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Abstract

This paper addresses the issues involved in software agents
making trade-offs during automated negotiations in which
they have information uncertainty and resource limitations.
In particular, the importance of being able to make trade-
offs in real-world applications is highlighted and a novel
algorithm for performing trade-offs for multi-dimensional
goods is developed. The algorithm uses the notion of fuzzy
similarity in order to find negotiation solutions that are ben-
eficial to both parties. Empirical results indicate the bene-
fits and effectiveness of the trade-off algorithm in a range of
negotiation situations.

1. Introduction

Negotiation is a key form of interaction in multi-agent
systems. It is important precisely because the agents are au-
tonomous; that is, they decide for themselves what actions
they should perform, at what time, and under what terms
and conditions. Since such agents have no direct control
over one another, they must negotiate in order to manage
their interdependencies. Thus, we view negotiation as a
process by which a joint decision is made by two or more
parties. The parties first verbalise contradictory demands
and then move towards agreements [9].

Automated negotiation exists in many shapes and forms:
ranging from simple auctions in which agents merely have
to bid truthfully [17], to complex strategic models in which
agents argue for positions and aim to persuade their oppo-
nents of the value of a particular course of action [8]. In
this work, however, we are interested in a particular class
of negotiation: service-oriented negotiation [14]. In such
negotiations, a producer and a consumer have to come to
a mutually acceptable agreement over the terms and condi-
tions under which the producer will execute some problem
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solving activity for the consumer. Specific issues that need
to be agreed include the price of the service, the time at
which it is required, the quality of the delivered service and
the penalty to be paid for reneging upon the agreement.

In previous work [4], we investigated the design of
reasoning mechanisms that enable agents to act competi-
tively (obtain deals that are good for themselves) in service-
oriented negotiations in which they have limited knowledge
and computational resources. However, based on our expe-
riences in the domains of business process management [6]
and telecommunications network management [3], we find
that in some cases there is also a need for agents to act in a
more socially responsible manner. Thus, some of the agents
in the business process management application are part of
the same overarching organisation and some of the agents
in the telecommunications application are from the same
network operator. In such cases, the agents are concerned
both with the outcome of the negotiation for themselves and
for their negotiation opponent. In short, they care about eq-
uity and social welfare [2], as well as their individual utility.
This requirement leads us to consider designing models that
can uncover win-win negotiation solutions [10], again in the
presence of limited knowledge and computational bound-
edness. Win-win negotiation refers to bargaining situations
where both parties search for solutions that “squeeze out”
more gains (either mutually or individually) than the cur-
rently agreed deal.

The particular mechanism for win-win negotiation that
we explore here is that of agents making trade-offs. Intu-
itively, a trade-off is where one party lowers its scores on
some negotiation issues and simultaneously demands more
on others. Thus, an agent may accept a service of lower
quality if it is cheaper or a shorter deadline if it receives
a higher price. Such movements are intended to generate
an offer that, although of the same value to the proposer,
may benefit the negotiation opponent and hence increase
the overall joint gains [10] between the two agents.

The contribution of this work is twofold. Firstly, extant
work on automated negotiation has largely ignored the issue



of making trade-offs. Even when it has been dealt with, the
advocated approach is based on assumptions that are un-
realistic for real-world settings (section 4). Secondly, we
present a novel algorithm for making trade-offs, in the pres-
ence of information uncertainty and resource boundedness,
for multi-dimensional goods based upon the notion of fuzzy
similarity [18]. Moreover, this algorithm is analysed theo-
retically (to determine its complexity) and evaluated empir-
ically (to ascertain its operational performance).

The remainder of the paper is structured in the follow-
ing manner. Section 2 presents our algorithm for mak-
ing trade-offs in service-oriented negotiations (including the
complexity analysis). Section 3 provides an empirical eval-
uation of our trade-off mechanism. Section 4 compares our
approach to previous work on automated negotiation and
section 5 outlines our conclusions and future work.

