
Applied Arti�cial Intelligence, 14 :145­ 189, 2000
Copyright 2000 Taylor & FrancisÓ
0883 ± 9514/00 $12.00 1 .00

u AUTONOMOUS AGENTS FOR
BUSINESS PROCESS
MANAGEMENT

N. R. JENNINGS, T. J. NORMAN, P. FARATIN
Dept. Electronic Engineering, Queen Mary & Westfield
College, University of London, London, UK

P. O’BRIEN and B. ODGERS
BT Research Labs, Ipswich, Suffolk, UK

Traditional approaches to managing business processes are often inadequate for large± scale,
organisation± wide, dynamic settings. However, since Internet and Intranet technologies
have become widespread, an increasing number of business processes exhibit these
properties. Therefore, a new approach is needed. To this end, we describe the motivation,
conceptualization, design, and implementation of a novel agent ± based business process
management system. The key advance of our system is that responsibility for enacting
various components of the business process is delegated to a number of autonomous
problem± solving agents. To enact their role, these agents typically interact and negotiate
with other agents in order to coordinate their actions and to buy in the services they
require. This approach leads to a system that is signi�cantly more agile and robust than its
traditional counterparts. To help demonstrate these bene�ts, a companion paper describes
the application of our system to a real± world problem faced by British Telecom.

Successful companies organize and run their business activities in an efficient
manner. Core activities are completed on time and within the speci�ed
resource constraints. However, to stay competitive in today’s markets, com±

panies need to continually improve their efficiency± business activities need
to be completed more quickly, to a higher quality and at a lower cost. To
this end, there is an increasing awareness of the bene�ts and potential com±

petitive advantage that well± designed business process management systems
can provide. Such systems can substantially improve efficiency by ensuring
that business activities are better scheduled, executed, monitored, and coor±

dinated.

ADEPT was a collaborative project under the DTI/EPSRC Intelligent Systems Integration Pro±

gramme (ISIP). The project partners were BT Laboratories, ICI Engineering, Loughborough University,
and Queen Mary and West�eld College.

Address correspondence to Professor Nick Jennings, Dept. of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ. E± mail : nrj@ecs.soton.ac.uk

145

146 N. R. Jennings et al.

The design and implementation of corporate± wide business management
systems is a complex activity. The software has to support the distributed
design and operation of many concurrent activities that are highly interde±

pendent. Moreover, many of the activities have a real± time component,
require the ability to access legacy software, and need context± dependent
execution (i.e., their operation depends on the state of previous activities and
the environment± they are reactive systems (Pnueli, 1986)). In short, business
management is a demanding domain that requires state± of± the± art software
solutions. In this work, it was decided to conceptualize, design, and imple±

ment the business process management system using an agent± based
approach. Thus, in project ADEPT (Advanced Decision Environment for
Process Tasks) the business process is viewed as a collection of autonomous
problem± solving entities that negotiate with one another and come to
mutually acceptable agreements that coordinate their interdependent sub±

activities. The main advantages of this approach over more traditional
counterparts such as management information systems, work± �ow manage±

ment, and enterprise integration are that it oŒers greater �exibility, agility,
and adaptability.

The contribution of this work is in two main areas± business process
management systems and agent± based systems. In the former case, this work
represents a novel means of conceptualizing and implementing software
solutions. The insights gained in this work will assist designers of business
process management systems in evaluating the appropriateness and bene�ts
of the agent paradigm, in identifying the potential pitfalls, and in oŒering
guidance on how to structure their applications. In the latter case, the work
represents one of the few applications of multiagent techniques to real± world
problems (this has been identi�ed as a major shortcoming of the discipline
to date (Jennings, 1994)). This work also makes contributions to the �eld of
automated negotiation ; previous work either made assumptions that are
unrealistic for practical implementations or failed to adequately capture the
richness of negotiation required in practical applications.

The remainder of the paper is structured as follows. The next section
describes the domain of business process management, outlines the rationale
for an agent± based solution, and identi�es the solution’s key abstraction
mechanisms. The section entitled Realizing the Agent Functionality details
ADEPT’s system structure and agent architecture. The section on Related
Work places this work in context by describing other approaches to
business process management and related work in agent systems. The �nal
section provides some recommendations as to the use of agents in business
process management and highlights open issues that need to be more fully
addressed. A companion paper then demonstrates how the concepts
described herein have been applied to a British Telecom (BT) business

Autonomous Agents for Business Process Management 147

process for providing a quote for installing a network at a customer’s prem±

ises.

AGENT-BASED BUSINESS PROCESS MANAGEMENT

This section introduces the domain of business process management,
presents the case for an agent± based solution, identi�es and justi�es
ADEPT’s key conceptual components, and indicates how these components
are used to build agent± based solutions.

The Basics of Business Process Management

Medina± Mora et al. (1993) categorize processes in an organization into
material processes (the assembly of physical components or the delivery of
physical products), information processes (related to the automated and par±

tially automated tasks that create, process, manage, and provide
information), and business processes (market± centered descriptions of an
organization’s activities, implemented as information processes and/or
material processes). In more detail, a business process can be split into a
number of constituent components (Figure 1).

First, there needs to be a de�nition of the business process (left branch of
Figure 1). It describes, in some speci�cation language, the activities that need
to be performed, the participants who could or should perform them, and

FIGURE 1. Constituent components of a business process (adapted from Hollingsworth (1994)).

148 N. R. Jennings et al.

the interdependencies that exist between them.1 Speci�cation languages vary
greatly in their details, but at a conceptual level they are broadly similar±

they must provide a set of concepts useful for describing processes, their
tasks, the dependencies between the tasks, and the required roles that can
perform the speci�ed tasks (Georgakopoulos et al., 1995). The activities in
the process description may be automated or involve humans interacting
with computers.

Second, the business process needs to be executed and managed (right
branch of Figure 1). A software system needs to be devised that is capable of
ensuring that the process description is realized in practice. This system
must allow the human and the manual activities to be assigned appropri±
ately ; provide access to the software tools (e.g., databases, spreadsheets,
design software, etc.) required to complete the tasks ; and ensure that the
dependencies between the tasks are satis�ed. Moreover, the software should
transparently support multiple invocations (instances) of a given process and
a given task.

The types of business process for which management systems have been
devised vary enormously± from ad hoc interactions with few set paths and
few set patterns of interactions, to repetitive, predictable processes with
simple hard± wired coordination rules ; from dealing predominantly with
human± oriented activities (i.e., groupware applications) to entirely automa±

ted activities. See Georgakopoulos et al. (1995) for a detailed survey and
classi�cation. Here, we are interested in large± scale (hundreds of activities),
organization± wide business processes. Our analysis identi�ed the following
key characteristics of this class of application (Jennings et al., 1996):

processes are dynamic and unpredictable. It is impossible to give ad The
complete a priori speci�cation of all the activities that need to be per±

formed and how they should be ordered. Any detailed time plans that are
produced are often disrupted by unavoidable delays or unanticipated
events (e.g., people are ill or tasks take longer than expected). Coordi±
nation between the tasks also needs to be handled in a similarly �exible
manner.

processes involve a mixture of human activities and automated tasks.d The
The exact ratio varies between applications. Issues relating to the roles
and interactions of humans in our system are dealt with in the companion
paper.

organizations may be involved in the process. Each organizationd Multiple
attempts to maximize its own pro�t within the overall activity.

are physically distributed; this distribution may be across oned Processes
site, across a country, or even across continents.

organizations, there is a decentralized ownership of the tasks,d Within
information and resources involved in the business process.

Autonomous Agents for Business Process Management 149

groups within organizations are relatively autonomous± theyd DiŒerent
control how their resources are consumed, by whom, at what cost, and in
what time frame. They also have their own information systems, with their
own idiosyncratic representations, for managing their resources.

is a high degree of natural concurrency± many interrelated tasksd There
are running at any given point of the business process.

is a requirement to monitor and manage the overall businessd There
process. Although the control and resources of the constituent subparts
are decentralized, there is a need to place constraints on the entire process
(e.g., total time, total budget, etc.).

The Case for an Agent-Based Solution

The traditional (work�ow) approach to business process management
involves describing the entire process from a centralized perspective. That is,
a complete list of all the activities and paths are provided, the criteria for
following a particular path are speci�ed, and the ordering constraints on the
actions are given. Given this complete speci�cation, the business process
management system has the comparatively straightforward task of executing
it. This approach works well for simple business processes. It has led to a
range of commercial products (such as In± Concert (McCarthy & Sarin,
1993), StaŒware (http ://www.staŒware.com/), and Action Work�ow
(Medina± Mora, 1992)) and has an estimated market size of $2.5 billion
(McCreed, 1992). However, for the class of business processes we considered,
the following inherent shortcomings mean a traditional approach is
unsuitable± it lacks (Trammel, 1996):

i. reactivity± work�ow management systems require an a priori represen±

tation of the business process and all potential deviations from that
process ;

ii. semantics± many work�ow management systems lack an appreciation of
the content of a business process and do not make decisions based on
the nature of the information that is generated ;

iii. extensibility± many systems are not extensible on line;
iv. resource management± work�ow management systems do not control

the resourcing of a business process and so they rely on the process
being fully dimensioned beforehand ;

v. heterogeneity± work�ow management systems tend to take a centralized
view with a single management engine that does not operate across
multiple± server platforms or multiple± client operating systems.

To overcome these limitations, a fundamentally new approach is needed.
Our approach is to devolve responsibility for enacting speci�c business

150 N. R. Jennings et al.

process activities to the constituent components, rather than maintain it cen±

trally, and to make these components more active. Thus, each of the
business processes’ main activities are assigned to a particular problem±

solving entity, and that entity is responsible for ensuring the activity is ful±
�lled within the speci�ed constraints. The means by which the activities are
performed are left to the responsible entity to determine. In many cases, a
responsible entity needs the services of others to achieve speci�c subactivities
and these interactions may again involve devolving responsibility. Thus,
delegation can continue through many levels of nesting.

Devolved responsibility means that the business process management
system needs to be considerably more sophisticated than its traditional
counterpart. Many decisions that are traditionally made in the process
description at design time are now moved to the execution system and deter±

mined at run time. Thus, instead of executing a fully de�ned process descrip±

tion, the execution system has to determine which activities should be
performed, how much resource each activity can consume, who should
perform them, when they should be performed, and how any interdepen±

dencies should be resolved.
Given this conceptualization, a natural way to design and implement the

business process management system is to make each responsible entity an
autonomous agent. Such agents have speci�c goals to achieve and interact
with one another to manage their interdependencies. In this context, an
agent can be viewed as an encapsulated problem solving entity that exhibits
the following properties (Wooldridge & Jennings, 1995):

agents perform the majority of their problem± solving tasksd Autonomy:
without the direct intervention of humans or other agents, and they have
control over their own actions and internal state.

ability : agents interact, when they deem appropriate, with otherd Social
agents in order to complete their problem± solving and to help others with
their activities.

agents take the initiative and exploit unexpectedd Proactiveness :
opportunities where appropriate.

agents perceive their environment and respond in ad Responsiveness :
timely fashion to changes in it.

Secondary factors that point towards agents as a suitable solution tech±

nology include:

i. the domain involves an inherent distribution of data, problem± solving
capabilities, and responsibilities (conforms to the basic model of distrib±

uted, encapsulated, problem± solving components);

Autonomous Agents for Business Process Management 151

ii. the integrity of the existing organizational structure and the autonomy of
its subparts needs to be maintained (appeals to the autonomous nature
of the agents);

iii. interactions are fairly sophisticated, including negotiation, information
sharing, and coordination (requires the complex social skills of agents);

iv. the problem solution cannot be prescribed entirely from start to �nish
(the problem solvers need to be responsive to changes in the environ±

ment and to unpredictability in the process and proactively take
opportunities when they arise);

v. the domain includes a number of legacy systems, especially databases,
that need to be incorporated into the business process (wrap up the
existing code as an autonomous agent so that it can interact �exibly,
through the agent’s social abilities, with a range of new applications
(Geneserech & Ketchpel, 1994 ; Jennings et al., 1993).

