
Applied ArtiÐcial Intelligence, 14 :421È463, 2000
Copyright 2000 Taylor & FrancisÓ
0883-9514 /00 $12.00 1 .00

u IMPLEMENTING A BUSINESS
PROCESS MANAGEMENT
SYSTEM USING ADEPT:
A REAL-WORLD CASE STUDY

N. R. JENNINGS, P. FARATIN, and
T. J. NORMAN
Dept. Electronic Engineering, Queen Mary & Westfield
College, University of London, London, United
Kingdom

P. O’BRIEN and B. ODGERS
BT Research Labs, Martlesham Heath, Ipswich, Suffolk,
United Kingdom

J. L. ALTY
Dept. of Computer Studies, Loughborough University,
Loughborough, Leicestershire, United Kingdom

T his article describes how the agent± based design of ADEPT (advanced decision
environment for process tasks) and implementation philosophy was used to prototype a
business process management system for a real± world application. T he application
illustrated is based on the British T elecom (BT) business process of providing a quote to a
customer for installing a network to deliver a speciÐed type of telecommunications service.
Particular emphasis is placed upon the techniques developed for specifying services,
allowing agents with heterogeneous information models to interoperate, allowing rich and
Ñexible interagent negotiation to occur, and on the issues related to interfacing agent± based
systems and humans. T his article builds upon the companion article (Applied ArtiÐcial
Intelligence V ol. 14, no. 2, pgs. 145È189) that provides details of the rationale and design of
the ADEPT technology deployed in this application.

Many advances have been made in recent years within organizations in pre±

paring a culture of dynamic improvement. From the globalization of trade,
total quality management initiatives (Bradley, 1994 ; Bulled, 1996), through
regulatory and competitive pressures, and on to ISO 9001± conformant
quality management systems, the emphasis has been placed increasingly on
the notion of service. This embraces both the service that an organization

Address correspondence to Prof. Nick Jennings, Department of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ. E-mail : nrj@ecs.soton.ac.uk

421

422 N. R. Jennings et al.

provides to its customers and the service that departments within an organ±

ization provide to one another.
To achieve and sustain such dynamic improvement, service± oriented

organizations need an infrastructure that supports �exible and robust man±

agement of their business activities in a changing world. In particular, the
de�nition and execution of efficient business processes requires considerable
eŒort to be invested in consulting everyone involved and in capturing the
requirements and constraints of all the relevant parties. This endeavor
involves not only the humans contributing to a process, but also the under±

lying information systems that facilitate and often have processes embedded
within them. To this end, the ADEPT project has developed a business
process support infrastructure that is inherently service± oriented, in which
both humans and automated tasks can work cooperatively (see the afore±

mentioned companion article for the justi�cation and description of
ADEPTs conceptual and implementation framework).

In more detail, a business process is composed of a number of primitive
functional activities or tasks. In any reasonably complex process, depen±

dencies exist between the tasks and so they have to be executed in a con±

trolled and ordered way. This execution invariably involves the
consumption of resources. In most organizations, these resources are
grouped into business units that control the way in which they are deployed.
Within ADEPT, these business units are represented by autonomous soft±
ware agents. The agents communicate with one another over a network and
negotiate over how they can collaborate to manage the overall business
process. To be consistent with the service± oriented philosophy, negotiation
and collaboration are at the level of the services that agents oŒer to one
another. In this case, a service is a packaging of tasks and other (sub)services
that allows an agent to oŒer or receive from another agent some functional
operation. A service can be reused as a component of another service, and
agents can take the role of provider (server) or customer (client) for services.

Against this background, the purpose of this article is to demonstrate
how the ADEPT concepts and implementation can be used to build a
business process management system for a real± world application. For our
particular purposes, the exemplar business process is from BT (British
Telecom) and it relates to providing a quote for installing a network at a
customer’s premises. The contributions of this article are as follows : it
demonstrates how a real± world application can be conceived of as a multi±
agent system; it highlights many of the problems that need to be addressed
when building a multiagent system for real± world applications ; and it shows
the potential advantages and disadvantages of using multiagent systems as a
software solution technology.

The remainder of the article is structured in the following manner. The
next section describes the provide customer quote business process in detail.

Implementing Business Processes Using ADEPT 423

The section entitled Designing the Agent System indicates how this business
process was divided into agents and agencies and how services were assigned
within this structure. The section on Implementing the Agent System within
ADEPT indicates how the design was realized using ADEPT as a solution
technology. Here particular emphasis is given to the negotiation involved in
provisioning services and on the techniques for sharing information between
agents with heterogeneous information models. The section on Interface
Design Issues addresses the issues involved in having both human and arti� ±

cial agents in a business process management system. The �nal section
re�ects upon the experiences in building this application and oŒers some
general insights into the problems of building real± world multiagent systems.

BTS PROVIDE CUSTOMER QUOTE BUSINESS PROCESS
The scenario described in this article is based on BT’s business process

of providing a quotation for designing a network to provide particular ser±

vices to a customer (Figure 1). The scenario has been simpli�ed for the pur±

poses of explanation and demonstration. The actual business process for this
service contains 38 tasks and nine choice points. Despite this simpli�cation,
the key aspects of the process are still present. Each activity requires
resourcing and has a start/end point whereby progress can be measured.
Choice points indicate which sequences of activities require provisioning and
there are a number of concurrent activities that require coordination.

The overall process receives a customer service request as its input and
generates as its output a quote specifying how much it would cost to build a
network to realize that service. The process involves up to six types of
business unit : the sales department that is the customer’s point of contact ;
the customer service division that handles the basic administration of the
process ; the legal department that checks the validity of customers’ requests ;
the design division that determines how the service network can be realized ;
the surveyor department that visits customers’ premises ; and the provider of
an outsourced service for vetting customers.

In more detail, the process is initiated by a customer contacting the sales
department. The customer’s details are captured and while the customer is
being vetted (in terms of verifying their identity), their requirements are elic±

ited. If the customer fails the vetting procedure, then the quote service ter±

minates. Assuming the customer is satisfactory, their requirements are
recorded and mapped against the service portfolio. If the requirements can
be met by a standard oŒ± the± shelf portfolio item, then an immediate quote
can be oŒered based on previous examples. In the case of bespoke services,
however, the process is more complex. The customer service division further
analyses the customer’s requirements, and while this is occurring, the legal
department checks the legality of the proposed service (e.g., it is illegal to

424 N. R. Jennings et al.

FIGURE 1. The Provide Customer Quote Business Process.

send unauthorized encrypted messages across France). If the desired service
is illegal, then the entire quote service terminates and the customer is
informed. If there is any uncertainty about the service’s legality, then the
business process is suspended while further information is obtained from the
customer. If the requested service is legal then the design phase can start. To
prepare a network design it is usually necessary to have a detailed plan of
the existing equipment at the customer’s premises ; the exception to this is
when the desired service is sufficiently simple that a survey is not warranted.
Sometimes such plans might not exist and sometimes they may be out of
date. In either case, the customer service division determines whether the
customer site(s) should be surveyed. On completion of the network design

Implementing Business Processes Using ADEPT 425

and network costing, a �nal costing is produced. Finally, the customer is
informed of the service quote and the business process terminates.

