Coherent Metaphor Sequences in the Teaching of Pro-
gramming

Vicki Sivess & Hugh Glaser

Department of Electronics and Computer Science, The University
of Southampton, Southampton, U.K. S017 1BJ

Abstract

At Southampton University, we introduced Standard ML into the first year pro-
gramming course as a vehicle both for teaching programming and for introducing
principles of software engineering. The paper first outlines the background of the
students and the depth of programming experience prior to joining the course.
The class was divided almost equally into those with experience equivalent to A
level or BTEC diploma level computing, plus a few professional programmers,
and those with very little or no experience. For half the class, then, this is not
their first programming language, and such students arrive with existing mod-
els of the programming process. The paper looks at which software engineering
principles the different parts of the language support. We then consider how the
underlying themes and the metaphors implicit in the material cohere with what
they already know and what they are learning at the same time.

1 Introduction

The Computer Science degrees at Southampton are marketed as having a strong
Software Engineering flavour. When we introduced a functional language into
the first year, in October 1991, we chose Standard ML (SML), on the grounds
that it would serve as a vehicle for introducing principles of software engineer-
ing. We felt that it had many features that made it suitable for this purpose and
that, additionally, it was considered a candidate for serious implementation work
by industry [1]. The language is the first one that Computer Science students are
introduced to at Southampton. It is taught for the first six weeks of their course.
Each week, a student attends three hours of lectures, one small group session and
one two hour laboratory session. A weekly coursework is set and returned the
following day to give immediate feedback on progress. They also carry out one



larger assignment. Students are given booklets containing all the notes and lab-
oratory material at the beginning of the course. The material is available online.
Students are encouraged to become active participants in the course by using
logbooks, doing background reading, trying out examples, and so forth.

In this paper, we first outline the background of the students and consider
some of the metaphors first years already bring to the task of learning to program
in SML. We look at which software engineering principles the different parts of
the language support. We then look at what metaphors are implicit in the material
learned and how they relate to what the students already know and what they are
learning at the same time and we draw some conclusions about our experience.

2 The Background of the Students

For 1993/4 we had an intake of seventy five. The standard entry requirement is
22 points at GCE Advanced level, with a grade C in mathematics, or equivalent
qualifications. Twenty five students (one third) have non-A level qualifications.
Twenty nine students have A level or a BTEC diploma in Computing. If we
add to this number those students who in other ways have had plenty of com-
puting experience (e.g. they are mature students who have been programming
in industry) then we can say that about half the class had done a great deal of
programming while the rest of the class had done some, little or none. While
the course is necessarily taught assuming no experience, in reality, for half of the
class, this is at least their second programming language.

This profile has changed over the last few years: the class size has increased;
the proportion of non-A level candidates has increased; the proportion of first
year students with substantial prior knowledge of computing has increased and
we are presently relaxing our requirement for mathematics. While this leads to
a richer variety of experience amongst our first years, it means we can no longer
rely on the fact that we are teaching a small homogeneous group with similar
backgrounds, and this presents us with new challenges.

3 Metaphors

A simile is when we say one thing is /ike another. For instance, we say “My
love is like a red red rose”. A metaphor is when we say one thing actually is
another thing. We tend to think that it is rather a poetical way of expressing
ourselves and it is, indeed, a device used in poetry. Closer study reveals that our
language systems are built upon metaphors to the extent that we simply do not
even notice them. Lakoff and Johnson [2] have claimed that they are so pervasive
that our whole conceptual system is largely metaphorical and by using metaphor
we understand new experiences in terms of things we already know. We say, for
instance, “I demolished his argument.” and Lakoff and Johnson claim that this is
part of a whole coherent system whereby we talk of arguments in terms of war.



Students entering our degree course therefore come armed with all the metaphors
common to our culture, including those relating to machines and, specifically,
computers. This will include metaphors gained through their use as games ma-
chines, for example, where they become instruments of control, or as spread-
sheets or wordprocessors, where the notion of a dialogue may be central [3].
Their reading in the area of science fiction may well have suggested the idea that
machines are intelligent, and many will be aware of the Internet and the way it
is talked about in terms of cyberspace. Those students who have already done
some programming will have built up their own sets of models and metaphors
about the process that is involved.

4 Putting the Course into Context
During the first lecture (and in the course booklet), we say

Teaching you to program well is part of the process of equipping
you to become competent software engineers which we hope you
will be by the end of the degree.

We thus make explicit that what the students learn on this course is intended
to provide the start of that process and will, by implication, introduce them to
some necessary foundational concepts. It is not meant to complete the process,
however. It also positions the course as part of a cohesive three year programme.

In the same lecture, we outline some of the key quality requirements which
users have from a software system. These were influenced by the five quality
areas defined by ICL’s OPENframework architecture [4]. We say

e These are some attributes that a customer in industry expects to find in
software:

it gives correct answers

— it helps in the running of the business

— itis available when needed

— it is pleasant to use

— it is secure from malicious or accidental damage

— when the business changes or the customer has new requirements,

the software can be changed accordingly.

e Many of these attributes can be obtained by building quality software ac-
cording to good engineering practice.

e Here are some of the sound engineering skills you will learn during the
programming course:



to write correct, maintainable and reliable software

to specify and design programs using abstraction techniques

to use programming techniques that are amenable to formal verifica-
tion

to produce reusable software.