2. Making Trade-Offs

In our previous mechanism [4], agents proposed a se-
ries of contracts that had diminishing value to themselves
(here we term such mechanisms responsive). However, in
choosing to make a trade-off negotiation action, an agent is
seeking to find a contract that has the same value to itself as
its previous proposal, but which is more acceptable to (has
higher value for) its negotiation opponent. When doing this,
the agent would like to know its opponent’s utility function
in order to find the counter proposal that maximises the op-
ponent’s return. However, in our scenarios, this function is
private and so a similarity function is used as an approxima-
tion.

���� Basics of Service�Oriented Negotiation

This sub-section outlines the basics of our service-
oriented model (refer to [4] for more details). Let i

(i � fa� bg) represent the negotiating agents and j (j �
f�� ���� ng) be the issues under negotiation (eg price, de-
livery time, quality of service and penalty). Further, let
xij � �minij �maxij � be a value for issue j that is accept-
able to agent i. We limit ourselves to considering issues
for which negotiation amounts to determining a value be-
tween an agent’s defined delimited range. Each agent has
a scoring function V i

j � �minij �maxij � � ��� �� that gives
the score agent i assigns to a value of issue j in the range
of its acceptable values. For convenience, scores are kept
in the interval ��� ��. The relative importance that an agent
assigns to each issue under negotiation is modelled as a
weight, wi

j , that gives the importance of issue j for agent
i. We assume the weights of both agents are normalized,
i.e.

P
��j�n w

i
j � �, for all i in fa� bg. An agent’s scoring

function for a contract—that is, for a value x � �x�� ���� xn�

in the multi-dimensional space defined by the issues’ value
ranges is then defined as: V i�x� �

P
��j�n w

i
jV

i
j �xj�

For analytical purposes we restrict ourselves to an addi-
tive and monotonically increasing or decreasing value scor-
ing system.

���� Formulating Trade�O�s

An agent will decide to make a trade-off action when
it does not wish to decrease its aspirational level (denoted
�) for a given service-oriented negotiation. Thus, the agent
first needs to generate some/all of the potential contracts
for which it receives the score of �. Technically, it needs
to generate contracts that lie on the iso-value (or indiffer-
ence) curve for � [10]. As all these potential contracts have
the same value for the agent, it is indifferent amongst them.
Given this fact, the aim of the trade-off mechanism is to find
the contract on the iso-curve that is most preferable to the
negotiation opponent (since this maximises the joint gain).
More formally, an iso-curve is defined as:

Definition 1 Given an aspirational scoring value �, the iso-
curve set at level � for agent a is defined as:

isoa��� � fx j V a�x� � �g (1)

From this set, the agent needs to select the contract that
maximises the joint gain. However, since an agent does not
know its opponent’s utility function some form of approxi-
mation is needed. The heuristic we employ is to select the
contract that is most “similar” to the opponent’s last pro-
posal (since this may be more acceptable to the opponent).
To compute similarity we use the concept of fuzzy similar-
ity [18]. Asuming we have a formula like “if p then q”,
fuzzy similarity is an approximation heuristic that supports
reasoning of the kind “if aproximately p then aproximately
q”. This technique was chosen because it allows an agent
to approximately model the closeness of two contracts in
decision making.

A trade-off can now be defined as:

Definition 2 Given an offer, x, from agent a to b, and a
subsequent counter offer, y, from agent b to a, with � �
V a�x�, a trade-off for agent a with respect to y is defined
as:

trade � o� a�x� y� � arg max
z�isoa���

fSim�z� y�g (2)

where the similarity, Sim, between two contracts is defined
as a weighted combination of the similarity of the issues:

Definition 3 The similarity between two contracts x and y
over the set of issues J is defined as:

Sim�x� y� �
X
j�J

wjSimj�xj � yj� (3)



with
P

j�J wj � � and Simj being the similarity function
for issue j. These weights represent the level of importance
the agent believes its opponent places on the various issues.
For example when reasoning about what deal to offer, an
oil company negotiator, when interacting with an ecologist,
may safely assume that the pollution risks are given greater
weight by the ecologist than the oil production costs.

