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1 Executive Summary

Z is a formal description language based on set theory and predicate logic [12].
In SCORE, we have investigated, through a number of case studies, how Z may
be used to support service creation. Z may be used in the specification stage
of service creation as it provides a succinct and unambiguous way of specifying
services. Experience has shown that formal notations such as Z may also be
used to aid the requirements gathering stage of the service creation process;
by building partial formal models based on requirements, these requirements
can be clarified and further elaborated before a more complete specification is
produced.

1.1 Conceptual Model

Guidelines on the use of Z for telecoms service specification are described in
this report. We have taken the view that a service is provided by a system.
A standard approach to system specification was taken, whereby we focus on
some clearly defined notions—entities—and build appropriate relations between
them. We refer to the entities and the relationships between them as a concep-
tual model. The conceptual model is represented in Z using mathematical struc-
tures. Commonly used mathematical structures used in service specification are
sets and functions. Functions are used to describe mappings from elements of
one domain to another and are used in many different contexts. For instance,
a function could be used to specify communications connections by mapping
A-numbers to B-numbers, or could be used to describe a freephone service by
mapping freephone numbers to real numbers, or could be used to describe the
relationships between service subscribers and service providers. The conceptual
model is developed by identifying entities and relationships between them from
the service requirements, and gradually elaborating and refining the conceptual
model by posing questions of the requirements.
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1.2 Operations

The conceptual model serves as the state space of a system, and transitions on
the state space are described by operations, which also form part of a specifi-
cation. An operation is described by a predicate relating possible before-states
to possible after-states, as well as some input parameters and output parame-
ters. The effect of invoking an operation is to update the state based on the
before-state and the input parameters, resulting in an after-state and output pa-
rameters according to the specification. When the conceptual model consists of
sets and functions, then such state changes usually involve adding or removing
elements from sets, and adding, removing, or updating mappings in functions.

A system provides a service to it’s environment (i.e., users and others sys-
tems) by interacting with that environment. The environment interacts with a
system by having a view of the system state, and by changing the system state
through operations.

So the definitions of the operations are based on the required interactions
as identified from the service requirements and their intended effect. Often we
find that the conceptual model may be inadequate to fully specify the intended
effect of an operation, and needs to be refined.

1.3 Invariants

Invariants are used to describe “healthiness” conditions that the conceptual
model should satisfy. These invariants may represent constraints imposed by
the requirements, or may be necessitated by the mathematical structures we
use to describe the conceptual model. It is important that the operations of a
specification preserve all invariants, and mathematical reasoning may be used
to check this. The B-tool has been evaluated in order to see how it can support
this reasoning. As well as performing syntax-checking and type-checking, the
B-tool acts as a proof assistant. It generates a list of proof obligations from
a specification, tries to prove some of those obligations based on a library of
proof rules, and flags any obligations that it fails to generate. The library of
proof-rules is easily extended by the tool user.

1.4 Structuring Specifications

An important feature of Z is the schema. A schema is a box containing a piece
of mathematical specification. Schemas can be combined in a variety of ways,
thus providing a powerful means of structuring large specifications. An object-
oriented version of Z has also been developed, providing yet more mechanisms
for structuring Z specifications.

1.5 Rationale

The mathematical structures provided by Z allow us to write service specifi-
cations that are abstract, independent of implementation detail, and closer to
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the user’s point-of-view of the service. For instance, when describing Intelli-
gent Network services in Z, we don’t introduce any of the detail to do with
interactions between the distributed network entities such as Switching Control
Point, Service Control Point, SIB’s, etc. We only introduce enough detail to
the specification as is necessary to describe the service from the user point-of-
view. The specification is thus easier to validate against the user’s requirements.
The mathematical nature of Z means that the specifications produced are rig-
orous and unambiguous. It also allows us to reason about our specification thus
ensuring greater quality. For instance, we can ensure the consistency of the spec-
ification by ensuring that invariants are preserved by operations as mentioned
above. In SCORE, we have also investigated how Z can be used the detection
of potential service interaction problems. This work is reported in [?].