4.1 SML and Software Engineering

SML has features that encouraged us to think that it would enable us to teach
the students to build quality software according to good engineering practice.
SML is a strongly typed language with polymorphism and type inferencing. It
supports pattern matching in argument strings. Structures and functors provide a
very powerful generic modules system. In this section we outline the content of
each lecture and emphasize the software engineering principles covered.

Week one

In the first week, types are presented as a way of logically organising data and
functions as a prime abstraction mechanism. Local declarations keep the envi-
ronment simple and thus easy to understand and reason about and the modules
system is a calculus of environments. The ability to abstract away from the de-
tails of how a function is built and consider only the external behaviour of the
function when using it gives us an encapsulation mechanism for building large
systems. Ideas of reuse and top-down refinement are introduced.

Week two

Conditional expressions in functions and pattern matching in arguments support
case analysis as a problem solving strategy. Lists and tuples introduce the idea
of structuring data in a way that matches reality.

Week three

We develop further the ideas of functional decomposition and problem solving.
We show how subexpressions in our program correspond to the solutions to sub-
problems, and the program comprising these subexpressions corresponds to a
complete problem solution. We introduce the idea of robustness in programs by
showing that some applications of a function do not make much sense in terms
of our problem domain and that, at present, the function does not differentiate
between correct and erroneous input, provided it is of the correct type. Polymor-
phism and overloading allow us to introduce the idea of generalising functions
and reuse of components. An example shows the need to specify carefully what
should happen in certain cases, before implementing a function. We comment



on the implementation and see that for some operations, a different data repre-
sentation would have been more appropriate.

Week four

Higher order functions make it possible to define very general functions that are
useful in a variety of applications. Because they are usually polymorphic, they
allow us to capture a whole set of particular functions in one definition. They are
very useful for prototyping. We talk about writing programs in a way that copes
with complexity, particularly with respect to understanding a program text and
maintaining it. The pattern of connectivity between components is at the heart
of reducing complexity. Concepts of cohesion and coupling are introduced.

Week five

We talk about defining concrete types but lay the groundwork for the introduc-
tion of abstract data types. Recursive type definitions and new type operators
are introduced. We talk about building correct and robust software. We say
that robust software behaves sensibly under adverse conditions and show various
approaches to this. We introduce the exception handling mechanism of SML.

Week six

We try to make the students aware of the scale of some larger programs and
present the modules system as a facility to support the incremental development
of large programs. We introduce information hiding and abstract data types. We
show how to replace one implementation with another. We discuss the use of
signatures to develop programs, enforcing the idea of postponing implementa-
tion decisions for as long as possible. We develop an abstraction in a top down
fashion by writing an equational specification. We show how to write generic
structures using functors, supporting the notion of software reuse.

5 Models and Paradigms

Programming languages allow programmers to construct models of reality in
order to frame a solution in terms of the problem domain. For instance, languages
usually allow us to think in terms of integers and floating point numbers, hiding
the underlying representations. SML’s powerful data modelling facilities are
consistent with an emphasis on modelling the environment that needs to take
place as part of understanding customer requirements.

The arguments in favour of using a declarative paradigm have been well re-
hearsed and involve the ability to abstract away from much of the normal “house-
keeping” to do with memory management. This allows us to teach first years to



focus on problem solving strategies. There are problem domains, however, for
which a declarative solution is not the most natural and straightforward. A large
class of such problems involves interaction with the user [3]. Such problems can
of course be avoided in the examples we give to our students but it is our aim that
students should ultimately be able to switch between paradigms as appropriate.
The most productive, expert programmers do this and experience in using dif-
ferent paradigms and languages is more important than which actual language is
taught first [5].

5.1 Concurrent material

At the same time as learning to program in SML, the students are also following
one course on digital electronics and one on mathematics. Additional lecturing
time on the programming course is spent on general computing topics such as
using common applications packages, understanding the hardware organisation
of a simple computer, understanding system software and discussing the role of
IT in society. Digital electronics gives an understanding of computer hardware
primarily at the level of digital logic, but also covers some assembly language
programming. The mathematics course looks particularly at discrete mathemat-
ics and its relevance in computing.

6 Metaphors

Important for learning are the metaphors implicit in the content of the course, and
whether or not they form a coherent system with those metaphors of computing
already learned or being learned concurrently. We have seen that the background
of the students varies. Most have an A level in mathematics, or equivalent, and
qualifications in scientific or technical subjects. Another variable is whether or
not they have a prior substantial knowledge of computing.