Following the results from [16], a similarity function that
satisfies the axioms of reflexivity, symmetry, and t-norm
transitivity can always be defined as a conjunction (mod-
elled, for instance, as the minimum) of appropriate fuzzy
equivalence relations induced by a set of criteria functions
hi. A criteria function is a function that maps values from
a given domain into ��� ��. Correspondingly, the similarity
between two values for issue j, Simj�xj � yj�, is defined as:

Definition 4 Given a domain of values Dj , the similarity
between two values xj � yj � Dj is:

Simj�xj � yj� �
�

��i�m

�hi�xj�� hi�yj�� (4)

where fh�� � � � � hmg is a set of comparison criteria with
hi � Dj � ��� �� and � is an equivalence operator. In
our case, the criteria functions are given in section 3.1 and
�� j h�xj� � h�yj� j is used as the equivalence operator
(since this is a straightforward measure of the absolute Eu-
clidean distance between two points). The conjunction can
be any t-norm function.

To illustrate the modelling of similarity in a given do-
main, consider the example of colours. Dcolours �
fyellow� violet�magenta� green� cyan� red� � � �g. In or-
der to model how similar two given colours are, we can
consider different perceptive criteria. For instance, there are
‘warm’ colours and ‘cold’ colours. With respect to this cri-
terion, yellow and orange are more similar that yellow and
violet. We could also consider the criterion of visibility (as
well as many others). Green is the colour with the worst vis-
ibility and yellow and cyan are those with the best. We can
use these two criteria to model our example as (we present
functions extensively as sets of pairs (input, output)):

ht � f�yellow� ����� �violet� ����� �magenta������
�green������ �cyan� ����� �red� ����� � � �g

hv � f�yellow� ��� �violet� ��	�� �magenta���
��
�green������ �cyan� ��� �red� ����� � � �g

where ht and hv are, respectively, the comparison functions
corresponding to temperature (warm is 1, cold is 0) and vis-
ibility (maximum is 1, minimum 0).

With these functions, and using min as conjunction, we
can obtain by simple arithmetic that:

Simcolour�yellow� green� �
min��� j ht�yellow�� ht�green� j�

�� j hv�yellow�� hv�green� j� �
� min���
� ���� � ���

or, Simcolour�cyan� violet� � min����� ��	� � ��	

���� The Trade�O� Algorithm

The trade-off algorithm performs an iterated hill-
climbing search in a landscape of possible contracts. The
search proceeds by successively generating contracts that
lie closer to the iso-curve (representing the agent’s aspira-
tion level), followed by the selection of the contract that
maximises the similarity to the opponent’s last offering.
The algorithm terminates when the last selected contract
lies on the iso-curve.

The algorithm starts at y, the oponent’s last offer, and
moves towards the iso-curve associated with the agent’s last
offer, x, in S steps. Each step starts by randomly generating
N new contracts that have a utility E greater than the con-
tract selected in the last step yj (or y� � y if it is the first
step). N is referred to as the number of children. Each new
contract yj�� so generated satisfies v�yj��� � v�yj� � E.
From the generated children contracts, the one that max-
imises the similarity with respect to the oponent’s contract
y is selected. E is computed as the overall difference be-
tween the value of x and y divided by the number of steps.
That is, E � v�x��v�y�

S
. Below we present the algorithm

responsible for generating a new random contract. This al-
gorithm will thus be invoked N times at each step in order
to compute the best trade-off contract (giving SN calls in
total). The algorithm generates children by spliting the gain
in utility, E, randomly among the set of issues under nego-
tiation.

inputs: yj � /* last step best contract. y� � y */
E; /* step utility increase */
v��; /* value scoring function */

output: yj��; /* child of yj */
begin
(1) Ei �� �� v�yi��

(2) Emax ��
P

wiEi�
(3) � � ����Emax

if �Emax � E 
 �� then
(4) k �� ��En �� ��

while �En � E� do
k �� k 
 ��

(5) rki �� random��� Ei��

(6) En �� En 

P

i
wir

k
i �

(7) Ei �� Ei � rki �
endwhile

(8) Ei ��
�Pk

j��
r
j
i

�
E
En

�

(9) y
j��
i �� v��i

�
vi�y

j
i � 
Ei

�
�

else raise error
end

In more detail: (1) maximum utility gain per issue, (2)
total maximum utility gain, (3) setting of the average num-



ber of iterations, (4) initialization of steps and of gained util-
ity, (5) generation of a random value for utility gain for each
issue, (6) update the utility gained in iteration k, (7) fix the
utility potential gain for next iteration, (8) normalization,
and (9) compute the value for each issue in the new con-
tract.