1.6 Case Studies

Z has been applied in two case studies in SCORE: the IN-Services case study
and the EuroBridge case study. For the IN-Services case study, specifications in
Z of several IN-services, including the Follow-Me-Diversion service, have been
produced. The approach taken in this case study was to first specify the basic
connection service in Z. The supplementary services (e.g. Follow-Me-Diversion)
were then specified as extensions of this. The interactions between the sup-
plementary services and the basic service, and between different supplementary
services, were then analysed for potential problems and unwanted side-effects.
It was found that the Z specifications were amenable to such analysis. For the
EuroBridge case study, specifications of some multi-media services have been
produced. The approach taken in this case study was to solicit general re-
quirements on multi-media services from EuroBridge and other sources. These
requirements were then used to develop a generic model in Z of multi-media
services, and the generic model was instantiated to a number of multi-media
applications including a point-of-information service and a medical support sys-
tem. Use of Z provided an effective way of adding structure and rigour to the
process of eliciting and analysing requirements, and feedback from preliminary
formal models was used in refining the requirements to produce a more complete
specification. The specifications produced in both these case studies would serve
as sound bases for implementing the example services.
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2 Introduction

Z is a formal description language based on set theory and predicate logic [12].
In this report, we provide an overview of how Z may be used to describe telecom-
munications services. Z may be used in the specification stage of service creation
as it provides a succinct and unambiguous way of specifying services. Experi-
ence has shown that formal notations such as Z may also be used to aid the
requirements gathering stage of the service creation process; by building partial
formal models based on requirements, these requirements can be clarified and
further elaborated before a more complete specification is produced.

We take the view that a service is provided by a system. We choose to exhibit
a standard approach to system specification, whereby we focus on some clearly
defined notions—entities—and build appropriate relations between them. We
refer to the entities and the relationships between them as a conceptual model.
The conceptual model is represented in Z using mathematical structures. The
conceptual model serves as the state space of a system, and transitions on the
state space are described by operations, which also form part of a specification.
It is usual, moreover, to specify an initialisation condition for the system

A system provides a service to its environment (i.e., users and other systems)
by interacting with that environment. The environment interacts with a system
by having a view of the system state, and by changing the system state through
operations.

Invariants are used to describe “healthiness” conditions that the conceptual
model should satisfy. These invariants may represent constraints imposed by
the requirements, or may be necessitated by the mathematical structures we
use to describe the conceptual model. It is important that the operations of a
specification preserve all invariants, and mathematical reasoning may be used
to check this.

We will not attempt to introduce all the constructs of the Z language, rather
we present a series of example Z specifications, explaining the important con-
structs as they are introduced. In the next section, we introduce the schema
notation, which is an important mechanism for structuring Z specifications.
We then illustrate how the mathematical structures of Z may be used to specify
important service concepts such as the relationships between service actors, con-
nection control, directory service, green-number service, and multi-media user
interface.

A glossary of the symbols used can be found at the end of the chapter.

3 Specification and Schemas

A Z schema consists of a name, variable declarations, and a predicate:

SchemaName
x : X (variable declarations)

Predicate (predicate relating variables)
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In this section, we illustrate the schema notation of Z by specifying a simple
counter system. Firstly, assume that max is some constant natural number:

max : N

The state space for the counter is specified by the schema Counter :

Counter
ctr : N

ctr ≤ max

The state space consists of a single component named ctr of type natural number
representing the current value of the counter. The predicate part of Counter is
an invariant constraining the value of the counter never to be greater than the
fixed value max .

An operation to increment the counter is defined by the following schema:

Increment
∆Counter

ctr < max
ctr ′ = ctr + 1

The declaration ∆Counter means that this operation will change the state space
Counter . The new value of the counter is referred to as ctr ′, while the old value
is ctr . The predicate part of this schema simply states that provided ctr is less
than max initially, the new value of ctr is the old value plus 1. (There is an
implicit conjunction between successive lines in the predicate part.)

Similarly, an operation to decrement the counter is defined by:

Decrement
∆Counter

ctr > 0
ctr ′ = ctr − 1

An important property of an operation is it’s precondition. This is a con-
dition on the initial value of the state variables describing when the operation
will result in a valid new state (i.e., one that satisfies the state invariants). For
example, the precondition of the Decrement operation is as follows:

preDecrement
ctr : N

ctr > 0

So the decrement operation may be validly invoked only if ctr > 0.
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An operation to set the value of the counter is specified by the schema
SetCounter :

SetCounter
∆Counter
c? : N

c? ≤ max
ctr ′ = c?