The main bene�ts of an agent± based approach over the traditional work±

�ow view are as follows:

i. it oŒers greater �exibility since actions can be based upon the agent’s
current situation, rather than being prescribed in advance;

ii. it oŒers greater agility since new services can be added and con�gured
with minimal eŒect on other agents ;

iii. it oŒers greater adaptability since an agent’s choices can be guided by
feedback received from previous invocations of particular paths through
the business process.

The relative drawbacks of an agent± based approach are that it oŒers a
more fragmented view of the process and it is more difficult to ensure that
process± wide constraints are satis�ed. However, on balance, it is felt that the
bene�ts outweigh the drawbacks.

The Conceptual Framework

The main components of ADEPTs conceptual framework are inter±

acting, autonomous agents that are responsible for performing particular
activities (Figure 2). Here we use the term ‘‘service’’ to denote activities
(manual or automated) that an agent can manage. A service corresponds to
a conceptual unit of problem± solving activity in the business process. Exam±

ples of services include designing an artifact, providing an insurance quote
for a customer, or reviewing a paper for a scienti�c journal. Services can be
characterized as functions that take some (possibly no) inputs, undertake
some computation (varying from a simple database look± up to the design of

152 N. R. Jennings et al.

FIGURE 2. The conceptual architecture of an ADEPT system.

a chemical factory), and produce some (possibly no) outputs. Services go
through three phases :

i. speci�cation± detail what needs to be done;
ii. provisioning± determine which agent is responsible for executing the

service and under what terms and conditions ;
iii. management± execute the service in line with the agreed terms and con±

ditions.

The simplest service is called a task and it represents an atomic unit of
problem± solving in the ADEPT system. It may be performed by a human or
automated program. These atomic units can be combined to form complex

Autonomous Agents for Business Process Management 153

services by adding ordering constraints and conditional control. A service
description language (SDL) has been developed to specify services and this
language corresponds to ADEPTs process de�nition language.

As the agents are autonomous, there are no control dependencies
between them. Therefore, if an agent requires a service that is managed by
another agent it cannot simply instruct it to start the service.2 Rather,
service provisioning requires the agents to come to a mutually acceptable
agreement about the terms and conditions under which the desired service
will be performed (here such contracts are called service level agreements
(SLAs)). The mechanism for making SLAs interagent negotiation± a process
in which parties verbalize contradictory demands and then move towards
agreement by concession± making or searching for new alternatives (MuÈ ller,
1996). The basic context and form of all ADEPTs negotiations is identical. It
involves connecting an agent that requires a service (the client) with one that
is willing to provide it (the server). We term such negotiation service±

oriented (Sierra et al., 1997). To perform such negotiations, agents need a
protocol that speci�es the role of the current message interchange± e.g.,
whether the agent is making a proposal or responding with a counter±

proposal, or whether it is accepting or rejecting a proposal. Additionally,
agents need a means of describing and referring to the domain terms
involved in the negotiation± for example, both agents need to be sure they
are describing the same service even though they may both have a diŒerent
(local) name for it and represent it in a diŒerent manner. This heterogeneity
is inherent in most organizations, because each department typically models
its own information and resources in its own way. Thus, when agents inter±

act, a number of semantic mappings and transformations may need to be
performed to create a mutually comprehensible information sharing lan±

guage.
In many business process applications there is a need to re�ect the

company’s organizational structure when modelling the process and describ±

ing the behavior of the problem± solving components. Within the range of
applications we considered, two types of relationships were observed: peer±

to± peer and organizational hierarchies. To re�ect these relationship types,
ADEPT uses the notion of agency (Norman et al. 1997). An agency is recur±

sively de�ned : consisting of a single responsible agent, a possibly empty set
of tasks that the responsible agent can execute, and a possibly empty set of
subagencies (Figure 3).3 For example, agency D has a single responsible
agent that has two distinct tasks (TD1 and TD2) and three subagencies (E,
F, and G). The responsible agent represents the interests of the agency to its
peers.4 Any communication with an agency must go through the responsible
agent. A subagency (e.g., agency G is a subagency of agency D) typically
behaves in a cooperative manner towards its responsible agent, since this
agent represents the interests of the agency in the wider community. This

154 N. R. Jennings et al.

relationship between subagency and responsible agent can be viewed as a
type of social commitment (Norman & Jennings, 1997). This means when a
responsible agent requests a service from one of its subagencies, the request
is not refused without good reason. However, a subagency is not a sub±

routine. It retains a degree of local autonomy. For example, the manager of
a design department may request a design engineer to work on a particular
project. If the engineer can perform the task, the request will be accepted,
but the conditions under which the request will be met are open to negotia±

tion. In contrast, the relationship between peer agents is more open: an
agent is not obliged to accept a request from a peer. An agent will come to
an agreement with a peer agent if it is in its best interests to do so.

The agency structure also provides a mechanism for the encapsulation
and abstraction of services. As an example, consider the agency illustrated in
Figure 3. Suppose that this diagram represents the structure of an organiz±

ation in which the design department is agency D. In this case, the
responsible agent represents the department manager (i.e., the agent through
which other departments (agencies A, B, and C) may contact the design
department), subagency E represents a single design engineer that is capable
of performing two distinct tasks (or atomic services), and one of the other
agencies (say F) represents a team of surveyors. Furthermore, suppose that
the department manager has registered a ‘‘cost and design network’’ service
that can be provided by the design department to other agencies in the
organization. Before the department manager is able to register this service,
it must know that it is able to provide that service to other agents in the
community under certain conditions. Suppose that for the manager to be
able to provide the ‘‘cost and design network’’ service, the design engineer
must be able to provide a ‘‘design network’’ service. Also, the engineer must

FIGURE 3. The logical hierarchy of agencies.

Autonomous Agents for Business Process Management 155

collaborate with a surveyor to ensure that the design that is proposed is
consistent with the geographical requirements of the proposed network site.
Therefore, for the manager to register the ‘‘cost and design network’’ service,
at least one design engineer must register with its peers and responsible
agent the service ‘‘design network,’’ and the agent representing the team of
surveyors must register a ‘‘survey site’’ service. Then, subject to a negotiated
contract, the department manager may agree to cost and design a proposed
network installation with certain characteristics at a particular location for
another agent.5 Note that it is neither necessary for the agent requiring the
‘‘cost and design network’’ service to know how this is achieved, nor is it
necessary for the department manager to know how to design a network or
survey the geographical requirements of a particular site. This provides a
mechanism for agents to represent and reason about services at an appropri±
ate level of abstraction.

In general, the services that an agent registers in the community are the
tasks that it is able to perform plus services constructed through the com±

bination of its tasks and services available from its subagencies. (Although,
in unusual circumstances an agent can use services provided by its peers in
combination with other services to construct a new service.) However,
during its lifetime an agent may register new services as they become avail±
able, or withdraw services if necessary (e.g., due to other agents or tasks
becoming unavailable).

Building Business Process Applications using ADEPT

The ADEPT system relieves some of the engineering burden of building
business process applications by automating the allocation, scheduling, and
execution decisions (the management level of Figure 4) that are speci�ed at
design time in traditional systems. (Refer to the next section for details of
how these activities are realized.) This in± built functionality enables the
design engineer to concentrate on the speci�cation of the application layer
(Figure 4) of an ADEPT implementation.6 This process involves a number
of constituent activities. First, specifying services using ADEPTs SDL and
determining their distribution between the system’s agents and agencies.
Second, de�ning the SLA template that represents, on a per service basis, the
issues that need to be settled during a particular service± oriented negotia±

tion. Thus, for example, the SLA template for service S1 may specify that the
names of the client and server, the name of the service, the price of the
service, and the time at which the service is to be provided are required as
slots in S1s SLA. Whereas for a diŒerent service, S2, the SLA template may
additionally specify that service quality and volume are also relevant nego±

tiation issues. Third, providing acceptability ranges for the SLA slots that
are to be determined by interagent negotiation : e.g., the maximum and

156 N. R. Jennings et al.

FIGURE 4. The ADEPT implementation system.

minimum price that can be paid for a particular service, the shortest time in
which a service can be completed, and the maximum number of concurrent
invocations of a given service. These reservation values represent the agent’s
domain knowledge of a service, and they are used to constrain the process of
service provisioning. Finally, specifying the information models that agents
use during information sharing so they are able to interoperate, despite the
heterogeneity that is present in their local representations.

De�ning the SLA template and providing the reservation values for each
of the services are fairly simple knowledge acquisition tasks in most cases
(see the companion paper for more details). However, using the SDL to
specify how services are realized and how diŒerent information models are
related are considerably more complex and time± consuming activities. The
latter issue is dealt with at length in the next section and the former is
discussed in the remainder of this section.

For each service an agent provides, an SDL description must be produc±

ed. This description consists of a name (unique for that service), a set of
inputs, a set of outputs, a guard, and a body. The inputs specify the informa±

tion used by the service. Inputs can be either mandatory or optional. A
mandatory input must be provided for every invocation of the service. An
optional input provides more information to the service provider ; it may
enable the service to be performed more quickly or to a better quality, but is
not necessary. Inputs are also categorized by their origin ; they may be pro±

vided by the client, the server, or either. There are �ve inputs to the example

Autonomous Agents for Business Process Management 157

service Prepare–Table (Figure 5), four mandatory (man) inputs (one to be
provided by the client (cli), one provided by the server (ser), and two that
can be provided by either (any)), and one optional (opt) input that can be
provided by either the client or the server. There are no such distinctions for
the outputs of a service they are all assigned a value by the server; e.g., the
output information object Home–Seat–Allocation. The inputs and
outputs are de�ned in terms of the information model of the agent that is
responsible for the service. By convention, the name of an information object
is prepended by the name of the information model in which it is de�ned.
For instance, the inputs and outputs to the Prepare–Table service are
information objects de�ned within the server’s Home information model.

A guard is a boolean condition relating to the state of the world in
which the service can be executed. It is evaluated when the service is
invoked. If it evaluates to false, the service fails without the body of the
service being processed. For example, the service Prepare–Table requires
that the number of guests is less than or equal to the number of people that
can be accommodated. If the guard evaluates to true, the agent starts exe±

cuting the service’s body.
The body of a service description speci�es how the service is to be exe±

cuted, and consists of the restrictions on the order of its component services
(tasks being atomic services), the conditions under which the service will be
deemed successful, and how information �ows between those component
services. The body is composed of a single block that may be composed of
further nested subblocks. Each block has the following syntax :7

k block±type l `:Â k block±identifier l `:Â k execution±list l `} ® Â

k completion±expression l

The k block±typel is one of block± type font (sequence of services),
can±para (services can be performed in parallel), must±para (services
must be performed in parallel), and loop (service iterates until some condi±
tion holds). Figure 6 consists of a sequence block, and can±para and

FIGURE 5. Exemplar service description: Prepare–Table.