���� Algorithmic Complexity

When analysing the complexity of our algorithm the first
thing to note is that it includes a call to a random number
generator inside the main loop (step 5). This has a direct
impact on the number of iterations, and hence on the time
the algorithm will take. Assuming the random number gen-
erator is probabilistic in nature, we cannot make a ‘big-O’
analysis of the complexity [1]. However, what we can com-
pute is an “average case” assuming that the random genera-
tor is perfect.

Let n be the number of negotiation issues. Steps 1, 5, 6,
7, 8, and 9 all need a time which is O�n� (� � i � n). The
time used by the algorithm will be proportional then to the
number of iterations, k, of the while loop, multiplied by the
cost of each iteration (which, as said, is O�n�). That is, it
will be proportional to kn. Let us derive how large k can
be. The while loop will terminate when En becomes big-
ger than E. We know that before entering the loop for the
first time Emax �

P
i �iEi and Emax � E � �. En is

the weighted addition of the portions rki generated by each
iteration. On average, and assuming perfect random num-
ber generation, at every iteration we will increment En by
half of each issue’s maximum potential utility gain given

to the random generator, that is,
P

i
Ei

� . Thus, in the first
iteration, the algorithm will consume a half of Emax, i.e.

En � ��
P

i �i
Ei

� which is Emax
� . In the second, a half of

the remaining amount, that is a half of Emax
� , i.e. Emax

� . In
general, we’ll consume Emax

�k
at step k and leave Emax

�k
for

the next step. That is, En at step k is En � Emax �
Emax
�k

.
We can then compute the average value for k as a func-
tion of the difference between Emax and E. Given that
we stop when En � E, we have Emax �

Emax
�k

� E,
that is, Emax � E � Emax

�k . The step before we had
Emax
�k��

� Emax � E. Taking this latter inequality, it is
easy to see that k � � � log Emax

Emax�E
. As we consider that

Emax � E � � is true, we have k � � � logEmax
�

. A pol-
icy to decide which value to assign to � could be to fix its
value as a percentage of Emax. For instance, making � a
�	 of Emax would mean that k � � � log Emax

����Emax
, that

is k � � � log��� � 
; eight iterations on average. Sum-
marising, if we fix � as a percentage c of Emax, we can see
that the average number of iterations is k � �� log �

c
. Thus,

on average the total time of the algorithm is proportional to
�� � log �

c
�n.

3. Experimental Analysis

Having developed and analysed our trade-off algorithm,
the next step is to evaluate its operational performance. To
this end, we wish to obtain two types of empirical infor-
mation. One set of experiments seek to investigate the pa-
rameters of the trade-off algorithm in generation of a single
offer, while the other set seeks to investigate the process
of negotiation when agents use trade-off and/or responsive
mechanisms. The former, referred to as single-offer experi-
ments, aim to evaluate the kernel of the trade-off algorithm.
The latter, refered to as meta strategy experiments, deal with
the dynamics of the algorithm when interacting with other
mechanisms.

���� Experimental Procedures

Both types of experiments involve an offer/offers from
one negotiator, a player, to another, the opponent. Further-
more, both experiments involve negotiation over four quan-
titative issues �price� quality� time� penalty�. The reser-
vation values of each issue for both agents are consid-
ered to be the same. The importance weight vectors of
the agents (section 2.1) are fixed throughout the negotia-
tion: W player � ����� ���� ����� ����� and W opponent �
����� ���� ����� ��
��1. The value function V a

i used by agent
a for issue i is a linear scoring function of the following
type:

V a
i �xi� �

�
maxa

i
�xi

maxa
i
�mina

i

if decreasing
xi�mina

i

maxa
i
�mina

i

if increasing

where increasing and decreasing refer to the direction
of change in score as the value of that issue increases. For
example, increasing the price of the service decreases the
score for a client, but increases it for a seller.

