , where P represents the
instruction stack, D represents the data stack and F represents the function or bind
store.

In the description that follows:

d± represent places in the data stack.
a, b ... represent arbitrary data values.
v± represent basic data values.
o represents a "hole".
T± are the names of places in the function store.
:[± are arbitrary instructions.
D [d2 \ v] represents the stack D with the value v at place d±.
F + { T : a } represents the value a stored at place 2 in the function store.

The instructions are presented in the form of pattern matching rewrite rules, no rules
are given for the list and stream operations as they are generally understood and
would not add to the understanding of the basic machine.

The primitive operations are represented by the general operator o p. The entries in the
function store are tagged with bLnd, f u n a or ±d. Where the tag is f u n c , the value is the
representation of a data flow graph. The numbers represented by m and n are the
number of instructions and number of parameters expected respectively.

~ c t Machine Description

((source a dl).P, (o, o).D, F)

((sink).P, (a,b).D, F)

=> (P, D[dl\a], F)

=> (P,D,F)

((copy d 1 d2).P, (a,o).D, F) => (P, D[dl\a][d2\a], F)

((switch d 1 d2).P, (Tl,a)~, F)
((switch d 1 d2).P, (true,a)2D, F)
((switch d 1 d2).P, (false,a).D, F)

=> ((call T1).(switch d 1 d2).P, (Tl,a)~ , F)
=> (P, D[dl\a], F)
=> 0P, D[d2\a], F)

((merge dl).P, (o,b).D, F) =>
((merge dl).P, (a,o).D, F) =>
((merge dl).P, (a,b).D, F) =>

(P, D[dl\b], F)
(P, D[dl\a], F)
(P, D[dl\a], F)

((bind dl).P, (T,b).D, F) => ~ , D[dl\T2], F+{T2: bind T b})

((op d 1 d2).P (T,b).D, F)
((opd I d2)2 (a,%D, F)
((op d 1 d2).P (a,b).D, F)

=> ((call T).(op d 1 d2).P, (T,b).D, F)
=> ((call T).(op d 1 d2).P, (a,T).D, F)
:> (P, D[dl\(O p a b)][d2\(o p a b)], F)

(call TI).P, D, F+{Tl:(bind T 2 a)}) => ((call T2).P, (a,T1).D, F+{Tl:bind T 2 a})

((call T).P, (al,T1)...(an,Tn).D , F+{T:(func m n I1...Im)) => (ll...Im.(retum).P ,
(al,o)...(an, O).(o,O)n+l...(o,O)m.(O,Tn).D, F+{T:(func m n I1...Im)})

(call T).P, (T,b).D, F+{T:(id v)})
(call T).P, (a,T).D, F+{T:(id v)})
(call T1),P, (TI,b).D , F+(Tl:(id T2)})
(call T1).P , (a,T1).D , F+{Tl:(id T2)})

=> (P, (v,b).D, F+{T:(id v)})
=> (P, (a,v).D, F+{T:(id v)})
=> ((call T2).P , (T2,b).D , F+{Tl:(id T2)})
=> ((call T2).P , (a,Tt).D , F+{Wl:(id T2)})

78

((retum).P, (a, T1).D, F) => (P, D, F+[Tt:(id a)})

4 IMPLEMENTATI~N_

A library package of routines has been written in the 'C' programming language and
works with the UNIX operating system. This package enables suitably formed TUKI
assembler programs to be compiled and run on conventional hardware.

This is a portable and fairly efficient compromise between writing an interpreter, such
as the Miranda system, and compiling to native assembler code like the G-machine
project.

The G-machine [Johnsson] is another architecture that uses a method similar to the on~
described here, but is based on a graph reduction machine code instead. Both the
architecture presented here and the G-machine use directly programmed sequences ol
reduction, and so are closer to traditional computer models than more radical designs,
that modify the code and compute the next reduction at every step. This makes it
easier to use existing technology to build the machines.