In terms of the typical characteristics of corporate± wide business pro±

cesses that were outlined in the companion article, the provide customer
quote process has the following traits :

resources available to carry out the business processes’ activities vary.d The
For example, the numbers of designers, surveyors, and lawyers that can
work on the process depends upon staŒ availability at any given time.
Similarly, the number of customers that can be checked depends upon the
current capacity of the vetting agencies. Moreover, for a given customer, it
is not possible to predict when they �rst enter the system which path
through the business process will be enacted.

process involves approximately equal amounts of human andd The
automated tasks. Tasks such as checking the legality of services, surveying
a customer’s premises, and designing the network are performed by
humans, whereas tasks such as costing portfolio services and delivering
the �nal quote are automated.

organizations are involved in the process. British Telecom isd Multiple
responsible for the majority of the activities, but the task of vetting cus±

tomers is outsourced to external companies that bid for contracts on an
as± needed basis.

process is physically distributed across diŒerent resource units thatd The
are situated at various BT sites. Also the vetting companies can be located
anywhere in cyberspace.

resources involved in the process are controlled by their respectived The
business units in an autonomous way. Thus, the design department deter±

mines the number of designers that are available for this process (bearing
in mind that this is not the only activity in which the design department is
engaged). Similar observations are true for the surveyor and legal depart±
ments.

are many concurrent problem± solving activities± both within ad There
given process instance and across process instances.

business process manager needs to have a view of the entire processd The
so the efficiency of the activity can be determined. Thus, information is
needed about the process instances that take signi�cantly longer than
average, about where bottlenecks occur, and so on.

Given these observations, it is clear that the provided customer quote
process exhibits most of the typical characteristics of corporate± wide
business processes in large organizations. For this reason, it represents a
suitable and realistic context in which to test the operation of the ADEPT
system.

426 N. R. Jennings et al.

DESIGNING THE AGENT SYSTEM
This section describes how the customer quote business process was

mapped into a multiagent system. The main steps in this endeavor are deter±

mining which agents should be present and how they should be organized
into agencies, specifying the services the agents should provide to one
another, and setting the mode of provision for the identi�ed services.

Mapping the Business Process into Agents and Agencies
Since the ADEPT solution has to operate within the present organiz±

ational structure, our �rst step was to identify the business units involved in
the customer quote activity. As indicated previously, there are �ve business
units within BT involved in this activity : the sales department, the customer
handling department, the design department, the legal department, and the
survey customer site department. Given the fact that these business units
represent autonomous problem± solving entities with their own set of
resources, the obvious design choice is to make each of them an agent.
However, this position is complicated by the fact that customer handling is
dealt with at two physical sites± London and Edinburgh. While it would
obviously be possible to view the two sites as one logical entity, we decided
upon two separate agents since there is comparatively little coordination
between the sites and there are no control relationships between the sites.
The �nal type of entity involved in the business process is the customer
vetting organizations. As already explained, vetting is outsourced. As there
are multiple potential providers of the customer checking activity, it seems
natural to represent each of them as separate agents since they are, in eŒect,
direct competitors. Thus, the implemented system contains the following
agents (Figure 2): the BT sales (BTS) agent ; the customer handling in
London (CHL) agent ; the customer handling in Edinburgh (CHE) agent ; the
network design department (NDD) agent ; the telecommunications legal
service (TLS) agent ; the surveyor team (ST) agent ; and the three external
agents± customer information center (CIC) agent, �nancial services enter±

prises (FSE) agent, and customer check ltd. (CCL) agent± that provide the
customer vetting.

The next step down from the business unit is the individuals working
within the units (e.g., the surveyors that visit premises, the lawyers that
check the legality of proposed services, etc.). These entities could validly be
represented as agents in their own right. However, for reasons of simplicity,
we decided against this design choice in this particular application. Instead,
we chose to represent these entities as tasks. This enabled resource alloca±

tion (assigning individuals to work items) to be performed by a business
unit± wide scheduling system. For example, the surveying department already

Implementing Business Processes Using ADEPT 427

FIGURE 2. The agent system for managing the provide customer quote business process.

428 N. R. Jennings et al.

has a system that schedules the work of the surveyors so as to optimize
factors like the distances between jobs and the amount of overtime required.
Therefore, in this case, the agents represent the interests of the pool of
resources and the resource utilization information used during service provi±
sioning originates from the work scheduling system. This approach was
found to be more efficient than having each agent represent the interests of
an individual resource.

Having identi�ed the set of agents, the next step is to determine the
organizational relationship between them. In the ADEPT context, this
equates to determining which agents are peers of one another and which are
subagencies. In the provided customer quote case, this is, in general, a fairly
easy choice since most agents represent distinct, autonomous departments
that have no controlling authority over one another. The exception to this is
the survey department that is part of the design department. Thus, it was
decided that all the agents should be peers apart from the ST agent that
would be a subagency of the NDD agent. In the latter case, having ST as a
subagency is a natural choice since only NDD needs to interact with it.
Moreover, the ST agent is an integral part of the NDDs functioning, since
the design service cannot be performed without having a surveying capabil±
ity. This means the two agents have a close and cooperative working
relationship which is exactly that captured by the subagency concept.

Assigning Services to Agents
Having identi�ed the agents involved in the business process, the next

step is to determine the services they will provide to one another. In most
cases, this question can be answered by considering the roles of the various
agents and by applying the software engineering principle of minimal coup±

ling between problem± solving groups (Sommerville 1992).1 Having said this,
however, it is important to note that the composition of services oŒered by
an agent is determined by the requirements of all the business processes
within an enterprise, not just one. Hence, some services are necessarily
de�ned at a level of granularity that does not appear as natural for one
application, but which makes sense when the totality of the business pro±

cesses are considered.

BTS agent handles customer service inquiries on behalf of BT. Thisd The
service (Handle–Customer) encapsulates the entire quote process and
represents the customer’s sole point of contact. To perform this role, BTS
requires one of the customer handling departments to provide a quote.

vet customer agents (CIC, FSE, and CCL) provide a customer check±d The
ing service (Vet–Customer) to the customer handling agents (CHE and
CHL).

Implementing Business Processes Using ADEPT 429

ST agent provides the service of surveying a customer’s premises tod The
the NDD agent (Survey–Customer–Site).

customer handling agents provide the (identical) service of providingd The
quotes to the BTS agent (Provide–Customer–Quote). To provide this
service, the customer handling agents need to be able to call upon a
vetting service, a legal advice service, and a costing and design service.

TLS agent provides advice on whether a particular customer’sd The
request is legal in the country where the network is to be situated. This
service (Legal–Advice) represents an important choice point in the
process. If the proposed request is illegal, then the quote process must
terminate and the customer must be informed. Therefore, this service is
provided to the customer handling agents (rather than the NDD agent
directly), since they are responsible for liaising with the customers.

NDD agent provides the services of analyzing the requirements of ad The
bespoke customer premise network (CPN) (Analyse–CPN), of designing
a CPN (Design–CPN), and of costing the network (Final–Costing,

Cost–CPN) to the customer handling agents. These services are used in
business processes other than that for providing a customer quote, and so
they are represented separately even though they are always invoked
together in this particular context.

Having speci�ed the agents’ services, the next step is to determine in
which agents the constituent tasks (see Figure 1) should be located so that
the services are realized in the most eŒective fashion. To minimize the coup±

ling between agents, tasks are managed by the agent that provides the service
of which they are part unless an explicit statement is made to the contrary.

Handle–Customer service requires the BTS agent to provide ad The
point of contact for the customer (the front–desk task) and the ability
to store information about a customer’s request while the quote process is
being enacted (the store–quote task).

Vet–Customer service is composed of a single taskd The
(vet–customer). Since the exact means by which this service is realized
will vary between the agents, the speci�c tasks also vary (hence, the 1, 2,
and 3 subscripts in Figure 2).