158 N. R. Jennings et al.

FIGURE 6. Exemplar service description: Meal.

must±para subblocks. The k block±identifierl can be used outside
the block to refer to the completion state of that block. For example, the
block identi�er prepare identi�es a can±para subblock. This block iden±

ti�er is used in the completion condition of the meal block, and will have
the value true if the block to which it refers has been successfully com±

pleted, false if it has failed, and unknown if it has not yet been com±

menced or is in the process of being executed.
The k execution±list l is a comma separated list of services, condi±

tionals, and blocks. In this example, the execution list of the block meal is a
sequence of a must±para sub± block organize, a can± para subblock
prepare, a single service Eat–Meal, and another can±para subblock
clean–up. The execution list may also include conditional statements.
These statements can be used to test a piece of information. For example,
the subblock organise tests whether there are any friends to ask for a
meal. If the set of friends is nonempty, the identi�er have–friends evalu±

ates to true, otherwise it evaluates to false.
Every block, service, and conditional has a completion state that can

evaluate to one of success, fail, or unknown. The completion state
expresses whether the block, service, or conditional completed successfully
or not. If a block has not yet been executed, or if it is still being executed, its
completion state is unknown. A loop block type may also return unknown

when it has �nished executing ; if unknown is returned, the block is executed
again. A conditional may return unknown if it relies on some information
object that does not exist, or on an attribute of an information object that
has an unknown value. As services get executed and information values
change, the completion states change. The completion expression of the

Autonomous Agents for Business Process Management 159

block meal states that the block is successfully completed if the meal is
organized, prepared, eaten, and cleaned up. If one of these components fails,
then the whole block fails.

Services are called by referring to them by name and providing sufficient
parameters for them to be executed. For example, the service
Prepare–Table is called with a single parameter. The parameter is the
choice output from the Plan–GuestList service, speci�ed using the
syntax Plan–GuestList::choice. (Note that the keyword service

refers to the service in which this block is situated, and hence the informa±

tion service::friends is the friends input to this service.)
Once the application layer has been instantiated, the business process is

de�ned and can now be executed and managed through the functions of the
ADEPT agents (which are described in the following section).

REALIZING THE AGENT FUNCTIONALITY

This section describes how ADEPTs conceptual framework is realized.
The next section describes the functional architecture of an ADEPT agent
and the section following deals with interagent communication issues. A
description of how the architecture and the communication infrastructure
support the agent’s key activities of service provisioning and service manage±

ment is then undertaken.

The Functional Architecture

ADEPT agents consist of a number of distinct functional modules8

(Figure 7) that are responsible for handling interagent negotiation (the inter±

action management module or IMM), for assessing the agent’s current
problem± solving situation (the situation assessment module or SAM), and
for executing services (the service execution module or SEM). These modules
utilize persistent information about other agents in the environment that is
stored in the acquaintance models (AMs) and information about themselves
which is stored in the self model (SM). An agent sends and receives commu±

nications through its communication module or CM.

The Self and Acquaintance Models
The self and aquaintance models are, respectively, an agent’s reposi±

tories for knowledge about itself and others in its environment. In the self
model, an agent maintains information such as the services that it can
provide (and their reservation values), the resources available to it, and its

160 N. R. Jennings et al.

FIGURE 7. Functional architecture of an ADEPT agent.

current schedule of activity. In its acquaintance models, it stores information
about the existence and known capabilities of other agents, histories of past
encounters with them, and knowledge of how they model information.

The Interaction Management Module
The IMM is responsible for provisioning services through negotiation.

Thus it both tries to procure the services the agent requires from its
acquaintances, and decides which services the agent will provide to others
and under what terms and conditions. In either case, services can be provi±
sioned in two diŒerent modes depending on the client agent’s intended
pattern of usage and the server agent’s scheduling capabilities : (i) one± oŒ:
the service is provisioned each and every time it is needed and the agreement
covers precisely one invocation; (ii) on± demand: the service can be invoked

Autonomous Agents for Business Process Management 161

by the client on an as± needed basis within a given time frame (subject to
some maximum volume measurement).

The process of obtaining a service from another agent is initiated by the
SAM. The SAM also indicates the desired mode of provision. The IMM is
then responsible for determining which agent or agents to approach, which
negotiation strategies to employ, etc. The IMMs decision± making is sup±

ported by four types of information : scheduling constraints emanating from
the SAM ; knowledge an agent has about its preferences for particular
agents, service prices, etc. (represented in its SM); the reservation values for
each issue under negotiation (represented in its SM); and its knowledge of
the capabilities of other agents (represented in its AM). With this knowledge
and the agent’s negotiation model, the IMM generates initial proposals,
evaluates incoming counter± proposals, and produces counter± proposals of
its own, all with the intention of reaching a mutually acceptable agreement
for the provision of the required service.

The process of deciding which services to supply to others is initiated by
the receipt of a proposal from another agent. This proposal is evaluated, in
terms of whether it is feasible (de�ned by the SAM) and bene�cial, and a
decision is made as to whether it should be accepted, rejected, or modi�ed.
Again, this process is expanded upon in the section on Service Provisioning.

The Situation Assessment Module
The SAM is responsible for assessing and monitoring the agent’s ability

to meet the SLAs it has already agreed upon and for assessing the agent’s
ability to meet any SLAs that are currently under negotiation. This involves
two main activities : (i) the scheduling of services and tasks and (ii) the hand±

ling of high± level exceptions that occur when services and tasks are executed.
The scheduler maintains a record of the problem± solving resources that

the agent controls (i.e., the tasks that are available to it and the negotiated
SLAs for which it is a client) and an indication of when each of these
resources has been committed. This resource information is coupled with a
coarse grain (approximate) scheduling algorithm to determine whether pro±

posed SLAs can be satis�ed in the service provisioning phase, and with a
�ne grain scheduling algorithm to determine which services should be exe±

cuted at what times in the service management phase. Coarse grain sched±

uling is initiated when the server IMM receives a proposal (or
counterproposal) from another agent and its aim is to decide whether the
request is feasible. To ascertain this, the IMM asks its SAM whether the
proposed schedule is likely to be acceptable. Clearly in advance of the situ±

ation, the SAM can only provide an estimate since the agent’s circumstances
may change between the point at which this check is made and the time at
which the service will be required for execution. The SAM uses its know±

ledge of its current resource commitments and the commitments that may

162 N. R. Jennings et al.

follow from the agent’s ongoing negotiations to generate one of the follow±

ing responses : accept± it is likely that the proposed schedule will be satis� ±

able: reject± the agent cannot satisfy the proposed schedule; or revise± it is
unlikely that the proposed schedule will be satis�able, but the service is pre±

dicted to be satis�able at the speci�ed alternative. Fine grain scheduling is
used when an agreed SLA is in place. It relates to the �xing of a particular
time at which the service should be executed and a speci�c set of the agent’s
resources that will be deployed in this execution. Resources are therefore
reserved before an agreed SLA is executed by the client. Furthermore, if the
service is provisioned in an on± demand manner, the SAM uses the agreed
volume of invocations to predict the future demand for its resources under
that agreement.

The high± level exception handler analyses service execution exceptions
as they occur (or even before in certain circumstances) and tries to formulate
a set of recovery actions that will prevent the service from failing. For
example, during the execution of a particular service, the SEM may realize
that it requires a subsidiary service for which no SLA has yet been agreed
(perhaps because this subsidiary service is on a little used path through the
business process). The SAM then requests the IMM to arrange for this
service to be made available if it is not already doing so. As a second
example, if a service is delayed, then the SAM may decide to locally res±

chedule it (if this can be achieved without violating the existing SLA), to
request that the IMM renegotiate the SLA (i.e., attempt to agree to a new
schedule with the service’s consumer if the existing SLA cannot be met), or
to terminate it altogether and pay any penalties speci�ed in the SLA (if
renegotiation fails).

The Service Execution Module
The SEM is responsible for managing services throughout their execu±

tion. This involves three main activities. First, service execution management
that involves parsing the service’s SDL and �ring oŒits constituent subparts
according to the logic speci�ed in the completion condition and the schedule
speci�ed by the SAM. In particular, this requires invoking, suspending,
resuming, and terminating tasks and services (this management is enacted
via the CM). Each task or service execution instance is assigned its own
processing thread and hence multiple services may be executed by a single
agent at any one time. The SEMs second main activity is information man±

agement. This involves the routing of information between tasks, services,
and other agents during execution as speci�ed in the SDL. Finally, the SEM
performs low± level exception handling. This involves monitoring the execu±

tion of tasks and services for unexpected events and then reacting appropri±
ately. In the event of task failure, for example, the SEM may recover by
attempting to restart the task if the present schedule can still be met, or if

Autonomous Agents for Business Process Management 163

this cannot be achieved, it will refer the problem up to the SAM for reprovi±
sioning or renegotiation.

The Communication Module
The CM is responsible for packaging messages destined for other agents

in the shared communication language and information model, and the
receipt and interpretation of messages from other agents and its tasks (see
the next section). During task management (e.g., the activation, suspension,
or resumption of a task), messages are routed between the SEM and the
tasks managed by that agent. During service execution management (e.g.,
the initiation or termination of a service being provided by another agent
under an existing SLA), messages are routed between the agent’s SEM and
the service provider/consumer agent. During negotiation, messages are
routed between the agent’s IMM and the agent being negotiated with. In
addition to this, the CM checks the validity of incoming messages to ensure
they are correct in the present context (e.g., if the agent receives a counter±

proposal from an agent it is not negotiating with, an appropriate error
message is generated), and translates the content of the message between the
shared information model and the agent’s local information model.

InterAgent Communication

Agents communicate via an agent communication language (ACL).
ADEPT’s ACL consists of messages containing : one of a limited number of
primitive message types, the identity of the sender, recipient (both agent
identi�ers) and thread of communication, the service concerned, and the
information model with reference to which the contents of the message
should be understood. Altogether there are 13 message types (Table 1): 10 of
which are used during negotiation (i.e., used by the IMM), and 3 are used
during service execution (i.e., used by the SEM).

In addition to the requirements that agents must share a common
message syntax and interpret diŒerent message types in a uniform manner,
information that is shared by two or more agents must have a common
semantic interpretation. This is a signi�cant problem when interacting
agents do not necessarily model information in a consistent way.9 Suppose,
for example, that a network design department agent within a telecommuni±
cations company interprets the location of a customer’s site to mean its
postal address. However, a team of surveyors may understand the symbol
‘‘location’’ to refer to the site’s grid reference on a standard ordinance survey
map. If the design department requires a survey of a customer’s site, how are
these agents with their diŒerent models of information to understand one
another?

T
A

B
L

E
1

A
D

E
P

T
’s

A
ge

nt
C

om
m

un
ic

at
io

n
L

an
gu

ag
e

A
ct

io
n

C
on

te
nt

M
ea

ni
ng

C
on

te
xt

c
a

n
d

o
E

m
pt

y
Se

nd
er

x
as

ks
if

th
e

re
ci

pi
en

t
y

is
,i

n
pr

in
ci

pl
e,

M
es

sa
ge

ca
n

be
se

nt
by

an
y

(
x

,
y

,
s

)
ab

le
to

pr
ov

id
e

se
rv

ic
e

s.
ag

en
t

at
an

y
ti

m
e.

n
o

t
±

c
a

p
a

b
l

e
E

m
pt

y
x

in
fo

rm
s

y
th

at
it

is
in

ca
pa

bl
e

of
pe

rf
or

m
in

g
s.