Other input variables of the trade-off algorithm were set
in the following way. The discriminatory power—the mag-
nitude of the difference between the input and output—of
the criteria function (equation 4) was set so that it exhib-
ited two properties. Firstly, that it has more discrimination
within the issues’ reservation values (as compared to values
outside this range), since most of the negotiation will take
place in this region. Thus, maximal discrimination should
be between an issue’s min and max values (section 2.1).
We parameterised this reservation value requirement by the
independent variable �. When � is low, the function should
be maximally discriminative for values within the issue’s

1Generally speaking, the differences in these weights are one of the key
elements that provide the opportunity for joint improvements (the other be-
ing the different shapes of the scoring functions). For example, an increase
in price may have little effect in value for the player, but relatively more
for the opponent.



reservation limits (mutatis mutandis when � is high). Sec-
ondly, we also want to experiment with different discrimi-
natory power within the reservation range (to support differ-
ent similarity measures for different issues). For example,
for one issue it may be desirable to have maximal discrim-
ination at the centre of the reservation values, whereas for
another issue maximal discrimination may be desired at the
extremes of the reservation values. We parameterise this
requirement using the variable �. When � is high, more
discrimination is placed towards the maximum of the reser-
vation values (mutatis mutandis when it is low). The fol-
lowing function satisfies these two requirements:

h�x� �
�

	
atan

��
� j x�min j

x�min

���� x�min

max�min

����
�

� �

	

tan�	�
�

�
� ���



�

	

�
(5)

In this case, in order to be quite discriminatory, � was
fixed at ��� for all issues. For all issues, we fixed the
different �s to be equal, �price � �quality � �time �
�penalty � �, to have linear criteria functions �h�is� that
have equal discrimination power across the issue’s reserva-
tion values. We chose to make � and � constant to reduce
the number of free variables in the experiments. However,
normally the setting of values for � and � reflects the agent’s
domain knowledge.

3.1.1 Single-Offer Experiment Variables

In these experiments the independent variables were: i) the
number of children generated at each step in hillclimbing to
the iso-curve, ii) the number of steps taken to reach the iso-
curve and iii) the information that is available to an agent
regarding the importance (or weight) the opponent places
on each issue in computing the contract’s value (equation
3). Values for the first and second variables control the
amount of search performed by the trade-off algorithm. Ex-
periments were run where the number of children was se-
lected from the set f�� ���� ���g. The number of steps to
the iso-curve was selected from the set f�� ��g. In the third
set of dependent variables, an agent can have perfect, par-
tial, imperfect or uncertain information on how the other
agent weights the issues that are input into its similarity
function (equation 3). In experiments with perfect infor-
mation, the algorithm, in computing similarity, is given the
other agent’s weights for different issues (cardinally correct
information). Partial information games are where the al-
gorithm is given the correct order of importance but not the
actual issue weights (ordinally correct information). Im-
perfect games represent the situation where the algorithm
is given no information about the other’s weights. Finally,

uncertain information games represent cases where the al-
gorithm is given undifferentiated weights for each issue, in
this case ������ ����� ����� �����. The dependent variable in
all our experiments is the generated contract for both agents.

The experimental procedure consisted of inputting two
contracts, representing x and y, into the algorithm under
each of the dependent variable environments and observ-
ing the execution trace of the algorithm for an offer from
the player to the opponent. All input contracts (x and
y) were subject to the general constraint that vplayer�y� �
vplayer�x� and vopponent�x� � vopponent�y�. This ensured
trade-offs are possible by ruling out all those contracts that
are already of a higher value to either party. The control
set was generated by chosing the preferred child randomly
at each step approaching the iso-curve (as opposed to using
the similarity criteria).