Legal–Advice service is composed of two basic tasks : providingd The
the advice (provide–legal–advice) and requesting additional infor±

mation when it is needed (request–further–info).
Survey–Customer–Site service is composed of a single taskd The

(survey–customer–site).
Provide–Customer–Quote service involves the following tasks :d The

capturing details about the customer (capture–customer–details);

430 N. R. Jennings et al.

determining the customer’s requirements (capture–customer–
requirements); identifying the desired service’s requirements pro�le
(identify–service–requirement –profile); identifying the par±

ticular service if it is a portfolio item (identify–service); and provid±

ing the �nal quote to the BTS agent (provide–quote).
Analyse–CPN service involves analyzing the customer’s require±d The

ments in more detail (analyse–requirements). The Design–CPN

service is where the bespoke network is designed (through the
design–network task). The Cost–CPN service uses the
cost–network task to calculate the actual cost of the customer design.
The Final–Costing service calculates the �nal quote for the customer
that might include additional value added services (e.g., maintenance con±

tract options) and ensures the quotation is appropriately authorized (both
for bespoke and portfolio items) through the cost–quote task.

Determining Modes of Service Provision
Having determined the agents’ services, the �nal design choice relates to

the way these services will be provisioned. As indicated in the companion
article, services can be provisioned in two ways: on demand : one agreement
covers multiple invocations of a particular service; and one± o† : a single
service instance is provisioned at a time. The former is used for services that
have a high volume of invocation. This means they are usually on the main
path of the business process. The latter is used for services that are invoked
less frequently. The rationale for this is that negotiation consumes both time
and resources, and hence for services that are used frequently, it makes sense
for the cost of the negotiation to be amortized over numerous services.
However, the main advantage of negotiating afresh for each service instance
is that the agreement can be tailored more accurately to the prevailing cir±

cumstances. Hence, for services that are invoked infrequently, the increased
resource overheads tend to outweigh the timeliness of the agreements.

In the provide customer quote process, it was decided that the following
services should be made on demand since they are required for each and
every invocation of the business process : Handle–Customer,
Provide–Customer–Quote, Vet–Customer and Final–Costing.
The remaining services are provisioned as and when they are needed :
Legal–Advice, Survey–Customer–Site, Design–CPN, Cost–CPN

and Analyse–CPN.

IMPLEMENTING THE AGENT SYSTEM WITHIN ADEPT
This section describes the major steps involved in implementing the

provide customer quote business process using ADEPT as a solution tech±

Implementing Business Processes Using ADEPT 431

nology. The �rst section discusses the issues associated with specifying ser±

vices in ADEPT’s service description language; the next section shows how
the ADEPT approach to information sharing is used in practice; the section
following illustrates service provisioning in a range of negotiation contexts ;
and the �nal section demonstrates the service management function in oper±

ation.

Specifying Services
Services are speci�ed using the service description language (SDL) intro±

duced in the companion paper. Each service description consists of a name
(unique for that service), a set of inputs, a set of outputs, a guard, and a
body. The inputs specify the information that is to be used by the service
and the outputs specify the information provided to the client on completion
of the service. The guard is a boolean expression that is evaluated when the
service is �rst invoked. If this expression evaluates to be false, the service
fails without the body of the service being processed. The body of a service
description loosely speci�es how the service is to be executed. It consists of
the restrictions on the order in which component services are to be executed,
the conditions under which the service will be considered successfully exe±

cuted, and how information �ows between these component services.
A service description represents the server agent’s knowledge of how to

provide a service. However, a potential client agent does not have this
knowledge since the service’s realization is encapsulated by the provider.
Therefore, services are advertised as service prototypes. A service prototype
provides a client agent with the necessary information with which to manage
the execution of a service provided by a server agent, given that there exists
an appropriate agreement between them. This information consists of the
name of the service, and its inputs and outputs. An agent also represents the
tasks it is responsible for managing in a similar way, providing the name of
the task, its inputs and outputs. Sample service and task prototypes for the
CHE agent are shown in Figure 3. The service prototype refers to the service
Vet–Customer, and indicates there is a single input to this service, the
details of the customer concerned, and a single output, the verdict of the

FIGURE 3. Sample service and task prototypes for the CHE agent.

432 N. R. Jennings et al.

Vet–Customer service provider. Note that unlike a service description, the
inputs to a service as speci�ed in a service prototype only refer to the input
as being mandatory (man) or optional (opt). Inputs that are provided by the
server itself are not speci�ed. The task prototype refers to the task
capture–customer–details. There is one mandatory input to this task
and a single output : the telephone number of the customer and their full
details, respectively. The task is, therefore, to contact the customer by phone
and determine details such as their postal address and fax number.

The inputs and outputs of service prototypes are always de�ned in terms
of the client agent’s information model. This may be diŒerent from the
server’s information model, in which the server agent’s service description is
de�ned. For example, the service description of the Vet–Customer service
(Figure 4) that may be provided by the CCL agent is expressed in terms of
the internal information model of that organization. It is important to note
two features of a client’s service prototype and the associated server’s service
description. First, the name of the service must be identical ; service names
are common to all agents whatever information model is used. Second, each
information object is pre�xed with the name of the information model in
which it is de�ned. The information objects used to represent the inputs and
outputs of CHEs service prototype are pre�xed by ‘‘BT,’’ that represents the
British Telecom information model, and CCLs service description uses infor±

mation objects pre�xed by ‘‘CCL,’’ that represents that organization’s infor±

mation model. (Refer to the next section for information on how information
is shared between these agents during service execution.)

CCL’s Vet–Customer service description is rather simple, consisting of
a single task to be performed. The body of this service description contains a
single sequence block with the completion condition that the task
check–CCL is successfully completed. The content of this block is a call to
that task, where the task’s input (called details) is the CCL–Customer

information object that is input to the Vet–Customer service, and its
output is the CCL–Decision information object called verdict that is

FIGURE 4. SDL description of the Vet–Customer service provided by the CCL agent.

Implementing Business Processes Using ADEPT 433

the service’s �nal output. To illustrate the use of SDL more fully, the service
description for the NDD agent’s Design–CPN service is shown in Figure 5.

The three inputs to this service are all mandatory and are to be provided
by the client, and so each of these will be mentioned in the client’s service
prototype. These inputs are the details of the customer, an information
object that indicates whether a survey is required of the proposed network
site, and the pro�le of the customer’s requirements. The service’s output is a
single information object representing the completed network design. The
service has no guard and so the body is always executed. The body consists
of two sequence blocks, and refers to a task (design–network) and a
service (Survey–Customer–Site). The main block is considered to have
been completed, and hence the service is completed, if both of the symbols
‘‘doSurvey’’ and ‘‘design–network’’ evaluate to true. The doSurvey

symbol evaluates to true when the sequence subblock with the same name is
successfully completed, and the symbol design–network evaluates to true
when the task with the same name is successfully completed. The doSurvey

subblock and the design–network task are speci�ed to be executed in
sequence and so the doSurvey subblock is always executed �rst. This sub±

block is completed if the condition (or (not needSurvey)

Survey–Customer–Site) evaluates to true. This is the case if either
needSurvey evaluates to false or Survey–Customer–Site evaluates to
true. This is a sequential subblock, and so each element in the execution list

FIGURE 5. SDL description of the Design–CPN service provided by the NDD agent.