Here c? is an input parameter to the operation. (Conventionally input param-
eter names are suffixed with ‘?’.)

An operation to display the counter value is defined by:

Display
ΞCounter
c! : N

c! = ctr

Here ΞCounter means that the Counter state-space is not changed by the op-
eration. The parameter c! is an output parameter. (Conventionally output
parameter names are suffixed with ‘!’.)

4 Roles and Inter-relationships

Let us introduce formal names for the roles of service end-users (u ∈ USR)
and service subscribers (s ∈ SUB). Multiple elements from a domain will be
designated by a mixture of sub- and superscripts. Thus,

u1, u2, . . . , un

denotes a collection of service end-users. We will later associate such a collec-
tion with a specific subscriber, sj , say. In which case, the collection might be
designated by

u1

j , u2

j , . . . , un
j

Similarly, entities such as service provider (p ∈ PRV ) and service (x ∈ SRV )
may be furnished with appropriate formal names.

4.1 Subscribers and end-users

Suppose we wish to associate subscribers with users. We may declare a function
f from subscribers to users:

f : SUB 7→ USR.
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Here, f maps subscribers to users and, since f is a function, a subscriber may
be mapped to at most one user. An entry in f will have the form

s 7→ u.

Rather than a single end-user, we take the view that there is a collection
of service end-users associated with a service subscriber. The totality of such
associations is modelled by a ‘system of subsribers’, SUBSYS . Formally we
write:

SUBSYS
ss : SUB 7→ P USR

Now subscribers are mapped to sets of users.
We may consider this model to denote a sort of ‘table’ where each entry has the
form

s 7→ {u1, u2, . . . , un}

The model permits entries of the form

s 7→ {}

which indicates that the particular subscriber, s, has (currently) no associated
end-users. This is a common feature (called a singularity) in a specification
which may be interpreted as denoting a particular point in time of end-user
registration in the system.

Often, it is of particular importance to model a system in the state of equi-
librium where all such singularities have been eliminated. We describe such a
model as a ‘derivation’ and write

SUBSYS1

ss1 : SUB 7→ P
1
USR

Here, subscribers are mapped to non-empty sets of users.
Such stable models are invertible. In other words, given ss1, we may make

use of the inverse (ss1)
−1, where

(ss1)
−1 ∈ USR 7→ P SUB

The model of subscribers and end-users, SUBSYS , also accommodates the
possibility that the same end-user, u, may be associated with two different
subscribers, sj and sk , say. In other words, a table such as

ss =













. . . . . .

sj 7→ {u, u1
j , . . .}

. . . . . .

sk 7→ {u, u1

k , . . .}
. . . . . .












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is perfectly acceptable. This captures, for example, the possibility of a con-
sultant u working for two different companies sj , sk .

Given a model, such as that of the relationship between subscribers and
end-users, we are in a position to exercise it. One may think of such exercising
as the definition of operations on the model. Alternatively, it is often preferable
to describe the process by posing suitable questions and ascertaining whether
there is sufficient information to obtain the answers.

Question 4.1 Which subscribers are recorded in the system?

Formally, the response is

dom ss

It is formulated by an ‘inbuilt’ mathematical operator/function—the domain
function.

Question 4.2 Is the subscriber s recorded in the system?

Again the response is immediate:

s ∈ dom ss

There are many such operators/functions which are immediately available. Rather
than exercise this model exhaustively, we will now introduce other relationships
and pose other questions.

4.2 Providers and services

Since we are dealing with service specification, it seems appropriate to introduce
a model in which the concept, at least, appears. We choose to model the relation
between service providers and the services that they offer. Formally, we write:

PRVSYS
ps : PRV 7→ P SRV

It is obvious that this model is structurally identical (isomorphic) to that of
subscribers and end-users. Thus, we are led to examine the interpretation to be
given to singularities such as

p 7→ {}

and entries of the form

ps =













. . . . . .

pj 7→ {s, s1
j , . . .}

. . . . . .

pk 7→ {s, s1

k , . . .}
. . . . . .