The C-TUKI package consists of a number of short routines, each of which implements
single TUKI instruction. These in turn call procedures to implement the data-stack and
bindstore.

4.1 Of The Progr~im

A typical assembler function (surasq again) looks like:

sumsq()
{ copy(dsp-4,dsp-5);

__copy(dsp-2,dsp-3);
_mult (dsp-4,X) ;
_mult (dsp-3, X) ;
_plus (dsp-2,X) ;
return;

}

Each line of the body of the function is a call to one of the library procedures. Lookin~
in more detail, the code for the p l u s instruction is:

#include <stdio.h>
#include "all.h"

--plus (OUTL, OUTR)

register DATASTACK *OUTL, *OUTR;
{ IF killtest()

THEN
OUTL->type=KILL;
OUTR->type=KILL;

ELSE
force(INL);
force(INR);
(OUTL->value).intval =
(OUTR->value).intval =

(INL->value).intval + (INR->value).intval
ENDF ;
pop() ;

i

79

The k i 1 l t e s t predicate at the start of the first instruction tests to see if either input to
the instruction is the special K I L L value. Every instruction (except m e r g e) does this; if
either input is K I L L the entire instruction is ignored and K I L L is sent to both outputs. II
the non-kill input is a reference to the bindstore then the object pointed to is
de-referenced. It is this reclamation of references to the binds'tore from the datastack,
which forces the implementation to explicitly kill instructions rather than use jumps tc
go around them. It is possible to avoid this inefficiency, but we explain here the
method of implementing K I L L that bears the closest correspondence to the data flow
model .

If the predicate allows the instruction to continue, the next test is to see if either input
is a bind (this happens in strict inputs only). If it is then, as in the abstract model, it
must be forced to a simple value, The procedure f o r c e performs all of the work in
increasing the size of the datastack, fetching the parameters to the data-stack and
calling the function. Nesting of function calls and returns are managed by the standard
'C' stack and are not explicitly programmed.

4.2 Of The Datastack

The information required by each instruction is always at the top of the datastack, the
variables INL and I N R are pointers to the left and right input values respectively. The
p o p procedure is called by every instruction, which removes the top pair from the
data-stack. The parameters OUTL and OUTR are passed to the instruction and are
computed as offsets from d s p the current top of the data-stack.

.4,~ Of The Bindstore

As we have said, functions are applied to parameters one at a time by the bind instruction,
which in the C-TUKI looks like:

#include <stdio.h>

#include "all.h"

bind(OUTL, OUTR)

register DATASTACK *OUTL, *OUTR;
{

B!NDCELL * newcell();

register BINDCELL * hold;

IF killtest()

THEN

OUTL-> type = KILL;

OUTR-> type = KILL;

hold = newcell(); /* reference count at 1 */

hold->itag = INL->type;

hold->rtag = INR->type;

hold->head = INL->value;

hold->tail = INR->value;

OUTL->type = BIND;

(OUTL->value).ptr = hold;

80

ENDF;

pop();

IF OUTR != X
THEN /* Add the extra data-entry & references ~/

OUTR->type = BIND;

(OUTR->value).ptr = hold;

reference(h01d);

if(INL->type = = BIND)
reference((INL->value).ptr);

if(INR->type == BIND)
reference((INR->value).ptr);

ENDF;

This uses the function n e w c e l l , which accesses a free slot in the bindstore. This is eithe
a cell freed when its reference count becomes zero, or if there are none with zero count:
the next top of heap. The bindstore is allocated in a series of linked pages by the
standard UNIX memory allocator. Calls to the allocator can be kept to a minimum
because the bindstore can be reference count garbage collected, this is one of the majol
advantages over graph reduction schemes.