434 N. R. Jennings et al.

is executed in strict order. The �rst element is a conditional test that deter±

mines the truth condition of the survey–reqd slot within the survey

input to this service. This information object is of type
BT–Survey–Required, de�ned as follows :

(class BT–Survey–Required)

(Types–String cr–profile)

(Types–Boolean survey–reqd))

This information object associates a string that identi�es the customer
requirements pro�le and a boolean indicating whether or not a survey is
required for this order. (Note that a single customer may place multiple
orders at the same time, and so it is essential to distinguish between them by
indicating which requirements pro�le this refers to). The survey–reqd

boolean is referred to in the service description by using the keyword
service, that indicates that this information object is an input or output
of the service being described, followed by a double colon ‘‘: :,’’ the variable
denoting the information object survey, dot ‘‘.,’’ and the slot
survey–reqd. Thus, this conditional tests the truth condition of this
boolean. If it is false, the conditional evaluates to false, the completion con±

dition of the doSurvey subblock becomes (or true

Survey–Customer–Site) (where the completion condition of
Survey–Customer–Site is unknown at this time), and hence the block
has been successfully completed. If a survey is required, the completion
statement of this subblock becomes (or false

Survey–Customer–Site), and hence the completion condition of
Survey–Customer–Site must be determined to evaluate the completion
condition of this subblock. Thus, if a survey is required, the
Survey–Customer–Site service is executed.

Assuming that there exists an agreement with an agent that is able to
provide the Survey–Customer–Site service, the agent proceeds to
execute the service. The inputs to the service are the customer details and
customer requirement pro�le that are provided as input to the Design–CPN

service, and there is a single output that is bound to the variable ‘‘z.’’ If this
service is successfully completed, its completion condition becomes true, and
hence the completion condition of the doSurvey subblock becomes true.
The execution of this service then proceeds to the task design–network.
The task prototype for this task is given below:

(task–prototype

name design–network

inputs (BT–Customer–Details customerDetails man

BT–CR–Profile analysis–details man

BT–CPE–Specification cpe opt)

outputs (BT–Network–Design design))

Implementing Business Processes Using ADEPT 435

Note that the variable z only has a value if the
Survey–Customer–Site service has been executed. This is re�ected
in the task prototype, where the third input to the task is speci�ed as
optional. The output of this task is bound to the variable
service::networkDesign ; i.e., the output of the Design–CPN service.
If both the design–network task and the doSurvey subblock are suc±

cessfully completed (i.e., both symbols design–network and doSurvey

evaluate to true), then the service Design–CPN is successfully completed, as
speci�ed in the completion condition of the service.

This example illustrates the power of the SDL. With this language, it is
possible to specify the same service in a number of ways. For example, the
Design–CPN service description could equally be expressed without the
doSurvey subblock by combining the completion condition of this sub±

block with the completion condition of the task design–network.
However, through experience, we have found that the use of subblocks gives
structure to the service description, simpli�es the completion conditions of
each block, and aids both the understanding and debugging of service
descriptions when building an application. In short, this is simply good soft±
ware design.

Information Sharing
Information that is shared by two or more agents must have a common

interpretation. However, it was seen in the previous section that agents
within the provide customer quote application do not all share a common
model of information. For example, agent CHE uses the BT information
model, and CCL uses an information model that is particular to the organiz±

ation it represents. The inputs and outputs to services are speci�ed in the
agent’s local information model within their service descriptions. Therefore,
the question that must be addressed is how agents with diŒering information
models communicate in the provisioning and execution of services. The
approach adopted in the ADEPT system is to use a common information
model in which all information is referred to and passed during interagent
communication (see Section 3.2 of the companion paper for more details).
The common information model used in this application is the BT informa±

tion model.2 To avoid confusion, information objects within a particular
information model are pre�xed by the name of that model ; e.g., information
objects in the BT information model are pre�xed with the string ‘‘BT.’’

To illustrate information sharing in ADEPT, consider the provision and
execution of a Vet–Customer service. This service is available from three
external agents : FSE, CCL, and CIC, each of which uses a diŒerent internal
model of information (since they represent three diŒerent companies). Both

436 N. R. Jennings et al.

agents CHL (customer handling in London) and CHE (customer handling in
Edinburgh) require services of this kind when providing a quote. However,
the information they require is diŒerent. Customer handling in Edinburgh
requires a BT–Customer–Credit–Verdict information object. This
associates a unique string that identi�es the customer concerned, with a
boolean that indicates whether or not the customer’s credit is good.

(class BT–Customer–Credit–Verdict

(Types–String customer–details)

(Types–Boolean customer–credit–acceptable))

Customer handling in London, requires a BT–Customer–Credit–
Rating information object. This associates a unique string that identi�es
the customer concerned, with a �oat representing the estimated credit limit
of the customer and an integer representing the con�dence of this estimate.

(class BT–Customer–Credit–Rating

(Types–String customer–details)

(Types–Float customer–credit–limit)

(Types–Integer confidence))

Furthermore, the information that is available from CHE and CHL as
input to a Vet–Customer service is the details of the customer to be
vetted; i.e., a BT–Customer–Details information object. Therefore, for
FSE, CCL, and CIC to be able to provide a Vet–Customer service to
CHE and CHL, they must make use of the information available (i.e.,
BT–Customer–Details), when they act to produce the outputs required
(i.e., BT–Customer–Credit–Verdict or BT–Customer–Credit–
Rating).

By using its acquaintance models, CHL will be able to identify that FSE,
CIC, and CCL are all able to provide the Vet–Customer service. Cus±

tomer handling in London, will then propose a service level agreement
(SLA) to each of these potential service providers (see the next section). In
addition to specifying the service’s price, time scale, etc., the SLA indicates
the inputs that may be provided and the outputs that are expected by the
client. On receipt of a proposal, it is the job of the agent to ensure that the
inputs are acceptable and the outputs may be provided as speci�ed. In this
case, both FSE and CIC are able to translate the information that is provid±

ed by its tasks (FSE–Verdict and CIC–Rating, respectively) into the
BT–Customer–Credit–Rating information object required by CHL, but
CCL cannot3 (see Figure 6). The information that is available from CCLs
tasks is CCL–Decision, which may only be translated into an instance of
BT–Customer–Credit–Verdict. Therefore, unless CHL will accept a

Implementing Business Processes Using ADEPT 437

FIGURE 6. Outputs and translations from the various Vet–Customer services.

BT–Customer–Credit–Verdict information object instead, CCL cannot
provide this service to CHL, and negotiation will terminate.

During service execution, information that is provided by the client must
be transformed into the common information model by the client, transmit±
ted to the server, and then transformed by the server into its local informa±

tion model. Information that is then to be provided to the client as output
must be transformed into the common information model by the server,
transmitted to the client, and then transformed by the client into its local
information model. In this example, the client (CHL or CHE) uses the
common information model internally, and so information translation is
performed by server agents only (FSE, CIC, or CCL). Suppose that CIC has
an agreement to provide a number of instances of a Vet–Customer service
to CHL and that CHL has invoked this agreement. The agreement speci�es
that CHL must pass CIC the information concerning the customer to be
vetted. After vetting this customer, CIC must communicate the results that
are represented by an instance of the information object class CIC–Rating,
to CHL. Customer information center has a method (a stored information
model mapping) of transforming an information object of type
CIC–Rating to the required output, BT–Customer–Credit–Rating.
This translation is performed by the communication module and the output
communicated to CHL. Suppose that FSE has an agreement with CHE for
the same service, and wishes to communicate the results of executing this
service to CHE. FSE has no direct mapping from FSE–Verdict to
BT–Customer–Credit–Verdict (see Figure 6), and so it searches for a
method of performing the required translation. In this case, a valid mapping
can be found by concatenating the mapping between FSE–Verdict and
BT–Customer–Credit–Rating, and the mapping between
BT–Customer–Credit–Rating and BT–Customer–Credit–
Verdict. These methods may then be combined to create a single direct
mapping from FSE–Verdict to BT–Customer–Credit–Verdict for
future use (see the companion article for a discussion of this matter).