U
se

d
by

x
on

ly
in

re
sp

on
se

to
a

(
x

,
y

,
s

)
c

a
n

d
o

ac
ti

on
.

c
a

p
a

b
l

e
E

m
pt

y
x

in
fo

rm
s

y
th

at
,i

n
pr

in
ci

pl
e,

it
is

ca
pa

bl
e

U
se

d
by

x
on

ly
in

re
sp

on
se

to
a

(
x

,
y

,
s

)
of

pe
rf

or
m

in
g

s.
c

a
n

d
o

ac
ti

on
.

p
r

o
p

o
s

e
A

si
ng

le
SL

A
in

fo
rm

at
io

n
ob

je
ct

x
pr

op
os

es
to

y
th

at
y

pe
rf

or
m

s
s

un
de

r
th

e
x

m
us

t
be

lie
ve

th
at

y
is

ca
pa

bl
e

(
x

,
y

,
s

,
s

l
a

)
co

nd
it

io
ns

sp
ec

i�
ed

in
sl

a.
of

pe
rf

or
m

in
g

s.
c

o
u

n
t

e
r

p
r

o
p

o
s

e
A

no
ne

m
pt

y
lis

t
of

x
pr

op
os

es
to

y
th

at
th

e
se

rv
ic

e
pr

ov
id

er
(it

U
se

d
on

ly
in

re
sp

on
se

to
ei

th
er

(
x

,
y

,
s

,
F

)
SL

A
�e

ld
s,

F
m

ay
be

ei
th

er
x

or
y)

pe
rf

or
m

s
s

un
de

r
th

e
an

ac
ti

on
of

ty
pe

pr
op

os
e

or
co

nd
it

io
ns

de
sc

ri
be

d
in

th
e

SL
A

th
at

is
on

c
o

u
n

t
e

r
p

r
o

p
o

s
e

.
th

e
ta

bl
e

m
od

i�
ed

w
it

h
th

e
lis

t
of

�e
ld

s
F

.
a

c
c

e
p

t
E

m
pt

y
x

ac
ce

pt
s

an
d

co
m

m
it

s
to

pe
rf

or
m

in
g

s
U

se
d

in
re

sp
on

se
to

a
p

r
o

p
o

s
e

(
x

,
y

,
s

)
un

de
r

th
e

SL
A

th
at

is
on

th
e

ta
bl

e.
or

a
c

o
u

n
t

e
r

p
r

o
p

o
s

e

r
e

j
e

c
t

E
m

pt
y

x
re

je
ct

s
th

e
SL

A
on

th
e

ta
bl

e
ou

tr
ig

ht
,a

nd
U

se
d

on
ly

in
re

sp
on

se
to

ei
th

er
(

x
,

y
,

s
)

w
is

he
s

to
te

rm
in

at
e

th
e

ne
go

ti
at

io
n.

an
ac

ti
on

of
ty

pe
p

r
o

p
o

s
e

or
c

o
u

n
t

e
r

p
r

o
p

o
s

e
.

c
o

n
f

i
r

m
E

m
pt

y
x

co
m

m
it

s
to

th
e

SL
A

on
th

e
ta

bl
e.

U
se

d
on

ly
in

re
sp

on
se

to
an

(
x

,
y

,
s

)
ac

ti
on

a
c

c
e

p
t

.

164

T
A

B
L

E
1

C
on

ti
nu

ed

A
ct

io
n

C
on

te
nt

M
ea

ni
ng

C
on

te
xt

d
e

n
y

E
m

pt
y

x
w

it
hd

ra
w

s
it

s
pr

op
os

al
fr

om
th

e
ta

bl
e.

(I
n

U
se

d
on

ly
in

re
sp

on
se

to
an

(
x

,
y

,
s

)
ce

rt
ai

n
ci

rc
um

st
an

ce
s

th
is

ac
ti

on
m

ay
ha

ve
a

c
c

e
p

t
ac

ti
on

.
co

ns
eq

ue
nc

es
;a

ge
nt

x
m

ay
ha

ve
to

pa
y

so
m

e
pe

na
lt

y
to

y.
)

r
e

n
e

g
o

t
i

a
t

e
A

co
m

m
un

ic
at

iv
e

ac
t

x
in

te
nd

s
th

at
th

e
co

m
m

un
ic

at
iv

e
ac

ti
on

,c
,

A
SL

A
m

us
t

al
re

ad
y

ex
is

t
(

x
,

y
,

c
)

of
ty

pe
:p

r
o

p
o

s
e

,
sh

ou
ld

be
in

te
rp

re
te

d
as

th
e

ne
go

ti
at

io
n

be
tw

ee
n

x
an

d
y.

a
c

c
e

p
t

,
r

e
j

e
c

t
,

m
es

sa
ge

it
re

pr
es

en
ts

,b
ut

in
th

e
co

nt
ex

t
of

c
o

n
f

i
r

m
,

d
e

n
y

or
th

e
ag

en
t

re
ne

go
ti

at
in

g
an

ex
is

ti
ng

ag
re

em
en

t.
c

o
u

n
t

e
r

p
r

o
p

o
s

e

r
e

q
u

e
s

t
A

n
in

st
ru

ct
io

n
to

th
e

x
re

qu
es

ts
th

at
un

de
r

th
e

ag
re

em
en

t
(in

di
ca

te
d

T
he

SL
A

to
w

hi
ch

th
is

m
es

sa
ge

(
x

,
y

,
a

)
se

rv
ic

e
pr

ov
id

er
;t

hi
s

in
th

e
co

nv
er

sa
ti

on
id

en
ti

�e
r

�e
ld

of
re

fe
rs

m
us

t
ex

is
t,

an
d

th
e

m
ay

be
to

st
ar

t
pr

ov
id

in
g

th
e

m
es

sa
ge

),
y

pe
rf

or
m

ac
ti

on
a

w
it

h
in

st
ru

ct
io

n
m

us
t

be
ac

ce
pt

ab
le

th
e

se
rv

ic
e,

re
sp

ec
t

to
th

at
se

rv
ic

e.
w

it
hi

n
th

e
sc

op
e

of
th

at
ag

re
em

en
t.

su
sp

en
d

it
,t

er
m

in
at

e
th

e
se

rv
ic

e,
et

c.
r

e
p

o
r

t
A

re
po

rt
on

th
e

st
at

e
x

re
po

rt
s

to
y

th
at

th
e

st
at

e
of

th
e

se
rv

ic
e

T
he

SL
A

to
w

hi
ch

th
is

m
es

sa
ge

(
x

,
y

,
r

)
of

a
se

rv
ic

e
be

in
g

pe
rf

or
m

ed
ex

ec
ut

io
n

is
r.

re
fe

rs
m

us
t

ex
is

t,
an

d
an

by
x

fo
r

y.
in

st
an

ce
of

th
e

se
rv

ic
e

m
us

t
be

be
in

g
ex

ec
ut

ed
by

x.
i

n
f

o
r

m
O

ne
or

m
or

e
in

fo
rm

at
io

n
ob

je
ct

s.
x

pr
ov

id
es

y
w

it
h

in
fo

rm
at

io
n

re
le

va
nt

to
T

he
SL

A
to

w
hi

ch
th

is
m

es
sa

ge
(

x
,

y
,

i
)

th
e

ex
ec

ut
io

n
of

th
e

in
di

ca
te

d
se

rv
ic

e.
If

x
re

fe
rs

m
us

t
ex

is
t,

an
d

th
e

in
fo

rm
at

io
n

is
th

e
co

ns
um

er
,i

w
ill

be
so

m
e

in
pu

t,
an

d
if

m
us

t
be

re
le

va
nt

to
th

e
x

is
th

e
pr

ov
id

er
,i

w
ill

be
so

m
e

ou
tp

ut
.

ex
ec

ut
io

n
of

th
at

se
rv

ic
e.

165

166 N. R. Jennings et al.

Our approach is to use a common information model, through which
agents may share information. This information model is built on a number
of basic information object classes (e.g., Adept–Boolean, Adept–Float,

Adept–Integer and Adept–Char), where each class is prepended by the
name of the information model, in this case ``Adept.Â Â Each class within
the ADEPT information model contains a number of named slots contain±

ing further ADEPT information objects. For example, an object of type
Adept–Time may be speci�ed as follows :

(class Adept–Time

(Adept–Integer year) (Adept–String month)

(Adept–Integer day) (Adept–Integer hour)

(Adept–Integer minute) (Adept–Integer second))

The information model speci�cation is then parsed to create a represen±

tation of that model in the native language of the agent (e.g., C, CLIPS,
Prolog, etc.). Using the ADEPT model, an application± speci�c common
information model is built that may, for example, specify information object
classes for a customer’s details, which may include their name, address,
contact number, etc. A concrete example of such information objects for the
BT application is given in the companion paper. In the unlikely event that
the business process management system is being developed from scratch,
the agent designer could choose to use this model within its domain tasks.
However, in many cases business process tasks involve legacy software (e.g.,
a database of old customer records), which were built using a diŒerent model
of information. Furthermore, if agents representing the interests of diŒerent
companies are to interact, a common information model must re�ect the
information sharing needs between these organizations since it is extremely
unlikely that they will use identical models internally. For these reasons,
agents must have the ability to manage heterogeneous information models,
and transform information that is expressed in task± speci�c or organization±

speci�c models to and from a common information model.
In transforming information between an internal and common model,

simple schema translations that specify the mapping between objects in each
model may be used (Jennings et al., 1996). For example, the agent may be
provided with a function that transforms its internal representation of a time
point into an information object of the class Adept–Time illustrated above.
Schema translations have the advantage of being computationally cheap,
since they are basically a look± up table of mappings. However, they are
costly to produce and maintain (schema translations must be speci�ed for
each agent within the system and signi�cant modi�cation may be required if
either information model is changed) and are highly application dependant.
Furthermore, if the required schema translation is not speci�ed, the agent
cannot communicate the information required. An alternative is to use deep

Autonomous Agents for Business Process Management 167

representations of the internal and common information models (sometimes
referred to as ontologies [Gruber, 1994 ; Takeda et al., 1995]) to search for a
transformation of an information object from one model to another. The
initial production of ontology solutions is as costly as schema translation,
but they have the advantage of potentially being reused. However, reasoning
with ontologies is computationally expensive.

Given these design trade± oŒs, a hybrid approach that provides both the
speed of the schema translation approach and the �exibility of the ontology
based approach (Figure 6) was adopted. Here the agent maintains a set of
model mapping descriptions that declare the procedure required to trans±

form a speci�c information object from one model to another. If such a
mapping exists, the agent uses it to transform the information object as
required (solid lines in Figure 6). If no such mapping can be found, the agent
searches for a mapping using its ontology descriptions. This mapping may
then be stored for later use (dashed lines in Figure 6). Typically an agent is
provided with an initial set of schema translations, but it has the �exibility
to update this set when appropriate mappings cannot be found.

Service Provisioning

The performance of the overall ADEPT system and the various stake±

holders that oŒer and consume services is intimately related to the efficiency
of the interagent negotiation process. To prosper, agents need to be able to
make bene�cial agreements in a reasonable time frame, without using exces±

sive resources (either communication± related or computational). Moreover,
this negotiation must be enacted in a decentralized fashion (i.e., without
arbitration or third± party intervention (Pruit, 1981 ; RaiŒa, 1982)), since cen±

tralization of processes creates bottlenecks and is susceptible to failure. Con±

sequently, each agent has a negotiation capability± the agent’s IMM.
To cope with the variety of negotiation situations in which an agent may

�nd itself, the IMM needs a number of diŒerent negotiation strategies and
tactics. These vary the agent’s behavior from competitive, through accom±

modative, to conciliatory (Pruit, 1981). Such a range of behavior is necessary
because negotiating with a peer diŒers from negotiating with a subsidiary
agent, negotiating with an agent from an external organization diŒers from
negotiation with an agent from the same organization, negotiation that
requires a rapid agreement diŒers from negotiation in which time is plentiful,
and so on. In more detail, a number of requirements for service± oriented
negotiation emerged from the business process applications studied in
ADEPT (Sierra et al., 1997):

given service can be provided by more than one agent. The availabled A
services may be identical in their characteristics or they may vary along
several dimensions (e.g., quality, price, availability , etc.).