3.1.2 Meta Strategy Experiment Variables

The aim of these experiments was to empirically evalu-
ate the outcome and dynamics of negotiation when agents
used either a trade-off mechanism or a responsive mech-
anism or a combination of the two in the course of ne-
gotiation (that is, a meta strategy of which mechanism to
select in order to generate a series of counter-proposals).
The first offer of both agents was generated using respon-
sive mechanisms, since the trade-off mechanism requires
at least one offer from the opponent. After that, an agent
is faced a choice of which mechanism to select. Since
there can be an infinite number of meta strategies (as many
as potential sequences of chosings between responsive and
trade-off types of counterproposals), the meta strategies
considered in these experiments were limited to the set
fresponsive� smart� serial� randomg. Responsive sim-
ply selected the responsive mechanism for generating an
offer throughout negotiation. This was included to com-
pare the trade-off mechanism against an agent that always
concedes utility. A smart strategy consisted of deploying
a trade-off mechanism until the agent observed a deadlock
in the average closeness of offers between both agents as
measured by the similarity function. That is, the distance
between the offers was not reducing. Under these circum-
stances, the value of the previously offered contract, V a�x�,
was reduced by a predetermined amount, here ����, thereby
lowering the input value of � into the trade-off mechanism.
A serial strategy involves alternating between the trade-off
and responsive mechanisms. Finally, the random meta strat-
egy randomly selected between the two mechanisms. The
parameters of the responsive mechanism (see [4]) were set
to produce concession behaviours, since being responsive
often involves concessions in the light of environmental
needs (e.g. time, resources etc.). For the trade-off algo-
rithm, the number of children and number of steps were set



to ��� and �� respectively and the similarity weights were
set at uncertain settings of ������ ����� ����� �����. Both ne-
gotiators were given a deadline of twenty offers.

���� Results

Figure 1 and the top row of figure 2 show the results
of varying, under different information inputs, the number
of children generated in single-offer experiments when the
number of steps to the iso-curve was set to ��. The bot-
tom row of figure 2 represents the case where the num-
ber of children was set to ���, but the trade-off algorithm
computed the iso-contract in a single step. The dot-dash
line represents the execution trace of the random control,
the solid line emanating from y the similarity based trade-
off execution trace, and the line joining ��� �� to ��� �� the
pareto-optimal line. The results show four major patterns.
Firstly, when moving to the iso-curve if the space of possi-
ble contracts is not explored sufficiently, � children (figure
1 top row) or � step (figure 2 bottom row), then the gains of
the opponent are small. More specifically, only when the
player has perfect information about the opponent’s eval-
uations and the trade-off mechanism operates in 1 step with
100 children will the mechanism improve the offer (from
the opponent’s perspective) (figure 2 E). The next best con-
tract for the opponent is when the player has the same
value as x (figure1 A). All other contracts generated by the
player when not fully exploring the search space (figures 1
B,C,D and 2 F) have lower value to the opponent than x.

Secondly, in nearly all cases, the similarity based trade-
off out performs the policy of randomly selecting a child
for the next step towards the iso-curve. However this pat-
tern does not hold for the cases of reaching the iso-curve
in one step under partial and uncertain information environ-
ments (figure 1 G and H). This is the result of chance, rather
than randomness being a better strategy in this type of envi-
ronment.

Thirdly, the opponent’s benefit increases as the algo-
rithm performs more search (� to ��� children). Further-
more, there is no significant difference between perfect and
partial information outcomes within the ��� and ��� result
categories. This indicates that our algorithm requires only
partial ordering information, rather than perfectly cardinal
orderings, in order to compute outcomes that are better for
the opponent.

Finally, for all environments and variable combinations,
imperfect information results in significantly poorer out-
comes for the opponent than the other information classes.
This is only to be expected since search is directed towards
erroneous directions.

Figure 3 presents the data for the meta-strategy ex-
periments. Individual offers between the player and the
opponent are depicted as circles and squares respectively.

The sequences of offers are joined by a solid line for the
player and a dotted line for the opponent. The final agree-
ment is depicted as the offer where the circle and square
meet.