438 N. R. Jennings et al.

Service Provisioning
This �rst part of this section illustrates the process of providing agents

with the necessary domain information on which to base their negotiation
behavior (the next section). It then goes on to describe the operation of the
agents’ negotiation reasoning model in two service provisioning scenarios
(the section following).

Specifying the Domain-Dependent Negotiation Information

For service provisioning, the �rst task of an ADEPT system designer is
to specify the structure of the negotiation object (i.e., de�ne the SLA
template± point ii of Section 2.4 in the companion paper). This template
should include all those issues that represent important dimensions/
attributes of a service that need to be settled during the service provisioning
phase. In general, the set of negotiation issues may vary between applica±

tions, but some attributes (e.g., price, duration, penalty, and volume) are
usually present. In the BT application, the set of issues is �xed and common
to all agreements± see Figure 7 for a list of all the attributes used in this
application. (The precise meaning of each slot is discussed in Section 3.3.2 of
the companion paper.) It is important to note that some of these issues are
quantitative in nature (e.g., price, volume) and so the negotiation space is
continuous, whereas other issues are qualitative in nature (e.g., outputs
required, mode of provision) in which case the negotiation space is discrete
(e.g., x is produced/not produced by the service, service is provisioned as
one± oŒor on± demand).

Once the negotiation issues have been identi�ed, the designer must
specify, in the agent’s self± model, the reservation values and the relative
importance (or weights) for each issue (see the companion article). Reser±

FIGURE 7. Reservation values for a Vet–Customer service negotiation : client (left) and server (right).

Implementing Business Processes Using ADEPT 439

vation values represent the limits of acceptable values for that service issue.
For example, the highest price the agent is willing to pay for a service or the
shortest duration for completing the service. The weights indicate the rela±

tive importance of each issue. For example, in some cases price might be the
dominant issue, and in others quality may be more important.

To illustrate these points, consider the negotiation between the CHL and
the CIC agents for the Vet–Customer service (Figure 7). For each quanti±
tative issue, the minimum and maximum acceptable values are speci�ed.
Thus, CHL is willing to pay between £1 and £20 for the Vet–Customer

service, while CIC will only perform the service if it receives at least £3.
Negotiations over qualitative values diŒer to the extent that there is less
scope for compromise. In fact, the qualitative issues in this application
domain have a single discrete value. Thus, the fact that the server needs the
client to provide information on customer details is not something that
CHL can negotiate over. If it is not provided, then CIC simply cannot
perform the service. The same is true if a given server can only provide
one± oŒ scheduling of services and does not support on± demand provision±

ing ; again, it is an innate property of the agent and it is not something that
can be argued over during the negotiation. Thus, negotiation over qualit±
ative issues is more a process of satisfying and delivering on constraints.

On some issues, the client and the server may have mutual interests. In
the above example, both CHL and CIC have mutual interests with respect
to the delivery type and the type of information that each agent will provide
for the service. However, for most issues, clients and servers have opposing
interests. For example, CHL would prefer CIC to start the service earlier in
the day, take a shorter time for each vetting instance, process more cus±

tomers for a lower payment, and incur a higher penalty for breaking the
contract. Therefore, in the agreement space, clients and servers represent
opposing forces on most issues and it is only through the process of negotia±

tion that mutually acceptable positions can be reached.4

The client and the server also diŒer in the importance they attach to
each of the negotiation issues. In the above example, CHL assigns the
highest importance to the volume of service invocations that can be handled
and the quality to which the vetting is carried out. CIC, on the other hand,
assigns the most importance to the price it pays for the service.

An Execution Trace of ADEPTs Negotiation Model

To illustrate the operation of ADEPTs negotiation model, this sub±

section describes two exemplar service provisioning episodes in detail (see
Section 3.3 of the companion paper for more details of the model itself). The
�rst involves the negotiation between the customer vetting agents and the
customer handling agents over the Vet–Customer service. The second
involves the negotiation between a customer handling agent and the NDD

440 N. R. Jennings et al.

FIGURE 8. Reservation values and relative importance weightings for the Vet–Customer negotiation.

agent for the Design–CPN service. The former can be characterized as com±

petitive, multilateral, interorganizational negotiation, whereas the latter is a
cooperative, bilateral, intraorganizational process. In order to focus atten±

tion on the key aspects of the reasoning model, we consider a subset of the
negotiation issues. Moreover, in the �rst scenario we concentrate on the
decisions involved in setting the logistics of negotiation and the strategy
modi�cation reasoning, while in the second scenario we focus on the tactical
and evaluatory aspects of the model.

Negotiating for the Vet–Customer Service. Assume the negotiation set
for the Vet–Customer service is composed of three issues: the price paid
per invocation, the volume of invocations between the contract’s start and
end times, and the penalty for breaking the contract. For each issue, both the
clients (CHL and CHE) and the servers (CIC, FSE, CL) have preferences
over the reservation values and have rankings of the relative importance of
the various issues (Figure 8). Compared to CHE, CHL is willing to pay
more for the service, requires a larger number of service invocations, and
demands a higher penalty for failure. CHL is indiŒerent to the importance of
the price and penalty issues, but holds the volume of the service as the most
important issue. CHE, on the other hand, is indiŒerent between the volume
and penalty of a service, but considers price to be the most important issue
in the negotiation set. The least expensive Vet–Customer service is provid±

ed by CIC that holds price as the most important negotiation issue.
However, it oŒers a lower volume of invocations than FSE and CCL and it
prefers the lowest penalty for contract violation. FSE, on the other hand,
typically requires a higher payment for the service, can provide more
instances of the service, is prepared to accept higher penalty rates, and is
indiŒerent between the negotiation issues. The largest capacity agent, CCL,
demands the highest prices for its service and is prepared to pay higher
penalties. It considers the penalty to be the least important issue and it
attaches equal weight to price and volume.

To complete the negotiation context, we need to know about the agents’
negotiation deadlines and about any previous interactions. In terms of dead±

Implementing Business Processes Using ADEPT 441

lines, CIC has a fairly short deadline, FSE, CHL, and CHE have medium
deadlines and CCL is under no signi�cant time pressure. Further assume
that CHL has had no previous interactions with the servers, but that CHE
has and that it has developed the preference ordering FSE . CCL . CIC.
Finally, assume the negotiations start at diŒerent times ; CHL �rst, followed
by CHE.

Given this context, we will now step through a sample negotiation con±

centrating predominantly on the logistics and strategy modi�cation aspects
of the reasoning model (Figure 9). Details of the reasoning associated with
generating the speci�c oŒers and in evaluating oŒers are given in the second
scenario (the next section). In this case, an agent’s strategy is represented as
a 3± tuple where represents the weight assigned to the time±[x1, x2 , x3], x1
dependent tactic, represents the weight attached to the resource±x2
dependent tactic, and represents the weight attached to thex3
behavior± dependent tactic.

CHE initiates the negotiation at by proposing the same SLA to all oft1
the servers in parallel since it has no preferences over the servers and has
enough time to negotiate (Rule 2 of Figure 11 of the companion paper).
Since all the potential servers are from a diŒerent organization and time and
resources are not yet a consideration, CHLs strategy is to base its negotia±

tion stance on the behavior of its opponent (Rule 1 of Figure 12 of the
companion paper).

FIGURE 9. Strategic changes during the course of a Vet–Customer negotiation.