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In the latter case we are forced to examine the meaning of two different providers
offering the same service. Is this feasible, realistic?

Suppose that we wish to denote the addition of a new service, s, offered by
the service provider p. We designate this by the expression

ps ⊕ { p 7→ (ps(p) ∪ {s}) }

Here, the override operator (⊕) replaces the previous mapping for p with a
new value, leaving other entries unchanged. For validity, it is necessary that
the provider p already be recorded in the system ps, a pre-condition which is
immediately expressed by the form

p ∈ dom ps

Pragmatically, to construct formal specifications from such expressions, one
needs to wrap them up in syntactic sugar and provide a sprinkling of meaningful
names to bind them to the reality of the application in hand.

For the operation in question, the addition of a new service, we might provide
a form that is reminiscent of a procedure in a programming language:

AddNewService
∆PRVSYS
p? : PRV
x? : SRV

ps ′ = ps ⊕ { p? 7→ (ps(p?) ∪ {x?}) }

Then, the pre-condition, that the service provider already be recorded in the
system, is specified by

preAddNewService
PRVSYS
p? : PRV
x? : SRV

p ∈ dom ps ∧ . . .

The ellipsis indicates that there are other conditions which we may wish to
have satisfied. For example, we may wish to ensure that the new service being
offered, x?, by provider p is NOT already one of those being offered by that
provider:

¬ x? ∈ ps(p?)

It is worth noting that the validity of the expression for the addition of the
new service does not depend on such a condition!
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5 Connection Control

5.1 Conceptual Model

We wish to model the control of connections between service end-users. A
connection will be modelled as a set of users, so the type Conn is defined as
follows:

Conn = P USR.

The set of established connections is then modelled by

established ∈ P Conn.

If {a, b} ∈ established , then a connection is said to be established between users
a and b. The complete model of the connection control system is defined as
follows:

Connections
request : USR 7→ USR
established : P Conn
active : P USR

request ∩ IDUSR = {}

(dom request) ∩ (
⋃

established) = {}

disjoint established

(∀ cn ∈ established • #cn = 2)

active = (dom request) ∪ (
⋃

established)

The variable request records connections that have been requested but not yet
established; if request(a) = b, then user a has requested a connection with user
b. The variable established records all established connections, while active
records all those users that are either requesting a connection, or involved in an
established connection. The five invariants respectively constrain the system as
follows:

• A user cannot request a connection with itself.

• A user cannot be both requesting a connection and involved in an es-
tablished connection; this constraint could be relaxed to allow passage to
multi-way connections.

• No user can be involved in more than one connection.

• Each established connection consists of only two distinct users; this con-
straint could be relaxed to allow multi-way connections.

• active is simply defined as the set of users requesting a connection or
involved in an established connection.
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This model of connection control was developed by first deciding on a way
of modelling connections. Given this, we were in a position to elaborate the
requirements by asking questions such as “can a user be involved in more than
one connection?”, or “is there a limit to the number of users that may be involved
in a connection?”. The model chosen allowed us to see clearly what questions
should be asked. The constraints chosen are not imposed by the model, but
rather by a set of requirements.

5.2 User Operations

A user a? may request a connection with a user b? using the following operation:

Request Connection
∆Connections
a?, b? : USR

a? 6∈ active ∧ a? 6= b?
request ′ = request ∪ {a? 7→ b?}
established ′ = established

User a? can only request a connection if it is not already active, and cannot
request a connection with itself. The effect of the operation is to record the
request, and leave existing connections unchanged. Note that the invariant

active = (dom request) ∪ (
⋃

established)

means that a? is implicitly added to active.
A user with whom a connection has been established may accept that con-

nection using the following operation:

Accept Connection
∆Connections
b? : USR

(∃ a : USR •
request(a) = b?
b? 6∈ active
request ′ = {a}�− request
established ′ = established ∪ { {a, b} } )

The user b? may accept the connection only if it is not already active. The effect
of the operation is to delete the request and add the connection to those already
established. ({a}�− request represents the function request with the mapping
for a removed.)