The observed data exhibits two patterns. Firstly, there
is a clear rank ordering across meta-strategy pairings over
the summed joint value gained for the final outcome. The
highest joint gain is achieved in negotiations between two
smart meta-strategists. In this case the final outcome
is close to the pareto-optimal line, implying that such
a pairing of meta-strategies results in outcomes that are
most beneficial to both parties. The remaining rankings
for player� opponent pairings of meta-strategies are then
[smart,serial], [serial,serial], [smart,random], [smart,responsive],
[serial,responsive], [random,responsive], [random,random] with
respective joint gains of 1.27, 1.18, 1.146, 1.11, 1.076, 1.06,
0.99. In general, the higher joint utilities occur when at least
one of the agents is smart. The random meta strategists,
as expected, perform worst.

The other observable pattern relates to the number of
messages exchanged between agents using different meta-
strategies. This indirectly measures the communication
load a meta-strategy places on the agents. The observed
pattern is almost the reverse for the joint value outcomes
above, with a [smart,smart] pairing incurring the highest
communication cost (reaching a deal after 20 rounds), fol-
lowed by [random,random], [smart,responsive], [smart,random],
[smart,serial] (14 rounds), [serial,serial] (13 rounds), and [se-
rial,responsive], [smart,smart] (12 rounds). This observation
supports our intuition that higher joint utilities are gained
through greater search, which, in turn, involves more com-
munication between the agents.

In summary, these results indicate that unless agents
know, at least partially, the importance the other agent at-
taches to an issue, then the best policy for computing trade-
offs is to assign uncertain weightings to all issues. These
weightings can then be updated by some learning rule to-
wards partial or perfect information models, since a) in-
formation models are private and b) erroneous predictions
can result in poorer outcomes. Furthermore, engaging in
trade-off negotiation, particularly with a high search fac-
tor by both parties, results in higher joint gains. However,
this improvement is achieved at the expense of an increased
communication load.

4. Related Work

A number of approaches have been advocated for the
process of making decisions during the course of negotia-
tion. Chief amongst these is work on game theory. This
strand of work has produced a large number of sophisticated
and specialised models [11], which, although analytically
well formed, are generally inappropriate for our purposes
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Figure 1. Data for � children in �� steps (first row) and ��� children in �� steps (second row). A) &
E) Perfect information, B) & F) Imperfect information, C) & G) Partial Information, D) & H) Uncertain
information.
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Figure 2. Data for ��� children in �� steps (first row), and ��� children in � step (second row). A) &
E) Perfect information B) & F) Imperfect information, C) & G) Partial Information, D) & H) Uncertain
information.
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Figure 3. Dynamics of Negotiation Process for Meta Strategies: A) smart v. smart, B) smart v.serial,
C) smart v. random D) smart v. responsive, E) serial v. serial, F) serial v. responsive, G) random v.
random, H) random v. responsive.



(because they specify the solution properties and leave the
process of how to reach these points unspecified and be-
cause they generally violate our privacy of information re-
quirements). Strategic game theoretic models [12, 7], on
the other hand, do model the process of negotiation. How-
ever they often make unrealistic information assumptions
(eg that agents know each other’s type [5]) and they do not
model negotiation for joint gains. Overall, in contrast to
game theoretic models, our work is targeted more to open
systems, where information is sparse and computational re-
sources are limited. In such environments, a satisficing so-
lution is the best that can be hoped for.

Uncertainty in negotiation was also addressed by us-
ing decision theoretic models in the Persuader system [15]
where multi-attribute utility theory was combined with
case-based reasoning in contexts where the agent had no
previous cases to reason with. This dual approach is similar
to our work in that agents use both utility and similarity for
decision making. However, we use similarity rather than
utility to address the inherent uncertainties involved and, as
we have shown in section 3.2, this appears to be a better
choice in uncertain environments.