442 N. R. Jennings et al.

After evaluating the proposed SLA, each potential server responds at t2 .
In this example, FSE and CIC �nd the proposed SLA unacceptable and
counter± propose an alternative. Since this is a competitive negotiation and
there are no previous interactions between the participants, each server sets
a strategy that to some degree is based on CHLs behavior (Rule 1 of Figure
12 of the companion article). CICs and to a lesser extent FSEs, strategies
place a large emphasis on the time remaining since they have a compara±

tively short time in which to make an agreement (mixture of rules 1 and 3 in
Figure 12 of the companion article). CCL rejects CHLs oŒer since it cannot
map between the output of its vetting service (CCL–Decision) and the
information required by CHL (BT–Customer–Credit–Rating) (see the
previous section).

Also assume that CHE starts its negotiation at by making an oŒer tot2
FSE as its most preferred server (Rule 1 of Figure 11 of the companion
paper). Given the previous successful interactions between this pair, CHE
adopts a strategy that places greater emphasis on the time to reach an agree±

ment than on the behavior of the opponent (i.e., the degree of trust that
exists between the agents means that CHE does not adopt a pure behavior±

based strategy (cf. CHL’s strategy for the same negotiation)).
At CHL receives back the two counter proposals and evaluates them.t3 ,

The one from CIC has the highest utility since it will have conceded the
most (it is under the most time pressure). FSE will have conceded, but not as
much. Assuming neither of these oŒers are acceptable, CHL needs to
prepare new counter proposals. Before doing this, however, it determines
whether it should modify its strategies. Since time is starting to run short, it
needs to switch its strategies from being purely behavior± based to ones that
take greater account of time (Rule 1 of Figure 13 in the companion article).
Since CIC is conceding more rapidly, CHL tries to exploit it to maximize its
gain (Rule 3 of Figure 13 of the companion article). Therefore, it places a
greater emphasis on the time remaining than it does on the behavior of the
opponent. FSE has conceded less than CIC, and so CHL attaches a greater
weight to its time dependent tactic.

Also at time FSE evaluates CHEs oŒer. It �nds the oŒer unaccept±t3 ,
able and so counterproposes. Since FSE is now engaged in multiple, concur±

rent negotiations, it selects a strategy that places a high degree of emphasis
on the amount of resources it consumes during the course of the negotiation
(variant of Rule 2 in Figure 12 of the companion article). As in its negotia±

tion with CHL, time is also an important factor, but the behavior of the
opponent is relatively less important since the agents have an ongoing
relationship.

At time the vet customer agents have received and evaluated thet4 ,
latest oŒers from CHL. Again, assuming they are unacceptable, they need to
counterpropose another alternative. CIC is now running very short of time

Implementing Business Processes Using ADEPT 443

and so modi�es its strategy so that remaining time is an even more domi±
nant factor in its decision± making (further application of Rule 1 of Figure 13
of the companion article). FSE places greater emphasis on resources con±

sumed (because of its concurrent negotiation threads), and since its conces±

sions have been mirrored in CHLs proposal it places a slightly lower relative
weighting on the behavior of its opponent.

Also at time CHE receives the proposal coming back from FSE. Thist4 ,
proposal will be fairly conciliatory in nature (because FSE does not want to
expend too much resource on the negotiation and because time is starting to
become pressing). To re�ect this cooperative stance, CHE modi�es its strat±
egy to be slightly more reciprocal and slightly less driven by the time
remaining. This has the overall eŒect of making its response conciliatory in
nature.

At time CHL receives the counterproposals from the vet customert5 ,
agents. It evaluates them and determines that it should accept the oŒer of
CIC that has again conceded to most of its demands. CHL determines that
it should not try and extract even more concessions since time is now
running short. Having accepted CICs oŒer, CHL rejects FSEs oŒer. When
FSE receives the rejection, it chooses to accept CHEs latest oŒer because it
wants to ensure its services are utilized and because the oŒer incorporates
the majority of its demands.

In summary, CHL and CIC reach an agreement because they both
concede throughout the negotiation (although CIC gives more ground).
Consequently, they quickly reach the region where their acceptance levels
intersect. On the other hand, FSEs rate of approach to the acceptance level
intersection region is slower. The CHE± FSE negotiation is short because
both agents concede quickly (due to the trust built up in their previous
interactions) and so the agreement space is entered into early on in the nego±

tiation. Finally, because CCL could not map to the information model
required by CHL and because it was not CHEs most preferred service provi±
der, it failed to secure a deal.

Negotiating for the Design–CPN Service. This scenario covers the nego±

tiation between the CHL and NDD agents for the Design–CPN service.
Here we focus on the tactical and evaluatory aspects of the negotiation
model and we assume that, once selected, strategies are not modi�ed. The
domain information about reservation values and issue importance is shown
in Figure 10. We consider two distinct negotiation situations : both agents
have a short time to reach an agreement (time for agreement is NOW) and
both agents have no signi�cant time pressure (time for agreement is HAVE±

TIME). Since the scenario involves only two agents, reasoning about the
logistics of the negotiation is trivial. As before, an agent’s strategy is rep±

resented as a 3± tuple, indicating the relative importance of the time± ,

444 N. R. Jennings et al.

FIGURE 10. Reservation values and relative importance weightings for the Design–CPN service nego-
tiation.

resource± , and behavior± dependent tactics.
Before the speci�cs of the scenarios can be discussed, a more detailed

description of the operation of the tactics needs to be given. What follows
builds upon the discussion in the companion paper and the corresponding
justi�cations for the particular formula used are given in Sierra et al. (1997).

The time± and resource± dependent tactics operate in similar ways. Ini±
tially, they put forward a value that lies somewhere within their reservation
range (see Figure 14 of the companion article for examples of the reasoning
behind the setting of these values). They then modify this value in sub±

sequent negotiation rounds depending on the amount of time or resource
remaining. This continues until either the agent has an oŒer accepted or the
time by when an agreement must be in place passes (in which case the nego±

tiation has failed). At their deadline, the agents put forward their reservation
value. More formally, in a negotiation between agents a and b over issue i
(that has a minimum value of and a maximum of for agent a), themini maxi
value (x) put forward by a at a particular instant is determined by the nego±

tiation parameter a(a Î {0,1}) in the following way.5

xa® b[i] 5 5
mini 1 ai(maxi 2 mini)

if the reservation value is the minimum of the 2 values
mini 1 (1 1 ai) É(maxi 2 mini)

if the reservation value is the maximum of the 2 values. (1)

From this, it is clear that the precise point in the range of acceptability is
determined by the value of a. For time± dependent tactics, the value of a for
agent a for a given issue i at a particular time t is computed in the following
manner:

Implementing Business Processes Using ADEPT 445

ai
a(t) 5 k i

a 1 (1 2 k i
a) 1 min(t, tmax)

tmax 2 1/b
, (2)

where tmax is agent a’s negotiation deadline, b Î R + is the decay function
for the tactic (i.e., how quickly the rate of concession changes± the higher
the value of b the more quickly the agent concedes), and is the0 , k i # 1
value of the initial oŒer for issue i.6

For resource± dependent tactics, a is based on the amount of resource
consumed or remaining in a given negotiation episode. In this case, a is
proportional to the number of agents actively involved in the negotiation at
the current moment (NA) and inversely proportional to the number of mes±

sages (NM) that have been sent in the course of the current services provi±
sioning episode. (This tactic has the eŒect of increasing the rate of concession
as the number of agents being negotiated with decreases and the number of
message interchanges increases):

ai
a(t) 5 k i

a 1 (1 2 k i
a) É e] (NA/NM). (3)

Behavior± dependent tactics diŒer from time and resource± related func±

tions in that they base their behavior on the actions of their negotiation
opponent. In this scenario, agents exactly reproduce, in percentage terms,
the behavior of their opponent one time step ago. When insufficient
exchanges have taken place to determine the way in which an opponent’s
behavior is changing, the agents adopt a time± dependent tactic that is mod±

erately conciliatory in nature(in order to maximize the likelihood of eliciting
a cooperative response(Axelrod, 1984)).