Finally, we describe an operation for clearing a connection. A user may
invoke the clear operation if it has requested a connection, or if it is involved
in an established connection. We specify these two cases separately and then
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combine them using a special Z schema operator. The first case is where the
user is clearing a request that has not yet been established:

Clear Requested Connection
∆Connections
a? : USR

a? ∈ dom request
request ′ = {a?}�− request
established ′ = established

The second case is where the user is clearing an established connection:

Clear Established Connection
∆Connections
a? : USR

(∃ cn : Conn •
cn ∈ established ∧ a? ∈ cn
request ′ = request
established ′ = established \ {cn} )

The two cases are combined to form a single operation using the schema dis-
junction operator as follows:

Clear Connection = Clear Requested Connection ∨ Clear Established Connection

The effect of the schema disjunction operator is to merge the two declarations,
and produce a predicate which is the logical disjunction of the predicates of the
component schemas.

The precondition of the Clear Connection operation is the disjunction of the
respective pre-conditions of Clear Requested Connection and Clear Established Connection:

preClear Connection
Connections
a? : USR

a? ∈ dom request
∨
a? ∈ (

⋃

established)

The separate cases for the clear operation were determined by our conceptual
model. Because of our model, a user could either be in the domain of request ,
the range of request , in some established connection, or in none of these. We
decided that a user wouldn’t need to clear a connection if it is not active (a 6∈
(dom request) ∪ (

⋃

established)), which means we only provide for it being in
the domain of request or in some established connection.
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Observation: Clearly the conceptual model is adequate for describing the
required operations. But there may be other operations for which it is inade-
quate. For instance, we do not model which user of an established connection
requested that connection. If we wished to add some billing operations to the
specification, then such information would be necessary in order to determine
which users to charge.

6 Directory service

In this part of the document, we address the specification of information struc-
tures which are inherently a part of any telecommunication system.

Let us consider a simple model of a directory service. We may consider this
to be a mapping from persons to telephone numbers:

TELEPHONE DIR
δp : PERSON 7→ NUM

But, in law, a company is also a person, and hence, we need make no distinction
between human person and non-human person. Again, we know from experience
that one person may have many numbers and, alternatively, many persons may
de facto share the same number. Hence, our model must be modified to give

TELEPHONE DIR
δp : PERSON 7→ P NUM

6.1 Persons, names and identifiers

The treatment of location leads to consideration of coordinate functions such as
latitude and longitude pairs. Rather than choose a conventional target domain
of R3 for the coordination functions, using cartesian coordinates or spherical
coordinates, we might prefer or even use in addition a different frame of reference
such as (state, region, area, time). Whatever the choice, we are aware of a
relationship between locations and their ‘names’. This relation is captured by
the notion of a ‘directory’.

Persons exist at a location (and point in time). They certainly do not ‘live’
in a computing system. For purposes of billing, etc., we must keep a record of
persons by recording their personal data. Of the latter, the person’s name is of
key significance:

PERSON 7→ Pnm

In addition, since names are not usually unique, it is customary to give each
person a unique identifier

PERSON 7→ Pid
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An association of name and identifier will also be modelled as a directory.
Thus, we may immediately state the following requirements, backed up with
supporting models.

Requirement 6.1 The system must keep a registry of persons names and their
unique identifiers.

Justification 6.1 A current telecommunications subscriber is aware of the
existence of telephone directories, facsimile directories, etc. We may consider
this new registry to be an appropriate abstraction which correctly generalises
such directories.

In keeping with the person-oriented view of the requirements, we will model
this as

δp ∈ P DIR = Pnm 7→ Pid

This is termed the person-oriented view in the sense that persons first consider
themselves as being named and only afterwards as being identified (abstractly).

From the system point of view we may invert the model to obtain

δ−1

p ∈ (Pnm 7→ Pid)−1 = Pid 7→ Pnm

The model δp assumes that every person is uniquely named. Since, in reality,
such is not the case, then we may do one of two things:

1. Use the standard technological solution which maps unique identifiers onto
names:

Pid 7→ Pnm

2. Alternatively, we may partition the original δ−1
p by elaborating a name

into a structure, thereby achieving uniqueness.

Since, such detail is of not of importance at this stage we will assume simple
uniqueness of person names.

Using the directory (or register, catalogue, etc.,) as paradigm, it is simple to
populate the ‘specification world’ with requirements and models. For example,
we will want to keep a register of services:

Requirement 6.2 (SERVICE–REGISTER) The system must keep a reg-
istry of services and their unique identifiers.