The process of negotiation has also been modeled as a
distributed constraint satisfaction problem [13]. In such
cases, an agent’s objectives are represented as constraints
together with their associated utilities. Strategies (e.g. com-
position, reconfiguration and relaxation operators) are then
used to modify these constraints, or the current solution, un-
til a final solution is reached. The relaxation of constraints
is similar to our previous work on concession mechanism
for negotiation, and the modification of the current solution
closely resembles the trade-off mechanism reported here.
However, in our work there is only one objective, namely
reaching a contract which maximises value. Therefore, our
approach is to develop reasoning mechanisms that deliber-
ate over raw values rather than objectives.

5. Conclusions and Future Work

This paper presented a formal model and a related algo-
rithm for carrying out trade-offs in automated negotiations.
The algorithm is designed to work in a distributed setting
in which agents have limited information about the prefer-
ences of their negotiation opponent and limited computa-
tional resources to devote to the negotiation process. An-
alytical and empirical evaluation showed our algorithm to
be effective in such cases. Moreover, even when compara-
tively little information is known about the opponent’s pref-
erences, our algorithm still finds reasonable trade-offs and
does so in an acceptable number of negotiation cycles.

For the future, we aim to use similarity measures to ma-
nipulate the set of negotiation issues at run-time, as well as
using fuzzy techniques to model an agent’s preferences and

its ratings of the importance of the negotiation issues.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Al-
gorithms. Addison-Wesley, Reading, Massachusetts, USA,
1985.

[2] K. P. Corfman and S. Gupta. Mathematical models of group
choice and negotiations. Handbooks in Operation Research
and Management Sciences, 5:83–142, 1993.

[3] P. Faratin, N. R. Jennings, P. Buckle, and C. Sierra. Auto-
mated negotiation for provisioning virtual private networks
using fipa-compliant agents. In Fifth International Confer-
ence on The Practical Application of Intelligent Agents and
Multi-Agent Technology, 2000.

[4] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation de-
cision functions for autonomous agents. Robotics and Au-
tonomous Systems, 24(3–4):159–182, 1998.

[5] R. Gibbons. A Primer in Game Theory. Harvester Wheat-
sheaf, New York, 1992.

[6] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, and
B. Odgers. Autonomous agents for business process man-
agement. Int. Journal of Applied Artificial Intelligence.,
14(2):145–189, 2000.

[7] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent negoti-
ation under time constraints. Artificial Intelligence Journal,
75(2):297–345, 1995.

[8] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason
and negotiate by arguing. Journal of Logic and Computation,
8(3):261–292, 1998.

[9] D. G. Pruitt. Negotiation Behavior. Academic Press, 1981.
[10] H. Raiffa. The Art and Science of Negotiation. Harvard Uni-

versity Press, Cambridge, USA, 1982.
[11] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The

MIT Press, Cambridge, USA, 1994.
[12] A. Rubinstein. Perfect equilibrium in a bargaining model.

Econometrica, 50:97–109, 1982.
[13] A. Sathi and M. Fox. Constraint-directed negotiation of re-

source reallocation. In L. Gasser and M. Huhns, editors,
Distributed Artificial Intelligence Volume II, pages 163–195,
San Mateo, California, 1989. Morgan Kaufmann.

[14] C. Sierra, P. Faratin, and N. R. Jennings. A service-oriented
negotiation model between autonomous agents. In M. Bo-
man and W. V. de Velde, editors, Proceedings of 8th Euro-
pean Workshop on Modelling Autonomous Agents in Multi-
Agent World, number 1237 in LNAI, pages 17–35. Springer-
Verlag, 1997.

[15] K. Sycara. Multi-agent compromise via negotiation. In
L. Gasser and M. Huhns, editors, Distributed Artificial In-
telligence Volume II, pages 119–139, San Mateo, California,
1989. Morgan Kaufmann.

[16] L. Valverde. On the structure of F-indistinguishability. Fuzzy
Sets and Systems, 17:313–328, 1985.

[17] N. Vulkan and N. R. Jennings. Efficient mechanisms for the
supply of services in multi-agent environments. Int Journal
of Decision Support Systems, 28(1–2):5–19, 2000.

[18] L. A. Zadeh. Similarity relations and fuzzy orederings. In-
formation Sciences, 3:177–200, 1971.