As indicated in the companion article, the values put forward for a given
SLA are a combination of the values suggested by the three tactic families
for each negotiation issue, moderated by the relative weight set by the strate±

gic reasoner.
Once the values for each of the negotiation issues have been set, the SLA

is sent as a proposal to the negotiation opponent. The SLA is evaluated
according to the following rules (found also in the companion paper).
Assume agent a is the sender and agent b is the recipient. If the current time
is greater than the deadline, then the oŒer is rejected and negotiation is
terminated. Otherwise, if the utility of the received SLA is greater than or
equal to that which b would send to a at this time, then b accepts the SLA;
otherwise, b oŒers a the SLA it generated for the comparison. Agents rate
SLAs using a linear scoring function and then combine these scores using a
weighted sum of the issues’ importance. The rating V that agent a attaches
to the value x of issue i in the SLA is computed in the following way :

446 N. R. Jennings et al.

x 2 mini

maxi 2 mini
If the value is acceptable and increasing

V i
a(x) 5 5 1 1 2

x 2 mini

maxi 2 mini
2 If the value is acceptable and decreasing (4)

2 100 If the value is unacceptable± ie maxi , x , mini .

With the relevant details in place, we can now return to the negotiation
scenarios (Figure 11). We �rst consider the case where both agents have a
short time to reach an agreement. We assume there is a universal discrete
clock, set to zero before the �rst proposal. Let the deadline to reach an
agreement be 8 time units for both agents. As CHL has only a short(tmax)
time to reach an agreement and because it is negotiating with an agent from
the same organization, it selects a strategy based solely on time remaining
for each of the three issues (Rule 3 of Figure 12 of the companion article).
Thus, its strategy can be represented as the following tactic weight vector
[[1,0,0],[1,0,0],[1,0,0,]] for the issues of price, volume, and penalty, respec±

tively. The NDD agent goes through a similar reasoning process, but since it
is the sole provider of a service it knows it can aŒord to negotiate a bit
harder (choose a behavior± dependent strategy) on those issues that it �nds
important. Thus, it adopts the following tactic weight vector [[0,0,1],[0,0,1],
[1,0,0]] for the issues of price, volume, and penalty.

Since CHL is under time pressure and since NDD belongs to the same
organization, it makes low initial oŒers on all issues (opposite of reasoning
of Rule 1 in Figure 14 of the companion article). In this case, ‘‘low’’ corre±

sponds to 50 percent of the diŒerence between the minimum and the
maximum of the issues’ reservation values (i.e., k is 0.5 for all issues). Also it
sets a comparatively high concession rate for its time± dependent tactics
(b 5 5) since it needs to reach an agreement quickly. The utility of this
oŒer to CHL is 0.5 (from equation 4 : [0.5*1 2 (15 2 10)/
(20 2 10)] 1 [0.25*(4.5 2 2)/(7 2 2)] 1 [0.25*(3.5 2 2)/(5 2 2)]).

On receiving this oŒer, NDD performs two concurrent operations. It
evaluates the incoming SLA that has a utility of 2 100 (using equation 4). It
also computes the oŒer it would have sent to CHL based on its current
strategy. In this case, NDDs initial stance is tougher than that of CHL, and
it selects 20 percent of the diŒerence between the minimum and maximum of
the reservation values for issues of price and volume (that it considers to be
more important) and 50 percent for penalty (that is less important). Thus, its
initial oŒer is [27.6, 1.4, 2.49]. These values were computed in the following
way. The time± dependent tactics suggest a relatively large concession over
penalty in equation 2 : t 5 1, b 5 5, k 5 0.5). From(apenalty 5 0.83 ; tmax 5 8,
equation 1, the value oŒered for penalty is 0.83, (3 2 0) 5 2.49. The

Implementing Business Processes Using ADEPT 447

FIGURE 11. Exemplar Design–CPN service negotiations where time is short (left) and time is plentiful
(right).

448 N. R. Jennings et al.

behavior± dependent tactics concede comparatively less on price and volume
(a concession is made since the behavior± dependent tactics require at least
two oŒers to be made before they can operate, and in the meantime they
concede a moderate amount± see above discussion). The utility of this initial
proposal is 0.67 (from equation 4 : [0.4*(27.6 2 18)/(30 2 18)] 1
[0.4*(1 2 (1.4 2 1)/(3 2 1)] 1 [0.2*(1 2 (2.49 2 0)/(3 2 0)]), which is greater
than 2 100 and so NDD sends [27.6, 1.4, 2.49] to CHL as its counter±

proposal.
Upon receipt of this counterproposal, CHL computes its utility to be

2 74.95 (from equation 4). The value is negative since only the penalty issue
is within CHLs range of reservation values. At the same time, CHL com±

putes the counter oŒer it would send at this time. The value for is 0.88aprice
(in equation 2 : t 5 2, b 5 5, k 5 0.5), which means the oŒer sug±tmax 5 8,
gested by the time± dependent tactics is 18.78 (from equation 1). Since the
time± dependent tactics compute a independently of the issue aprice 5

Combining the values suggested by the diŒerent tactics, theavolume 5 apenalty .
comparison oŒer is [18.78, 2.6, 2.36]. The proposal has a utility of 0.12 (from
equation 4), which is greater than 2 74.95 and so it is sent as a counter
oŒer.

CHL’s new oŒer is now within NDDs, acceptable region on all issues
(utility is no longer negative). However, the oŒer NDD would have sent at
this time is [22.03, 2.42, 2.73] (calculations are as before). Note that in gener±

ating this oŒer the behavior± dependent tactics reciprocate CHLs concession
over price and volume (e.g., over price CHL has conceded by 25.2%, and so
NDD comes down by the same amount to 22.03). The utility of the proposal
NDD would have sent is 0.268, which is greater than 0.147 and so NDD
sends it.

The process of evaluation and counterproposal generation continues
until one of the agents receives a bid that has a higher utility than the oŒer it
was preparing to send. In this scenario, this happens at T 5 6 for NDD.
This service provisioning episode reaches a successful conclusion, because
CHL uses time± dependent tactics that give ground rapidly because of the
short time available in which to make an agreement. Moreover, CHLs con±

cessions are reciprocated by NDD since it uses behavior± dependent tactics
for the issues of price and volume. When taken together, these factors mean
that the region of agreement is entered into quickly. The �nal point to note
is that although the rate of concession of the two agents is almost identical,
the end points of the utility functions for the two agents are diŒerent (0.065
vs. 0.18). This is because NDD took a tougher negotiation stance by making
lower initial oŒers.

In the second service provisioning episode, the two agents are not under
such severe time pressure. Again, we assume that there is a universal discrete
clock, set to zero before the �rst proposal. Let the deadline to reach an

Implementing Business Processes Using ADEPT 449

agreement be 15 time units for both agents. Under these circumstances,(tmax)
the time± dependent tactic’s rate of concession is slower than the previous
scenario (since the interval to tmax is higher). Resource± and behavior±

dependent tactics behave as before since the former models concessions
according to the number of agents and the length of the negotiation thread
and the latter is independent of the time remaining.