6.1 The Calculator

Perhaps the most important metaphor the students meet is that of the calculator.
SML allows you to type in expressions, such as

3+ 4;
and responds with a message such as
val it = 7 : int

As well as evaluating the expression and printing the answer, the system infers
the type of the expression (int standing for integer) and tells the user. It is
possible to use an editor to prepare a file of SML statements and to load the file



in. Initially we do not teach the students to do this, but show them how to use
the system directly.

We made this decision because we felt that this gave immediate access to the
system without the need to explain how to use an editor, or what a file is. All
students are familiar with using calculators and have a mathematical or scientific
background and so we assumed they would be happy to be introduced to a lan-
guage through numbers. Reinforcement of knowledge about types was important
and helpful.

We did not take sufficiently into account the fact that many students al-
ready have a model of what is involved in programming. For those who have
used Pascal in a turbo-like environment, this involves using pull-down menus
to compile source code and the object code may be seen as an entity in its
own right, executed by a separate command. Our students were learning to use
SML on a UNIX system running Motif. Part of their environment, then, pre-
sented metaphors which cohered with previously learned ones (windows, menus,
mouse), but part of it did not. There was, therefore, an overlapping of different
systems of metaphors - different, but alike enough to have the potential for con-
fusion as users shift between the two. The apparent simplicity also had the unde-
sireable effect that some students did not take in some of the important concepts
that were being taught in the first two weeks. When they reached the material on
higher order functions, they perceived an apparent discontinuity in the level of
difficulty.

It may be objected that the metaphor of a calculator is also wrong on the
grounds that it focuses on numbers, which is not what Software Engineering is
all about. In the first stages of a large software engineering project an understand-
ing of the environment in which the system must operate is essential in order to
understand the customer requirements. The approach may be defended on the
grounds that working with numbers does relate to the immediately previous ex-
perience of the student. It also allows us to present examples using the simple
data types provided by the language and almost immediately we give examples
which involve values of type st ring.

A stronger argument for keeping the calculator is that it helps one to present
the idea that a program in SML is an expression rather than a series of com-
mands. The calculator thus becomes part of a coherent system of metaphorical
concepts. The declarative way of thinking can be difficult at first for those used
to procedural programming, but students did successfully switch into the new
paradigm. Once they grasp the notion that a program is an expression, we can
show them how to replace one expression with another and present a substitution
model. Most students find this helpful for understanding how a complex expres-
sion might be evaluated, particularly recursive function calls with list arguments.
Two approaches are open to us to overcome any difficulties. We could insist
that students only use files of SML commands prepared using an editor, or even
change language and use, say, Miranda, where a script has to be created. An-
other approach is to explain more clearly to the cohort why we feel the use of the



calculator metaphor is an appropriate one, and what its limitations are. Carroll
and Thomas [6] say “When introducing a metaphor, explicitly point out to the
user that it is not a perfect representation of the underlying system and point to
the limits of the metaphor.” They suggest that highlighting the provisional nature
of a metaphor makes it easier for someone to acquire a more sophisticated view
at a later stage.

6.2 The Environment

The set of value bindings in force when an expression is evaluated constitutes
the environment of an expression. A let expression evaluates an expression in
a locally modified environment. The idea of an environment is metaphorical,
where we picture a place containing various identifiers. The aim is to keep this
environment as uncluttered and neat as possible. This is consistent with any
previously learned notions concerning program states, and students used local
declarations well and without problems.

6.3 Layers

Another metaphor is that of a system built up from different layers of abstraction.
In the first lecture we say that there are several layers of software in a typical
computer system and we explain the provision of types as an abstraction away
from the actual hardware. This is a standard computing metaphor [7]. It is
reinforced by the general Computer Systems material taught in the rest of the
programming course, but further support would be given if material on, say,
Operating Systems, were to be taught concurrently.

7 Conclusions

We conclude that we should have spelled out some of the metaphors explicitly
in order to make them more effective or to dispell confusion about why they are
being used. We would also recommend juxtaposing more material supporting
the notion of layers of abstraction. A new modular structure to be introduced in
1994/5 will allow us to do this and to bring forward a course on operating systems
principles to the first semester. In spite of these recommendations, we deem the
introduction of SML to have succesfully fulfilled its purpose in providing a firm
basis for the teaching of Software Engineering principles.

References

[1] 19.



[2] George Lakoff and Mark Johnson. Metaphors we live by. University of
Chicago Press, 1980.

[3] Meurig Beynon. Paradigms for programming. In Proceedings of Workshop
on Functional and Logic Programming Languages, 1986.

[4] Ron Brunt and Andrew Hutt (eds). OPENframework The Systems Architec-
ture. An Introduction. Prentice Hall, 1992.

[5] Marian Petre. A paradigm please - and heavy on the culture. In Proceedings
of NATO Advanced Research Workshop on User-centred Requirements for
Software Engineering Environments, 1991. Springer, 1994.

[6] John M. Carroll and John C. Thomas. Metaphor and the cognitive represen-
tation of computing systems. IEEE Trans. on Systems, Man and Cybernetics,
12:107-115, 1982.

[7] Andrew Tanenbaum. Operating Systems. Design and implementation.
Prentice-Hall, 1987.