Justification 6.2 In the case of a freephone service, current network opera-
tors maintain a register of services and service providers.

14



Without repeating all of the analysis and commentary used for the ‘telephone
directory’, it is probably sufficient just to mention the model

δs ∈ S DIR = Snm 7→ Sid

Similarly, for ISDN, whether simple or broadband, it seems reasonable that
the system keep track of terminal equipment:

Requirement 6.3 (TERMINAL–REGISTER) The system must keep a reg-
istry of terminal equipment and their unique identifiers.

Justification 6.3 In mobile telephone systems there is a register of mobiles
kept, each of which may be considered to be identified by a unique electronic
serial number (ESN).

Naturally, there is a corresponding model:

δt ∈ T DIR = Tnm 7→ Tid

It is surely clear that, given a description of some system whether a telecom-
munications one or not, we may build models around entities, entity names and
(unique) entity identifiers. Such models fall into the general class of directory
models. Other names in use are register, catalogue, etc., depending on the
application.

6.2 Directory use

Let us suppose that a user wishes to obtain the telephone number1 of a particular
person. It may be the case that, in an implementation, the response is (i) a voice
message, (ii) a window display on a workstation, (iii) . . .

For convenience we reproduce the ‘telephone directory’ model:

TELEPHONE DIR
δp : PERSON 7→ P NUM

In its most simple form, the directory inquiry is a simple lookup operation:

Lookup
ΞTELEPHONE DIR
p? : PERSON
n! : P NUM

n! = δp(p?)

1We use the idea of telephone number solely for convenience. From the above discussion,

it is clear that all sorts of identifiers may stand in its place.
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with the usual pre-condition. The result of the inquiry is a set of telephone
numbers. There are clearly cases when this is the desired result, for instance, in
ISDN. However, in other situations/implementations (such as hunting lines) the
user expects only one ‘free line’. We may model this, using a non-deterministic
choice:

Lookup
ΞTELEPHONE DIR
p? : PERSON
n! : NUM

n! ∈ δp(p?)

The effect of the non-deterministic choice is to return a single number from a
non-empty set. There is no interpretation as to what such a choice might mean
in a real application. For example, if we really want to model the ‘free line’ then
we must introduce another model of the system state which keeps track of busy
lines, etc.

Again space prohibits further extensive development here. To complete this
part on directory services we now consider the typical freephone service and
demonstrate the notion of lateral elaboration of a model.

7 Green number service

Green number service is the term used in the Intelligent Network literature to
describe the generalisation of the ‘800’ number service of the US [1] pp.105
et seq . The basic service is succinctly described as follows:

“Calls containing a special access code (for example in the USA 800,
in West Germany 130) trigger the interrogation (via CCS7) of a
database to determine the real (target) number. The real number is
used for call setup”.

We introduce the abstract model of a green number directory:

GN DIR
δg : GNUM 7→ P NUM

Annotations:

• There may be one or more real numbers associated with a given green
number g , e.g., g 7→ {n1,n2, . . . ,nk}

• There may be two different green numbers which have the same real num-
ber associated with them, e.g., gj 7→ {n}, gk 7→ {n}
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¿From the structure of the model it is clear that making a freephone call is
exactly equivalent to the lookup operation of a directory service. However, it is
of interest to examine more closely the interpretation that is to be given to the
set of numbers returned. Indeed, we will want to choose just one number from
the set, recalling our earlier brief discussion on the non-deterministic choice.

One possible interpretation relies on the notion of time. The number to be
selected is to be determined by the time when the freephone call is made:

GN DIR
δg : GNUM 7→ (TIME 7→ NUM )

For the lookup operation, we will use a time-selector function, πt , which has
the intended meaning that the real number to be selected is that for which the
time at which the freephone call is made, t , is greater than or equal to the
corresponding time index in the directory:

Lookup
ΞGN DIR
n? : GNUM
t? : TIME
n! : NUM

n! = πt?(δg(n?))

Yet to be done is the complete specification of the time-selector operation
πt?.

A different interpretation, especially important in the European context, is
based on locality. Assuming a European-wide freephone service, it is natural to
select the real number based on the locality of the originating freephone call.
The corresponding model and associated operations is similar to that of the
time-based system above.