The method actually used is the "lazy garbage collection" method of [Glaser &
Thompson] where de-references are not acted upon immediately, but placed on an
intermediate stack. Future claims for a free cell take the top entry off this stack
perform the de-reference. If the count is left at zero then the cell is immediately
re-used, if not the action is repeated with the new top of stack. This method is memory
efficient in machines that store the heap on slow remote memory and have a fasl
cache-type memory available to store the de-reference stack. This is because it cut~
down one read-modify-write cycle per cell reclaimed. In our case however its major
advantage is that there are no long waits as memory is reclaimed: even if large
structures are being reclaimed, only the head is claimed and the two sub-pointers are
pushed onto the stack. Another potential advantage is to have a second processor, ol
idle times of one, to reorder the stack to bring several de-references to the same ceil
together, and minimise page faults.

5CONCLUSIONS

We have timed this implementation using the "nfib" benchmark, beloved of functional
programmers, that gives a figure for the number of function calls per second. In
comparison with combinator based implementations on the same hardware the C-TUKI
ran between two and three times faster. This would not compare favourably with the
reported figures for the G-machine, however we have only implemented a naive
version of the C-TUKI. It is expected that a fully optimised version, for example using
jumps and also macros to replace function calls, would give a significant increase in
performance. In addition, if native machine code was generated directly, as in the
G-machine, we would hope to achieve similar timings.

It can be seen that the method descibed here is a viable tool for the implementation ol
applicative languages. It is expected that hardware development using these principle~
will produce a powerful computing engine. We are currently implementing a second
prototype and simulation of the multi-processor version (the m'TUKI) has given
encouraging results.

81

6 REFERENCES

Burstall, R.M., MacQueen, D.B. and Sanella, D.T., HOPE: An Exr~erimental Appligatiy_~
Language. Proc. 1980 Lisp Conference, Stanford 1980.

Curry, H.B. and Feys, R., Combinatorv Logic. Volume 1, North-Holland 1968.

French, E.F. and Glaser, H.W., TUKI. A Data Flow Processor. Computer Architecture News
11, 1, 12-18 (March 1983).

Glaser, H.W. and Thompson, P., _~_~y Garbage Colle~tion, Westfield College, Internal
Report.

Hankin, C.L., A Data Flow Model Of Parallgl Processing, Department of Computer Science,
Westfield College, University of London, Aug. 1979, Ph.D. Thesis.

Hankin, C.L. and Glaser H.W., T_he Data Flow Pro~,rammin~, Lan~,ua~e CAJOLE - An.
Informal Introduction, ACM SIGPLAN Notices 16, 7, 35-44 (July 1981).

Hughes, J., Granh Reduction W.iLh__ Supercombinators. PRG-28, Programming Research
Group, Oxford University, 1982.

Johnsson, T. The G-Machine; An Abstract Machine for Graph Reduction, Proceedings of
the Declarative Programming Workshop, University College London, April
1983.

Kahn, G., The Semantic8 0f ~ ~imple Language for Parallel Proerammin~. Information
Processing 1974 (IFIP 74), North-Holland, 1974.

Mycroft, A., PolvmorDhic Tyne Schemes an~l R geursive Definiti0ns, Proc. 6th.
International Conference on Programming, Toulouse (Springer-Verlag LNCS
167) April 1984.

Treleaven, P.C., Brownbridge, D.R. and Hopkins, R.P. Data -Driven ~nd Dem~nd-Driv¢n
Comnuter Architecture, Computing Surveys 14, 1, (March 1982).

Turner, D.A., A New Imnlementation Technioue for Applicative Languages. Software -
Practice and Experience 9, 1, 31-49 (Jan. 1979).

Turner, D.A., Miranda: A Non-Strict Functional Language with P01ym0rphi~ Type,% Proc
Conference on Functional Programming and Computer Architectures
(Springer-Verlag LNCS 201) 1984.

Vegdahl, S.R., A Survey of ProPosed Architectures for the Execution of Func.~0nal
Languages. IEEE Transactions on Computers, C-33, 12 (Dec. 1984).