168 N. R. Jennings et al.

agents can be both clients and servers for diŒerent services ind Individual
diŒerent negotiation contexts.

can range over a number of quantitative (e.g., price, dura±d Negotiations
tion, and cost) and qualitative (e.g., type of reporting policy and nature of
the contract) issues. Each successful negotiation requires a range of such
issues to be resolved to the satisfaction of both parties. Agents may be
required to make trade± oŒs between issues (e.g., faster completion time for
lower quality) in order to come to an agreement.

social context and interrelationships of the participants in�uences thed The
way agents negotiate. Some negotiations involve entities within the same
organization or within the same department and are generally cooperative
in nature. Other negotiations are interorganizational, and hence more
competitive. Some groups of agents often negotiate with one another for
the same service, whereas other negotiations are more infrequent.

agents are autonomous, the factors that in�uence their negotiationd As
stance and behavior are private and not available to their opponents
(especially in interorganizational settings). Thus, agents do not know what
utilities their opponents place on various outcomes, what reasoning
models they employ, their opponent’s constraints, nor whether an agree±

ment is possible at the outset (i.e., the participants may have noninter±

secting ranges of acceptability).
communication channel between any two negotiating agents isd The

private. Hence, agents competing to provide the same services cannot
check the behavior of their opponents.

is an important consideration in negotiation. Timings are importantd Time
on two distinct levels : (i) the time it takes to reach an agreement must be
reasonable; and (ii) the time by when the negotiated service must be exe±

cuted is important in most cases and crucial in others. The former means
that the agents should not become involved in unnecessarily complex and
time± consuming negotiations (the time spent negotiating should be rea±

sonable with respect to the value of the service agreement). The latter
means that the agents sometimes have hard deadlines by when agreements
must be in place (this occurs mainly when multiple services need to be
combined or closely coordinated).

In order to satisfy these requirements, a number of constituent com±

ponents need to be designed and speci�ed :

i. a protocol indicating when what messages can be sent during the nego±

tiation ;
ii. a structure representing the issues about which negotiation can take

place;

Autonomous Agents for Business Process Management 169

iii. a reasoning model to determine the agent’s behavior in its negotiations.

The Negotiation Protocol
All agents must adhere to ADEPTs negotiation protocol (Figure 8)

during service provisioning. The state transition arcs represent the partici±
pants’ utterances : ® k primitive l are those of the servers and
k primitivel ® are those of the clients. Negotiation is initiated when a
client utters cando (state 1 to state 2). The server can then either indicate
that it is capable (state 2 to 3) or that it is not (state 2 to failure). If the server
has acknowledged its capability or if the client knows it is capable because
of information contained in its AM, the client may send out a proposal
(state 3 to 4). The server can then either reject the proposal (state 4 to
failure), accept the proposal (state 4 to 5), or counterpropose (state 4 to 6). If
the server accepts, the client may either deny the contract to the server (state
5 to failure) or else con�rm the contract (state 5 to success). Otherwise, if the
server has counterproposed (state 4 to 6), then the client may either accept
the new contract (state 6 to 7), reject it (state 6 to failure), or else counter±

propose a new contract (state 6 to 4). There may be several transitions
between states 4 and 6. If it is the client who eventually accepts the contact
(state 6 to 7), then the server may decide to either award the contract to the
client (state 7 to success) or else deny it to that client (state 7 to failure).

The Negotiation Issues
SLAs are the structures about which the agents negotiate (Figure 9).

They represent the bid on the table during negotiation and the �nal contract

FIGURE 8. ADEPTs negotiation protocol. Numbered ovals represent states during the negotiation
process and nonnumbered ovals represent states associated with the outcome of negotiation. Shaded
ovals represent unsuccessful negotiation states arrived at by the edges (primitives) not±capable,

reject or deny and �lled ovals represent successful negotiation state arrived by the primitive
confirm. Refer to Table 1 for details of the individual primitives.

170 N. R. Jennings et al.

FIGURE 9. Sample service level agreement.

at the end of a successful negotiation. The SLA structure is derived from the
types of legal contract that are often used to regulate current business trans±

actions. The values contained in the slots represent the conditions for pro±

viding and consuming a service by a server and a client agent, respectively.
Agents can negotiate over multiple issues (values in diŒerent slots) at any
one time.

In more detail, service–name is the service to which the agreement
refers and sla–id is the SLAs unique identi�er (covering the case where
there are multiple agreements for the same service). Server–agent and
client–agent represent the agents that are party to the agreement.
Delivery–type identi�es the way the service is to be provisioned. The
SLAs scheduling information is used by the SAM and the SEM for service
execution and management duration represents the maximum time the
server can take to �nish the service, and start–time and end–time rep±

resent the time during which the agreement is valid. In this case, the agree±

ment speci�es that agent CHL can invoke agent NDD to cost and design a
network whenever it is required between 09 :00 and 18 :00, and each service
execution should take no more than 320 minutes. The agreement also con±

tains metaservice information such as the volume of invocations permissible

Autonomous Agents for Business Process Management 171

between the start and end times, the price paid per invocation, and the
penalty the server incurs for every violation.1 1

Client–info speci�es the
information the client must provide to the server at service invocation (in
this case CHL must provide the customer pro�le) and
reporting–policy speci�es the information the server returns upon
completion.

The Negotiation Reasoning Model
The reasoning model determines the agent’s behavior in a given negotia±

tion context. It is responsible for initiating negotiation to obtain a desired
service, responding to proposals from other agents, determining when pro±

posals should be accepted or rejected, and determining when counter± oŒers
should be made and what these counter oŒers should be. All this reasoning
is undertaken within the IMM (Figure 10).

In more detail, the IMM has three reasoning components (see Sierra et
al. (1997) for a formal speci�cation) that are supported by information main±

tained in the agent models and the agent’s working memory. The evaluation
reasoner takes proposals or counter± proposals coming in from other agents
and determines whether they should be accepted, rejected, or whether a
counter± proposal should be generated. If a counter± proposal is appropriate,
control is handed to the strategic and tactical reasoners to produce a
response. The strategic reasoner decides, at a coarse level of granularity, how
the agent should approach the particular negotiation. For example, whether
it should be cooperative or competitive, whether time or resources is the
primary consideration, etc. Finally, the tactical reasoner �lls in the slots of
the SLA in a way that enacts the chosen strategy.

FIGURE 10. Internal architecture of IMM.

172 N. R. Jennings et al.

Information used in negotiation. The reasoning components have two
main repositories for information± the working memory and the agent
models. The former represents transitory information related to ongoing
negotiations, while the latter represents persistent storage of more stable
information.

Information stored in the working memory is structured around the
notion of a negotiation thread. A thread is essentially a record or history of
utterances related to a particular negotiation need (i.e., �nding a server for a
particular service). It includes all the messages the agent has sent, all the
messages the other agents have sent, which strategies and tactics the agent
has deployed, the current status of all negotiation threads (in cases where the
agent is managing multiple threads of negotiation for the same service), and
the service’s earliest start and latest end times.

In the context of supporting negotiation, the agent models represent the
agent’s (private) beliefs about itself and its environment. The AM includes :
agency agents± unique names of individual members of the agent’s agency ;
agency typology± the agent’s relationships (peer, subsidiary agent, etc.) with
other community members ; agency status± which agents are in the same
organization and which are external ; agency capacity± which agents can
provide services the agent needs ; the negotiation protocol (Figure 8); and
interaction histories± persistent records of negotiation threads. The SM
includes : service descriptions for the services the agent can perform itself,
together with an indication of the number of concurrent invocations that are
permissible ; the commitments the agent has already made through its SLAs ;
the agent’s reservation values for the services it consumes and provides; and
the agent’s preferences for the various issues under negotiation (expressed as
a scoring function).

The evaluation reasoner. The evaluation reasoner becomes active when
an agent receives a proposal or counter± proposal from another agent. Upon
receipt of such a message, the agent computes the utility it attains for the
proposal. It uses an additive scoring function (RaiŒa, 1982) over each slot in
the SLA, where each slot is assigned a weight representing the relative
importance of that issue to that agent. For example, consider the case
depicted in Figure 10 where the NDD agent receives the SLA proposal
a1001. NDD goes through each slot in the proposal and assigns a measure of
desirability (a utility rating (JeŒrey, 1983) between 0 and 1) to the value
contained therein. The raw utility values are then multiplied by a weighting
factor (that indicates their relative importance) and then summed over all
the slots. This process produces a single utility value for the proposed SLA.
In parallel, the agent sends the oŒer that has just been received to the tacti±
cal reasoner to see what oŒer the agent would produce next using its current
strategies and tactics. Once computed, this oŒer is returned to the evaluation

Autonomous Agents for Business Process Management 173

reasoner and rated using the aforementioned scoring function. If the utility
of the oŒer the agent would have sent is less than or equal to the utility of
the oŒer just received, the oŒer is accepted (provided it meets the scheduling
constraints coming from SAM). Acceptance involves a conditional com±

mitment by the server that it will execute the speci�ed service under the
SLAs terms and conditions. The commitment is conditional in that the
client still has to con�rm or deny the contract (Figure 8). Assuming the
client con�rms the contract, it then terminates all other negotiation threads
for the same service instance. The second out± come of the SLAs evaluation
is that the proposal is rejected. This occurs either when the deadline for
reaching an agreement has been reached or when another agent has been
selected to perform the service. The �nal evaluation outcome is that the oŒer
is neither accepted nor rejected. In this case, the agent generates a counter
oŒer.

If a counter oŒer is to be made, the evaluation reasoner also makes an
assessment of the opponent’s negotiation behavior in the current thread.
Thus, evaluation is not only con�ned to the current oŒer instance, it also
incorporates the relationship of that oŒer to previous ones in the thread. In
particular, the agent classi�es the behavior of its opponent into one of three
mutually exclusive states : i) CONCEDING± the utility to the recipient of the
last oŒer is greater than the previous oŒer received from that agent ; ii)
EXPLOITING± the utility to the recipient of the last oŒer is less than the
previous oŒer received from that agent ; or iii) STALEMATE± the utility to
the recipient of the last oŒer is the same as the previous oŒer received from
that agent. As well as the direction of change, the agent uses the negotiation
thread history to determine the rate of change of that state. Thus, the agent
calculates whether this conceding/exploiting is INTENSIFYING, LESSEN±

ING, or CONSTANT. These two pieces of information are then passed onto
the strategic reasoner which uses them to determine whether its present
strategy is being successful or whether a change is needed.

The strategic reasoner. The strategic reasoner is invoked by the evalu±

ation reasoner in the case of an ongoing negotiation or by the SAM for new
negotiations. In either case, the purpose of the reasoning at this level is to set
broad guidelines about how the agent should behave in a particular negotia±

tion context. In the current implementation, these guidelines relate to deter±

mining the relative importance of the three classes of behavior that take
time, resources, and an opponent’s behavior as the primary basis for com±

puting an oŒer. Time is important when the negotiation has a deadline.
Resources need to be considered so that the agent expends an amount
appropriate to the value of the contract. The opponent’s behavior is con±

sidered to ensure the agent is not exploited during the negotiation. The rela±

tive importance of these three classes is expressed by assigning a series of

174 N. R. Jennings et al.

weights to the alternatives.
For new negotiations, the agent receives information from the SAM

about when the service is required (HAVE±TIME, NOW), uses AM informa±

tion about the number of known suppliers of the service (ONE, MANY), and
uses AM information about the agent’s relationship with the potential
service provider (SAME±ORGANIZATION, EXTERNAL±ORGANIZATION) to
set the strategy.

The �rst strategic decision relates to the logistics of the negotiation: who
to negotiate with ; whether to negotiate with more than one agent ; and if
more than one agent is to be negotiated with, then should the negotiation
proceed sequentially or in parallel. If there is only one service provider then
the agent has no real choice to make at this level. However, when there are
several providers, the agent uses the following heuristics to manage this
aspect of the process (Figure 11).