Clearly, we may mix the two approaches, incorporating both time and loca-
tion.

8 Multimedia user interface

Services must, of course, be delivered to the end-user. Ultimately, it is upon the
end-user interface that the success of broadband communications will depend.
For this reason, it seems appropriate that one address the specification of a
‘typical’ modern user interface or, as more recently termed, a mediaphone [10].

For simplicity we may assume that a multimedia service interface may be
abstracted as a conventional ‘workstation’ which has been described as an “à la
carte [Broadband ISDN] terminal” [4] p. 185. Naturally, such a general model
will require considerable tailoring (and re-interpretation) if one were to adapt
it for a simple ‘audio’ phone.
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8.1 The screen

Let us begin by proposing that the service end-user is confronted by a work-
station screen (s ∈ SCREEN ), absolutely essential for any sort of video. The
screen is divided up into different areas of interest which we shall consider to be
windows (w ∈ WINDOW ), each of which is uniquely identified (wi ∈ Wid).

Windows which are open and on display to the user will be termed ‘displayed
windows’ (d ∈ DSPWINS ). Such windows have a particular visibility order
(v ∈ VISORDS ) or priority which is completely determined by an end-user’s
‘current’ focus of attention. In conventional jargon one speaks of the ‘current’
window as the active window.

For convenience, and particularly to conserve screen space and avoid clut-
ter, the end-user will have closed some windows (c ∈ CLSWINS ), their very
existence perhaps being determined by icons or names. Naturally, such closed
windows do not have a visibility order.

We model the screen as an ordered collection of displayed windows, their
visibility order, and the closed windows:

SCREEN
d : DSPWINS
v : VISORDS
c : CLSWINS

For the collection of displayed windows we will use the simple idea of an
association between unique window identifiers and windows:

d ∈ DSPWINS = Wid 7→ WINDOW

where a window will be considered to be nothing more than something which
we shall call a window specification (s ∈ WINSPEC ), yet to be determined:

w ∈ WINDOW = WINSPEC

The visibility order of the displayed windows may be modelled as a sequence
of the corresponding window identifiers

v ∈ VISORDS = seqWid

A typical sequence such as

v = 〈wi1,wi2, . . . ,win 〉

is to be interpreted from left to right, indicating that in this particular case
wi1 denotes the current window.

Finally, the closed windows are modelled simply by a set of window identifiers

c ∈ CLSWINS = P Wid
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The various components of the screen are not independent. For example,
the window identifiers which ‘index’ the ‘table’ of displayed windows (d ∈
DSPWINS ) must be exactly those which are listed in the visibility order struc-
ture (v ∈ VISORDS ). Such necessary constraints on the screen model are
formally specified by an invariant:

inv SCREEN
SCREEN

dom d = ran v
dom d ∩ c = {} ∧ . . .

The invariants are interpreted as follows:

• the window identifiers which ‘index’ the ‘table’ of displayed windows (d ∈
DSPWINS ) must be exactly those which are listed in the visibility order
structure (v ∈ VISORDS ), and

• the window identifiers which ‘index’ the ‘table’ of displayed windows (d ∈
DSPWINS ) must be totally disjoint from those which indicate the set of
closed windows (c ∈ CLSWINS ), and

• there may be other constraints which are either necessary, or which we
may wish to impose.

Given such mathematical models, there are inevitable operations which may
be performed, giving rise to expressions which correspond to questions which
we might wish to pose. However, since we have already illustrated this aspect
of the specification earlier in the document, we will address instead operations
which a service end-user might wish to perform at the interface.

8.2 User operations

Let us suppose that a particular end-user is being called. We will first suppose
that the system indicates the call by alerting the user in some manner, which
we will initially consider to be a ‘closed window’ (wi?). The end-user acknowl-
edges the call by clicking on the appropriate icon, say, thereby causing it to
be ‘opened’. Such an action will affect the currently displayed windows, their
visibility order and the collection of closed windows:

AckCall
∆SCREEN
wi? : Wid

d ′ = d ∪ {wi? 7→ . . .}
v ′ = 〈wi? 〉⌢v
c′ = c \ {wi?}
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The necessary pre-condition is, of course,

preAckCall
SCREEN
wi? : Wid

wi? ∈ c

Note the presence of the ellipsis in AckCall . This is an indication that we
do not have sufficient information to state precisely what happens when the
user acknowledges the call. In other words, the current model is deficient with
respect to this particular operation.