Having decided upon the logistics, the agent must determine how it is to
behave. Example rules for setting an agent’s strategy, along with their justi� ±

cation, are shown in Figure 12. In addition to setting the strategy, the agent
records its expectation of how the negotiation should develop in terms of the
speed at which it will converge and the likely response of the opponent. This
information is then used to monitor the progress of the ongoing negotiation.

For ongoing negotiations, the role of the strategic reasoner is to deter±

mine whether the current strategy is being successful (in terms of the agent’s
predictions about its development and the utility the agent is obtaining from
the deal) in ful�lling the agent’s negotiation objectives. Such monitoring is
needed because the world in which the agent is operating is subject to

FIGURE 11. Negotiation logistics rules.

Autonomous Agents for Business Process Management 175

FIGURE 12. Setting the negotiation strategy.

change (e.g., the agent may require the service sooner/later than it estimated
or a new provider for the service may be discovered) and also because oper±

ating a �xed, unchanging strategy means the agent is more open to exploit±
ation by its opponents (since its behavior is easier to predict). Strategy
modi�cation is triggered by two types of event : (i) whether there is a change
in the agent’s internal state (e.g., whether the time by which an agreement
should be in place is becoming critical); and (ii) how the opponent is behav±

ing (e.g., CONCEDING, EXPLOITING, STALEMATE, INTENSIFYING,

176 N. R. Jennings et al.

LESSENING, CONSTANT). Example rules illustrating such strategy moni±
toring and modi�cation are given in Figure 13.1 2

The tactical reasoner. The role of the tactical reasoner is to enact the
high± level behavior set by the strategic reasoner. The output of this level is a
SLA which has values in each of its slots. Thus a tactic is a function which
acts in line with the set strategy, to set a value for each SLA slot. For quan±

titative slot parameters, tactics have to select a value in between the allow±

able minimum and maximum value for that issue. For qualitative values, the
tactics have to choose from a discrete range of alternatives± a process
achieved by mapping the qualitative values onto the quantitative scoring
function (Faratin et al., 1998).

The way in which tactics diŒer is in how they go about computing a slot
value. There are three main ways of coming to a value (more details of the
operation and variety of tactics can be found in (Sierra et al., 1997) and in

FIGURE 13. Monitoring and modifying the negotiation strategy.

Autonomous Agents for Business Process Management 177

Section 4.3 of the companion paper):

tactics : This family of tactics base their behavior on thed Time± dependent
time remaining until an agreement must be in place. At their negotiation
deadline all these tactics put forward their reservation values. However,
the way in which they concede to reach these values diŒers. There are two
broad patterns of concession: (i) boulware (RaiŒa, 1982): maintain the
oŒer until the time is almost exhausted and then begin to concede up to
the reservation value; and (ii) conceder : move rapidly to the reservation
value.

tactics : This family of tactics base their behavior ond Resource± dependent
the amount of a given resource remaining. The property of these tactics is
that they model the urgency of the deal as : i) the resources become
scarcer, ii) the willingness of other parties in negotiation decreases
(measured as an increase in the length of the negotiation thread) and iii)
the computational load on the agent increases. The actual relationship is
that the quantity of time left in negotiation is proportional to the number
of agents in the negotiation and inversely proportional to the length of the
negotiation thread. Thus, the more agents who are potentially available to
perform the service, the longer the agent can aŒord to negotiate. But the
longer the duration of the negotiation, the more urgent the need for an
agreement becomes.

tactics : This family of tactics base their behavior ond Behavior± dependent
how their opponent behaves during the ongoing negotiation thread
(Axelrod, 1984). The tactics within this family diŒer in which aspect of
their opponent’s behavior they imitate, and to what degree. There are
three ways in which behavior can be imitated: i) Relative Tit± For± Tat ; ii)
Absolute Tit± for± Tat ; and iii) Averaged Tit± For± Tat, where other’s behav±

ior is, respectively, imitated proportionality, absolutely, and in an aver±

aged fashion.

Each of the families computes a value for each of the negotiation issues
based upon their particular perspective (Figure 14). The three values for
each issue are then combined, according to the relative weightings set by the
strategic reasoner, to provide a single value which is the one put forward for
that issue.

Service Management

Having made an agreement to provide a service, an agent must then
attempt to honor it. This process involves two principal activities : (i) sched±

uling the service (and its constituent subparts) in accordance with the terms
and conditions of the SLA; and (ii) executing the service.

178 N. R. Jennings et al.

FIGURE 14. Negotiation tactic rules.

When an agent agrees to provide a service to an acquaintance under a
speci�c SLA, the 2 SAM performs line grain scheduling to determine when
each of the service’s constituent components should be executed and which
problem± solving resources should be deployed.1 3 The SAM uses two tech±

niques to proactively schedule tasks and services before they are required : i)
sequential scheduling and ii) look± ahead scheduling. The former is used in
association with on± demand provisioning. Each on± demand task or sub±

service associated with an agreed service is scheduled according to the
service description before the service is executed for the �rst time. The latter
is associated with the scheduling of component parts of one± oŒservices. As a
task or service is being executed the next component of the process is proac±

tively scheduled for execution (i.e., the SDL is parsed one step ahead and the
next step is scheduled while the previous one is being executed).

Autonomous Agents for Business Process Management 179

For both sequential and look± ahead scheduling, the SAM sets up reser±

vations that are used by the SEM for the actual execution of a service or
task. A reservation principally associates a particular task instance or service
with a unique SLA. The SAM sets up reservations to provide sufficient
resources to comply with this agreement, considering components such as
the agreed volume of invocations and the permissible degree of concurrency.
Each agent may have its own scheduling methodology and could be linked
to a generally available or legacy scheduler. The reservations are processed
in two ways according to whether the service is one± oŒor on± demand. In the
former case, the SEM invokes the resource that has been set aside in the �ne
grain scheduling phase and on completion informs the SAM of the service’s
end result. The SAM then removes the reservation and frees up the resource.
In the latter case, a number of reservations (based on the agreed volume of
invocations) are initially set up and noted as earmarked. This implies that
the resources can be used with priority given to the associated SLA. When
the SEM uses one of these resources, the reservation is set to committed,
thus barring any other process instance from using it. On completion, the
reservation is reset to embarked ready for reuse. Only when the associated
on± demand SLA is completed is the SAM informed and the reservations
removed and the resources freed.

Due to the dynamic nature of the domain, exceptions often arise during
service execution. The SEM monitors the execution of tasks and detects
when something has gone wrong. If the exception can be handled by the
SEM then it is. Otherwise, the SEM informs the SAM of the problem. These
exceptions can be of two types : (i) functional or (ii) resource related. A func±

tional exception indicates that the particular activity being performed by a
resource has gone into a state of error. In this case, the SAM can either
attempt to reschedule the same task instance or reresource the task by
scheduling another instance of the same task type. Both options are usually
considered and the SAM decides which is likely to be the most eŒective in a
given situation. For example, reresourcing is quicker if there are spare
resources immediately available, whereas rescheduling does not require new
resources to be considered. A resource± related exception indicates that a
failure has occurred with the underlying resource of a task. When this
occurs, the task instance needs to be deallocated and all the tasks that have
been provisioned to that instance need to be reresourced. When the failed
task instance comes back on± line, the SEM informs the SAM that then real±
locates the task instances so making them available for subsequent sched±

uling activities. If the SAM cannot handle the exception within the SLAs
agreed times, it instructs the IMM to see if it can renegotiate the SLA. If a
new agreement can be reached, then a revised version of the SLA is instanti±
ated. If a new agreement cannot be reached then the service fails. In this
case, the server has to pay any penalty speci�ed in the SLA.

180 N. R. Jennings et al.

RELATED WORK

There are a number of research areas that impact upon, and are related
to, the work described in this article. This section focuses on the three that
are most closely related to ADEPTs key components ; namely : (i) extant
work�ow systems; (ii) automated negotiation by autonomous agents and ;
(iii) techniques for allowing agents with heterogeneous information models
to interoperate. These areas are dealt with in turn.

Extant Work�ow Systems

At the time of writing, there are no commercial systems that support
business process management using a meaningful notion of agenthood.
Existing work�ow management systems oŒer limited support and minimal
�exibility during process enactment. In situations where a business process is
fully resourced (dimensioned) and every conceivable outcome can be con±

sidered and controlled, then conventional distributed computing techniques
and traditional work�ow systems are adequate. If, however, the system has
to cope with unde�ned errors or failures, and there is a need for dynamic
recon�guration of resources, then the ADEPT approach is more �exible and
robust.

The core functionality of a traditional work�ow system is to automate
the execution of a sequence of tasks in support of a business process. Typi±
cally, work�ow systems consist of an engine that executes business tasks in a
prede�ned order (as speci�ed in a script [Hollingworth, 1994]). The ADEPT
system subsumes this functionality in its SDL and in the SEMs execution of
these service descriptions. However, unlike work�ow management systems,
ADEPT also performs both resource management and sophisticated excep±

tion handling :

agents have the ability to perform explicit resource management ;d ADEPT
they control and reason about the systems, databases, equipment, and
people that make up an organization. Traditionally business process man±

agement systems do not provide an inbuilt capability for such direct
resource management. Instead, processes have to be resourced and dimen±

sioned prior to enactment. The ADEPT approach means the system can
be far more responsive to unexpected or unusual patterns of resource
availability.

in work�ow systems, exception handling is managed by explic±d Presently
itly representing an alternative path through the business process. In
ADEPT, agents dynamically attempt to renegotiate and reresource the
process task in order to resolve exceptions. This approach allows agents

Autonomous Agents for Business Process Management 181

to react in a context dependent manner to circumstances where the type
of corrective action might vary depending upon the availability of
resources and the task’s criticality within the process.

The �nal diŒerentiator is that work�ow management systems tend to
operate with a central work�ow engine that monitors all the events in the
system. This type of architecture is limiting when a business process spans a
large enterprise. ADEPT takes a distributed, and, hence, more robust and
scalable approach, where the disparate components of a business process are
each represented by an agent. Agents can be distributed either logically or
physically throughout an organization.

Given the limitations of current generation work�ow systems, a number
of researchers have considered using multiagent systems for various aspects
of business process management. Hall and Shahmchri (1996) use agent tech±

nology to enable both expert (e.g., a manager or business process engineer)
and nonexpert users involved in a business process to in�uence the design
and modi�cation of that process. A language is presented for the description
of processes and tasks to enable automatic reasoning about the operation of
the business process, and hence, facilitate the reuse of existing processes. A
task is represented by a role that indicates who should execute the task, a set
of preconditions, a task description, and a set of stop conditions. This is
similar to the structure of a service description in the ADEPT model : the
mandatory inputs to the service are preconditions for the execution of the
service, a description of the processes involved in executing that service is
provided in the body, and the completion conditions have a similar role to
stop conditions. Such a rigorous description of processes and tasks provides
an agent± based business process management system with the potential to
modify the business process (possibly with reference to an expert) in
response to changing circumstances. Therefore, the use of agent technology
to enable modi�cation of a business process is complimentary to agent±
based business process management systems such as ADEPT.

A federation± type architecture (Genesereth & Ketchpel, 1994 ; Takeda et
al., 1995 ; Tenenbaum et al., 1992) provides an alternative method for
organizing multiagent systems for the management of business processes.
Agents are organized into groups, each group being associated with a single
‘‘facilitator’’1 4 to which an agent surrenders a degree of autonomy. A facili±
tator serves to identify agents that join or leave the system and manages
direct communication between participating agents ; functions that are
similar to those provided by the DAIS ORB (1994). In addition, the facili±
tator provides anonymous communication (i.e., agents are informed of
events in which they have registered an interest without reference to the
original sender), translation of message content between diŒerent informa±

182 N. R. Jennings et al.

tion models, problem decomposition and distribution of subproblems to
agents unspeci�ed by the original sender, and delayed communications in
the event of an agent being temporarily oŒ± line. This architecture enables
agents to communicate without concern for the particular syntactic and
semantic requirements of the recipient. An agent may also send a message
without specifying the recipient, the content± based routing of these messages
being performed by its facilitator. During negotiation, participating agents
require secure communication, but this direct communication is enabled and
managed by one or more facilitators. These facilitators represent the inter±

ests of many diŒerent agents. Therefore, a facilitator that is managing direct
communication between negotiating agents must be trusted to act in the
interests of these agents, even if this con�icts with other interests it is rep±

resenting. At present, the federation architecture has been used predomi±
nantly for the interoperation of purely cooperative agents at the team level
of an organization (e.g., SHADE and PACT [Tennenbaum et al., 1992]).
Such security issues must be addressed if this architecture is to be employed
in business process management where more than one organization is
involved. An additional difficulty with the federation architecture is that it
does not support the encapsulation of services. The ability to model both
peer and hierarchical structures in ADEPT is founded in organizational
models where an enterprise is logically divided into a collection of services.
The agent± agency concept in ADEPT draws on this principle to group ser±

vices within the system where it makes pragmatic sense, a �exibility that is
not available in the federation architecture.

Mobile agents have also been proposed as an approach to the manage±

ment of work�ow in business processes. Merz et al. (1996) argue that the use
of this technology means that only those organizations that require services
from others are required to implement mobile agents. Other organizations
need only accept the arrival of mobile agents and handle their requests ; i.e.,
an organization may participate in either a passive or active manner. Each
mobile agent is an encapsulated, autonomous unit, and therefore can partici±
pate in functions such as negotiation without relying on a facilitator± type (an
advantage over the federation architecture). A further advantage of mobile
agents that is often claimed is that they reduce communication overhead,
but this is yet to be shown in practice; a reasonably sophisticated mobile
agent may take a considerable time to transmit over a network. One poten±

tially serious problem with mobile agent technology in the management of
business processes is the lack of security. To participate in a mobile agent±
based business management system, an organization must allow sophisti±
cated programs from another, possibly competing organization to execute
on their local machines. Therefore, for mobile agents to be a good imple±

mentation choice in this case, these security issues must be addressed.

Autonomous Agents for Business Process Management 183

Automated Negotiation
In this context, we are interested in designing and building well±

engineered coordination techniques that increase the efficiency and �exibility
of task allocation. To this end, our approach has been to adopt and, where
necessary, adapt tools and techniques from game theory and the social sci±
ences.

The central aim of game theory is the speci�cation of rational equi±
librium behaviors (or strategies) when multiple agents interact (Harsanyi
1977 ; Rosenschein & Zlotkin ; 1994). Thus, game theoretic models are an
obvious source of inspiration for our work. These models are not only ana±

lytically useful, but they also have several desirable properties. For example,
Rubenstein’s (1982) model of alternative oŒers (82) takes the passage of time
into consideration, respects our negotiation protocol, and it can be shown
that in such games agents have a simple and stable negotiation strategy that
results in efficient agreements without delays (Kraus et al., 1995). So why are
game theoretic techniques not used directly? To answer this question one
�rst considers the basic assumptions that most game theoretic models make
and then consider what would be involved in applying these techniques in
the ADEPT context. Most game theory models rest on the assumptions that
the negotiating agents are: self± interested (utility maximizers), computa±

tionally and communicatively unbounded, and rational. Moreover, the
agents are assumed to have a set of alternatives that are �xed and known to
all agents and each agent’s risk attitude and utility function are �xed and
known to all the agents that are involved in the decision± making. Thus, in
order to apply these models a designer must (Kraus, 1997): (i) choose a
strategic bargaining model ; (ii) map the application problem to the chosen
model’s nomenclature; (iii) identify equilibrium strategies ; (iv) develop
simple search techniques for appropriate strategies ; and (v) provide utility
functions. While choosing a strategic bargaining model and mapping it to an
application may not be too difficult for someone pro�cient in game theory
techniques, it is not clear how to design and implement equilibrium stra±

tegies in ADEPT when there can be in�nitely many possible agreements.
(Recall game theory requires all the agreements to be known in advance
before equilibrium strategies can be proven.) The aforementioned assump±

tions also mean that most game theoretic models do not consider the com±

putational and communication complexities that are so important in
practical applications. Furthermore, in our context, each agent’s utility func±

tion, set of alternatives, and risk attitude are private information (especially
in interorganizational settings) and even if such information was publicly
available it would soon become intractable for larger games.

The ADEPT negotiation model has also been in�uenced by social
science models of negotiation. These models do not make the restrictive

184 N. R. Jennings et al.

assumptions of game theory and they attempt to identify and describe
behaviors that may achieve satisfactory outcomes (Fisher & Ury, 1981 ;
Kraus & Lehmann, 1995 ; Pruitt, 1981 ; Sathi & Fox, 1989) (rather than
prescribe behavior like the game theory models). For example, the competi±
tive, accommodative, and conciliatory negotiation behaviors in ADEPT are
heuristics that agents use as search operators to prune their set of possible
actions. However, although such models are inspired by successful human
negotiation behavior, they suŒer from the fact that the system’s behavior
cannot easily be predicted. Thus, considerable eŒort is required through
simulation and empirical evaluation, before a negotiation mechanism design
leads to a stable and predictable system. In our case, this experimentation
showed that the ADEPT negotiation model coveraged in the majority of
circumstances and that the communication and computational overheads
were acceptable for this application (Faratin et al., 1998). Furthermore, sub±

sequent theoretical analysis has demonstrated the validity of these results for
a subset of the ADEPT scenarios (Vulkan & Jennings, 2000).

In summary, we have used elements of game theoretic negotiation (such
as utility functions and rational choice) as the basis for the IMMs decision±

making. These functions have then been augmented by work emanating
from the social models that has provided negotiation heuristics to guide the
IMM in its process of setting up negotiation, generating oŒers and counter±

oŒers, and in monitoring and modifying its strategy over time.

Information Interchange

In common with a number of related enterprise integration projects
(Genesereth & Ketchpel, 1994, Takeda et al., 1995 ; Tenenbaum et al., 1992),
ADEPT agents share information that is expressed in a common informa±

tion model (often referred to as an ontology [Gruber, 1994]). The develop±

ment of ontologies for reuse is an important research area in distributed
system development. It is generally accepted (Huhns et al., 1999 ; Neches et
al., 1991) that a domian ontology should not be written from scratch ; it
should be a fusion of existing ontological information. A number of ontol±
ogies have been developed both within the domain of enterprise integration
(Fox & Gruninger, 1994) and speci�cally related to activities such as plan±

ning (Myers & Wilkins, 1998). These ontologies are intended for reuse in
other systems (Lehmann, 1994). This work and tools such as the Stanford
KSL Ontology Editor,1 5 should serve to reduce the time consumed in the
development of an ontology for a speci�c application. With the reduction of
this overhead, the use of explicit ontological representations of information
within a system, as opposed to hand± coded schema translations, becomes
more attractive.

Motivated by the advantages and disadvantages outlined previously, a
number of methods for building schema translations were investigated, and

Autonomous Agents for Business Process Management 185

a simple initial mechanism employed. The hybrid approach advocated here
has the potential to bene�t from the advantages of schema translations, and
the formation of novel schema when required. However, further research
into these techniques is required. Within the Carnot project (Huhns et al.,
1994), the Cyc (Guha & Lenat, 1990), global ontology along with database
schema are used as inputs to the semiautomatic, user driven Model Integra±

tion Software Tool (MIST), which produces articulation axioms (aka.
schema translations). Articulation axioms map local schema to Cyc ; the Cyc
global ontology then functions as a shared information model. Within the
more restricted domain of a business process, totally automating the forma±

tion of schema translations from ontological representations is more feasible.
An agent that is able to communicate (and interpret) information for which
it has no existing schema translation provides greater �exibility : e.g., the
agent may be able to take advantage of new services (with slightly diŒerent
information requirements) that are oŒered in the system. Thus, with the
reuse of existing ontologies, and the use of these ontologies to automatically
(or with some reference to a domain expert) generate schema translations,
the disadvantages of using explicit ontological representations are reduced,
and more �exible interaction between agents is possible.

CONCLUSIONS

This paper described the conceptualization and implementation of an
agent± based system for managing corporate± wide business processes. The
ADEPT philosophy is founded upon two key notions : (i) developing
responsibility for provisioning and managing the business ; and (ii) making
the problem± solving components reactive and proactive so they can respond
to unexpected situations. To this end, this work can be viewed on three
diŒerent levels, each of which represents increasing support for the realiza±

tion of business process management software systems:

i. ADEPT as a design technology : ADEPT proposes a method of
approach for structuring the design and development of business process
management systems. It identi�es the key concepts in this view as auton±

omous agents, negotiation, service provision, service level agreements,
resource management, and information sharing. This view can be readily
applied to other business process applications without being tied to the
details of how they were realized in ADEPT.

ii. ADEPT as an implementation technology : As well as identifying a con±

ceptual framework, the ADEPT system provides concomitant algo±

rithms, interfaces, language de�nitions, and implementation structures.
These de�nitions can be reimplemented in other programming environ±

ments to develop ADEPT± like agent systems for business process man±

agement.

186 N. R. Jennings et al.

iii. ADEPT as a solution technology : The ADEPT programming environ±

ment can be reused in other business management applications. In this
case, the ADEPT design methodology is used to structure the applica±

tion and the ADEPT software is used to implement it.

As we have indicated, devolving responsibility to autonomous agents
oŒers many advantages over traditional work�ow approaches. However,
there are two potential drawbacks of this approach. First, it is more difficult
to attain a coherent view of the entire business process, since its state is now
distributed. To combat this, signi�cant eŒorts were expended on a suite of
visualization tools that enabled the business process manager to view and
reconstruct the system’s state from its constituent components (see Jennings
et al. (1996) and the companion paper for more details). Second, given the
autonomous nature of the problem± solving components, there is a greater
chance that the business process will fail to meet any overarching con±

straints placed upon its operation. This is because the business process is
constructed through dynamic, on± the± �y agreements, rather than through
preset routes. To minimize such difficulties, the negotiation strategies and
tactics of the organization’s agents need to be carefully engineered so they
maximize the chance of making agreements. Empirical work on analyzing
the properties and relative merits of diŒerent combinations of strategies and
tactics is reported in Faratin et al. (1998) and theoretical work on a subset of
these scenarios is reported in Vulkan and Jennings (2000).

The two major technical advances achieved by ADEPT relate to the
techniques developed for automated negotiation and the techniques for
information sharing between agents with heterogeneous information models.
In the former case, our approach allows agents to exhibit a range of negotia±

tion behaviors depending upon the context in which they �nd themselves. In
the latter case, a pragmatic, hybrid solution that combines the speed of
schema mappings with the �exibility of working with ontologies was
adopted.

As already indicated, ADEPT can be used as a solution technology for
real world applications. In particular, it has been applied to a BT business
process of providing a quote to install a customer’s network. Details of this
application are given in the companion paper. That paper serves two main
purposes : (i) it illustrates the concepts described herein ; and (ii) it oŒers
insights into how the ADEPT approach can be applied in practical situ±

ations.