9 Telecom Experiences with Z

The use of formal specification notations such as Z is becoming increasingly
popular in the telecoms industry. In this section, we outline some experiences
with the use of Z in the telecoms industry as reported in the literature.

The ARISE project (part of the RACE I program) investigated how Z could
be used to promote reuse [2]. It was shown that Z could be used to provide
abstract, succinct specifications of reusable components thus making them easier
to reuse. A number of case studies involving the specification in Z of telecoms
services were undertaken. As part of an overall design methodology, Z was
integrated with the HOOD methodology [6]. It was shown how Z can be used
to describe the functional behaviour of HOOD objects. The advantage of using
a formal notation such as Z are that a common vocabulary between specifier
and designer is provided, designs can be formally verified, and the abstraction
provided can be used as a basis for reusability. Some prototype tool support for
the combined Z/HOOD approach was also developed.

AT&T Bell Laboratories have undertaken case studies involving the speci-
fication in Z of an existing PABX (Private Automatic Branch Exchange) [13].
The aim of these case studies was to understand how to specify real switching
systems, and to understand how best to combine partial specifications so that
different aspects can be described independently and then combined. Operations
of a PABX are very complex because of the many varied conditions that may
apply. It was found that use of the schema calculus of Z allowed the complexity
to be managed. Formulating invariants and proving they were maintained by
each operation was seen as a good way of ensuring consistency of behaviour.
Through the use of invariants in Z, some constraints were discovered that had
not been documented in the system manuals and probably weren’t intended in
the original design.

Z has been used to fully specify the Open Distributed Processing (ODP
) Trader Object [8] and the specification produced has been proposed as a
standard for the object. The developers of this Z specification of the Trader
Object have found that Z is suited to both the Information and Computational
viewpoints of ODP standards.
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British Telecom have used Z in Telecommunications Network Management
[11]. ISO has produced standard descriptions of Managed Objects written in
English. British Telecom are concerned with conformance of systems they de-
velop to these standards, and felt the best way to approach this was to develop
formal specifications of the standardised managed objects. It was found that
Z was very well suited to specifying managed objects. A small hierarchy of
managed objects has been specified in Object-Z (an object-oriented version of
Z), and these have been implemented in C++. British Telecom are also de-
veloping a method for conformance testing based on Z [3], and are developing
tools for automating the production of C++ implementations from Object-Z
specifications [9].

Bell-Northern Research, Canada have investigated the use of VDM (a formal
notation similar to Z) for the specification of OSI Managed Objects [7]. It
was found that VDM provided a good way of describing relationships between
managed objects, descriptions that are lacking in current standards.

The Australian Overseas Telecommunications Corporation (OTC), in col-
laboration with the University of Queensland, have also investigated the use of
Object-Z for the specification of telecommunications services [5]. A large case
study was undertaken involving the specification in Z of a system which would
support the implementation of intelligent communications services. This case
study in fact resulted in suggested improvements to Object-Z.

10 Glossary of Symbols

Logic

∧,∨ logical-and, logical-or
¬ negation
⇒ logical implication
(∃ x • P) exists an x such that P
(∀ x • P) forall x , P holds

Sets

{· · ·} set delimiters
∈, 6∈ set membership, non-membership
∪,∩ set union, set intersection
P S powerset of S
P

1
S P S excluding the emptyset

N set of natural numbers
disjointS no two sets of S have elements in common
S ⊆ T S is a subset of T
S × T cartesian product of S and T
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Relations and Functions

S ↔ T set of relations from S to T
S 7→ T set of partial functions from S to T
x 7→ y mapping of element x to element y
f (x ) application of function f to element x
f −1 inverse of function f
dom f , ran f domain of f , range of f
IDS identity function on set S
f ⊕ g function f overridden by function g
S �− f function f with all elements in S removed from its domain

Sequences

seqS set of sequences of type S
〈 · · · 〉 sequence delimiters
s⌢t s concatenated with t
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