NOTES

1. An important aspect of successful business process management is the optimization of the process.
The �rst step of this endeavor is to understand the process as it currently operates (this is a typical

Autonomous Agents for Business Process Management 187

systems analysis activity that involves interviewing people with expert knowledge about the process
and studying relevant system documentation). The second step is to explicitly reconsider and redesign
the process. Such business process re± engineering is typically carried out in order to increase cus±

tomer satisfaction, improve the efficiency of business process operations, increase the quality of pro±

ducts, reduce costs, and/or meet new business challenges and opportunities by changing existing
services or introducing new ones. The �nal step is to encode the revised business process description
in the business process speci�cation language. ADEPT deals exclusively with the �nal step and
assumes that any necessary process re± engineering has already taken place.

2. This is one of the major features that distinguishes agent systems from object± oriented systems and
more traditional forms of distributed computing (Wooldridge, 1997).

3. An agency must contain at least one task or two subagencies for it to be meaningful.
4. Peer agencies are those with responsible agents that may communicate without crossing an agency

boundary. For example, in Figure 3 agency F is a peer of agency E and agency A is a peer of agency
D, but agency E is not a peer of agency A.

5. A negotiated contract for the ‘‘design network’’ service may be required before the ‘‘cost and design
network’’ service is oŒered, or this may be arranged at run time. This is the choice of the system
designer.

6. The management and application layers are supported by an agent infrastructure,
which provides basic interoperation capabilities between the heterogeneous and distributed com±

ponents of the business process management system. In the current implementation, this infrastruc±

ture is based on DAIS (1994), a CORBA± compliant (common object request broker architecture)
distribution platform (Mowbray & Zahavi, 1995). However, the ADEPT system is not restricted
to a CORBA platform. Any distribution platform may be employed, provided that mappings are
available between it and the convergence layer (a layer that provides a technology neutral infrastruc±

ture interface).
7. A procedural language is not used because such languages typically require a rigorously speci�ed

�ow of control. Since the body is executed by an autonomous agent in an unpredictable environ±

ment, it is felt that such control decisions are best left to the agent to determine at runtime (rather
than being dictated by the designer at compile time). Thus, in ADEPTs SDL, the body speci�es a
partial �ow of control with some restrictions on the order and the degree of concurrency of the
execution and the completion expression supplies the agent with the completion logic of the block (in
terms of success, fail, and unknown). It is then up to the agent to complete the service by the
most appropriate means given its current circumstances.

8. This agent architecture is based on those of GRATE* (Jennings, 1995) and ARCHON (Jennings et
al., 1996).

9. Here an information model should be understood as a speci�cation of the symbols that an agent uses
to make decisions.

10. Although drawn from the business process domain, subsequent work in network management
(FIPA97 Speci�cation± Part 7, 1997) has led us to believe that they are applicable for service±

oriented negotiation in general.
11. The legal enforcement and actual payment of penalties is not handled by the ADEPT system at this

time.
12. Note whenever the weights are changed, the agent renormalizes their values.
13. Within an agent the problem± solving resources are dynamically determined. Thus, when an agent is

initialized, it has no knowledge to its resources. When tasks are initiated, the SAM forms a resource
list containing the instance names associated with a certain task type. Only then can speci�c task
instances be provisioned. If a task instance fails, it is removed from the task resource list and not
provisioned in any future agreements. If a task becomes available during the running of the business
process, the SAM initiates a search for any incomplete agreements and, if possible, uses this resource.
If not, it is added to the appropriate resource list in anticipation of future use.

14. Takeda et al. (1995) refer to a ‘‘facilitator,’’ ‘‘mediator,’’ and ‘‘ontology server’’ in their architecture.
Together, these three units perform the same function as a facilitator in the federation architecture
described by Genesereth and Ketchpel (1994).

15. The Stanford KSL Ontology Editor is a tool that supports distributed, collaborative editing, brows±

ing, and creation of ontologies represented in Ontolingua (Gruber, 1994), a language designed for the

188 N. R. Jennings et al.

representation of ontologies : http ://www± ksl± svc.stanford.edu:5915/FRAME± EDITOR/
&sid 5 ANONYMOUS&user± id 5 ALIEN

REFERENCES

Axelrod, R. 1984. The Evolution of Cooperation. New York : Basic Books.
DAIS: A Platform To Build On. 1994. ICL Corporate Systems Publications, Version 2.1.
Faratin, P., C. Sierra, and N. R. Jennings. 1998. Negotiation decision functions for autonomous agents.

Int. Journal of Robotics and Autonomous Systems 24(3­ 4):159­ 182.
Fox, M. S., and M. Gruninger. 1994. Ontologies for enterprise integration. In Proc. of the 2nd Conf. on

Cooperative Information Systems, Toronto Ontario, Canada.
FIPA97 Speci�cation± Part 7. 1997. Network management and provisioning foundation for intelligent

physical agents. http://www.fipa.org

Fisher, R., and W. Ury. 1981. Getting to Yes : Negotiating Agreement without Giving in. Boston:
Houghton Mifflin.

Genesereth, M. R., and S. P. Ketchpel. 1994. Software agents. Comms. of the ACM 37(7):48­ 53.
Georgakopoulos, D., M. Hornick, and A. Sheth. 1995. An overview of work�ow management. Int

Journal of Distributed and Parallel Databases 3:119­ 153.
Gruber, T. 1994. A translation approach to portable ontology speci�cations. Knowledge Acquisition

5:199­ 220.
Guha, R. V., and D. B. Lenat. 1990. CYC: Amid term report. AI Magazine 11(3):32­ 59.
Hall, T., and N. Shahmehri. 1996. An intelligent multi± agent architecture for support of process reuse in a

work�ow management system. In Proc. of 1st Int. Conf. on the Practical Application of Intelligent
Agents and Multi± Agent Technology, London, UK, 331­ 343.

Harsanyi, J. C. 1977. Rational Behaviour and Bargaining Equilibrium in Games and Social Situations.
Cambridge: Cambridge University Press.

Hollingsworth, D. 1994. The Work�ow Reference Model. The Work�ow Management Coalition.
Huhns, M. N., et al. 1994. Global information management via local autonomous agents. In Proc. 13th

Int. DAI Workshop, Seattle, WA, 153­ 174.
JeŒrey, R. 1983. The Logic of Decision. University of Chicago Press.
Jennings, N. R. 1994. Cooperation in Industrial Multi± Agent Systems. London : World Scienti�c Publi±

shing.
Jennings, N. R. 1995. Controlling cooperative problem solving in industrial multi± agent systems using

joint intentions. Arti�cial Intelligence 75(2):195­ 240.
Jennings, N. R., et al. 1996. Agent± based business process management. Int Journal of Cooperative Infor±

mation Systems 5(2&3):105­ 130.
Jennings, N. R., et al. 1996. ADEPT: Managing business processes using intelligent agents. In Proc. BCS

Expert Systems 96 Conference (Intelligent Systems Integration Programme Track), Cambridge, UK,
5­ 23.

Jennings, N. R., et al. 1996. Using ARCHON to develop real± world DAI applications. IEEE Expert
11(6):64­ 70.

Jennings, N. R., et al. 1993. Transforming stand± alone expert systems into a community of cooperating
agents. Int. Journal of Engineering Applications of AI 6(4):317­ 331.

Kraus, S., and D. Lehmann. 1995. Designing and building a negotiating automated agent. Comput. Intell.
11 :132­ 171.

Kraus, S., J. Wilkenfeld, and G. Zlotkin. 1995. Multi± agent negotiation under time constraints. Arti�cial
Intelligence 75 :297­ 345.

Kraus, S. 1997. Negotiation and cooperation in multi± agent environments. Arti�cial Intelligence 94 :79­
97.

Lehmann, F. 1994. CCAT: The current status of the conceptual catalogue (ontology) group, with propo±

sals. In Proc. 4th Int. Workshop on Peirce: A Conceptual Graph Workbench. College Park, MD:
University of Maryland.

McCarthy, D., and S. Sarin. June 1993. Work�ow and transactions in inconcert. Bulletin of the Technical
Committee on Data Engineering, IEEE Computer Society 16(2).

McCready, S. November 2, 1992. There is more than one kind of work�ow software. Computerworld.

Autonomous Agents for Business Process Management 189

Medina± Mora, R., T. Winograd, and R. Flores. 1993. Action work�ow as the enterprise integration
technology. Bulletin of the Technical Committee on Data Engineering. IEEE Computer Society 16(2).

Medina± Mora, R., H. Wong, and P. Flores. 1992. The action work�ow approach to work�ow manage±

ment. In Proc. of 4th Conf. on Computer Supported Cooperative Work.
Merz, M., B. Liberman, K. MuÈ ller± Jones, and W. Lamersdorf. 1996. Inter± organisational work�ow man±

agement with mobile agents in COSM. In Proc. of the 1st Int. Conf. on the Practical Application of
Intelligent Agents and Multi± Agent Technology, 405­ 420.

Mowbray, T. J., and R. Zahavi. 1995. The essential CORBA systems integration using distributed objects.
John Wiley and Object Management Group.

MuÈ ller, H. J. 1996. Negotiation principles. In Foundations of Distributed Arti�cial Intelligence, eds. G. M.
P. O’Hare and N. R. Jennings. New York: Wiley Interscience, 211­ 229.

Myers, K. L., and D. E. Wilkins. 1998. Reasoning about locations in theory and practice. Computational
Intelligence 14(2).

Neches, R., et al. 1991. Enabling technology for knowledge sharing. AI Magazine 12(3).
Norman, T. J., and N. R. Jennings. 1997. Generating states of cooperation between autonomous agents.

In Proc. 3rd Australian Workshop on Distributed Arti�cial Intelligence, Perth, Australia, 109­ 119.
Norman, T. J., et al. 1997. Designing and implementing a multi± agent architecture for business process

management. In Intelligent Agents III, eds. J. P. Mueller, M. J. Wooldridge, and N. R. Jennings.
LNAI 1193. Springer± Verlag, 261­ 275.

Pnueli, A. 1986. Speci�cation and development of reactive systems. In Information Processing 86, New
York: Elsevier.

Pruitt, D. G. 1981. Negotiation Behaviour. Academic Press.
RaiŒa, H. 1982. The Art and Science of Negotiation. Cambridge, MA: Harvard University Press.
Rosenschein, J. S., and G. Zlotkin. 1994. Rules of Encounter. Cambridge, MA: The MIT Press.
Rubinstein, A. 1982. Perfect equilibrium in a bargaining model. Econometrica 50 :97­ 109.
Sathi, A., and M. S. Fox. 1989. Constraint directed negotiation of resource re± allocations. In Distributed

Arti�cial Intelligence II, eds. L. Gasser and M. Huhns. Pitman, 163­ 193.
Sierra, C., P. Faratin, and N. R. Jennings. 1997. A service± oriented negotiation model between auton±

omous agents. In Proc. 8th European Workshop on Modeling Autonomous Agents in a Multi± Agent
World, Ronneby, Sweden, 17­ 35.

Takeda, H., K. Iino, and T. Nishida. 1995. Agent organization with multiple ontologies. Int. Journal of
Cooperative Information Systems 4(4):321­ 337.

Trammel, K. April 1996. Work�ow without fear. Byte.
Tenenbaum, J. M., J. C. Weber, and T. R. Gruber. 1992. Enterprise integration: Lessons from SHADE

and PACT. In Proc. 1st Int . Conf on Enterprise Integration Modelling, 356­ 369.
Vulkan, N., and N. R. Jennings. 1999. Efficient mechanisms for the supply of services in multi± agent

environments.Int Journal of Decision Support Systems.
Wooldridge, M. 1997. Agent± based software engineering. IEE Proceedings on Software Engineering

144(1):26­ 37.
Wooldridge, M. J., and N. R. Jennings. 1995. Intelligent agents: Theory and practice. The Knowledge

Engineering Review 10(2):115­ 152.
http ://www.staŒware.com/