All the domain information (reservation values and weights) is similar to
the previous scenario. The �rst diŒerence is in the strategies that the agents
select. For CHL, although it has plenty of time for negotiation, it still needs
to conserve its resources, since it is likely to be involved in several concur±

rent negotiations. In addition to this, since it is negotiating with an agent
that belongs to the same organization, it should endeavour to reciprocate
any concessions made by the other party. These two factors are of equal
importance and are used by CHL to set [0,0.5,0.5], [0,0.5,0.5], [0,0.5,0.5] as
its strategy for the issues of price, volume, and penalty (see Rule 4 of Figure
12 of the companion article). NDD, on the other hand, can aŒord to adopt a
tougher negotiation stance (for the same reason as above) and so it places
some weight on the time± dependent tactics (that give slow concession rates
when there is plenty of time until the deadline). It must also take resources
into consideration because it will be involved in multiple, concurrent nego±

tiations. Finally, for similar reasons to CHL, NDD should reciprocate con±

cessions at least to some degree. For these reasons, NDD adopts the
following weight vectors for the three tactics ([0.1,0.6,0.3],
[0.1,0.6,0.3], [0.1,0.6,0.3]) for issues price, volume, and penalty (a variant of
Rule 4 in Figure 12 of the companion article). We again assume that stra±

tegies are static.
Negotiation is again initiated by CHL. Since there is a reasonable

amount of time to negotiate, let the strategy of both agents be to set their
initial oŒers to the 10 percentile of the diŒerences in an issue’s reservation
values for all issues (see Rules 1 and 2 in Figure 14 of the companion article).
The rationale for this is if the initial oŒer is further away from reservation
value, then it is more likely that the �nal oŒer will yield a larger utility (and
the fact that the negotiation may take longer is not a major concern).
(Faratin et al., 1998).

Upon receipt of this oŒer, NDD evaluates it and �nds it to be unaccept±
able since none of the values are within its reservation range. As before, it
generates a counterproposal by the same means as in the previous scenario.
The weighted combination of tactics suggest 26.4 units for the price of the
service. This value is computed in the following way. The time± dependent
tactics compute the value of to be 0.1 (from equation 2 :aprice tmax 5 15,
t 5 1, b 5 0.4, k 5 0.1). Therefore, the suggested oŒer by this tactic family is
28.8 (from equation 1). Resource± dependent tactics compute the value of

to be 0.43 (from equation 3 : k 5 0.1, NA 5 1, NM 5 1). From equa±aprice

450 N. R. Jennings et al.

tion 1, the resource± dependent tactics suggest 25.6 for price. Finally, since
CHL has not made at least two oŒers to NDD, the behavior± dependent
tactics concede a small amount (to 28.2) by playing a time± dependent tactic
with a value for b that gives away a small amount of utility. These three
values are then linearly combined according to the weights that the strategy
has selected (namely, [0.1,0.6,0.3]). Hence, the actual value NDD utters to
CHL over price is 26.4 ([28.8*0.1] 1 [25.6*0.6] 1 [28.2*0.3]). Similar
reasoning generates the other values for volume and penalty.

The process of evaluation and counterproposing continues in this
fashion until there is a crossover in the acceptance levels for all of the issues
(time T 5 12 for the NDD agent). It can be seen that oŒers begin to become
mutually acceptable after eight time steps (cf. sixth time step in the previous
scenario). In addition to this, CHLs rate of concession for all issues becomes
progressively less as time passes. This is due to two factors. First, CHL is
reaching its reservation values for all issues because the resource± dependent
tactics (with a weighting of 0.5 for all issues) suggest values close to reser±

vation values as the length of the negotiation thread increases. Second, the
other, and equally weighted component of the CHLs oŒers, are the
behavior± dependent tactics. Since NDD is conceding less (compare oŒered
utilities in T 5 9 column and T 5 11 column), these tactics imitate this
resistance to concession by the opponent on all issues and suggest oŒers
close to, or at, the values of CHLs previous oŒer. Therefore, the dynamics of
CHLs oŒers are the resultant forces of these two tactics± resource tactics
suggest concession and behavior± tactics suggest �rmness in the light of
NDDs reluctance to concede.

Service Management
During negotiation, it is important that an agent possesses the latest

information about its planned resource usage so as not to overcommit the
business unit it represents. ADEPT agents maintain a resource model and a
schedule of resource commitments that enables them to determine whether
they can support an SLA. In the vet customer negotiation, for instance, the
CIC agent needs to consider whether it has sufficient instances of the

task (see �gure 2) to provide the Vet–Customer servicevet–customer3
under negotiation (i.e. if it has enough resources to complete the agreement).
By evaluating the availability of its resources over the period of time under
negotiation, the CIC agent can deduce whether it will be able to ful�l the
agreement. If there are insufficient resources, the CIC agent may reject the
proposal or counter± propose an alternative time period for completing the
service. The resource model itself is dynamic. Resources can register and
de± register their availabilit y with their controlling agent. For example, if a

Implementing Business Processes Using ADEPT 451

person in the Vet–Customer team is oŒsick, their resource information is
de± registered (temporarily lowering CIC’s capacity) and then re± registered
when they return to work.

ADEPT agents diŒerentiate between those SLAs that cover one± oŒser±

vices and those that cover on± demand services. One± oŒ services can be
scheduled accurately by reserving the appropriate resource for the agreed
period stated in the SLA. For example, after an Analyse–CPN negotiation
is completed, NDD is able to schedule one invocation of the
analyse–requirements task over the time period de�ned within the
negotiation. On± demand services, on the other hand, require the block
booking of resources to cover multiple invocations over a certain period. In
this case, an estimation of the volume of expected executions is required (this
comes from the volume slot in the SLA± see Figure 7). The ADEPT agent
then sets aside an appropriate number of resources (task instances) for a
particular period of time. The quantity and duration of these reservations
are in�uenced by the agent’s self± knowledge about the maximum number of
concurrent invocations and the average time a service takes to run. When an
on± demand service is actually invoked, the agent simply uses part of the
associated block booking it has already set up. Consider, for instance, the
case of CIC forming an agreement with CHL for the Vet–Customer

service. If CHL negotiates well, it may end up with an SLA that has a
volume of 40 invocations between 8 :30 and 18 :00 (CICs greatest capacity±

Figure 7). In this case, CIC needs to reserve sufficient instances of the
task to ful�l this responsibility.vet–customer3

The resource management function that is presently performed by the
ADEPT agent could be outsourced to an existing legacy resource manage±

ment system (as discussed in the section entitled Mapping the Business
Process into Agents and Agencies). In this situation, the existing system
would schedule and allocate work and provide resource utilization informa±

tion to the agent during negotiation. This approach might be necessary
where resources need to be optimized across a business unit, or where there
is a heavy reliance on a legacy system, or even where complex estimation
calculations are required that would be better sited outside the agency.

The other main service management functionality relates to handling
exceptions. Here there are four classes of exception that can occur during
the service management phase:

1. Communication failure : Information sent between agents becomes cor±

rupted. For example, the message informing CHL of the result of CICs
vetting may become corrupted. This would be detected by CHLs commu±

nication module that would automatically inform CIC of the problem.
On receiving this message, CICs communication module would simply
resend the message.

452 N. R. Jennings et al.

2. Functional failure : When a single invocation of a task fails. For instance,
an error is made by a resource. Although the resourcevet–customer3
is still registered, the vetting of the customer needs to be re± evaluated.
This is undertaken by CIC selecting another free, and functionally equiv±

alent resource (task), and invoking it with the original information.
3. Resource failure : A problem occurs with a domain problem± solving

resource. For example, one of NDDs network designers becomes unavail±
able and so NDDs ability to complete the Design–CPN service is
reduced. In this case, the agent tries to reschedule the tasks that were
assigned to that resource (designer) without violating any of the existing
SLAs.

4. Service exception : An agreed SLA is in danger of being violated. Contin±

uing the above example, because of the absence of the designer, the NDD
agent may be unable to ful�l all its obligations on time (it simply lacks
the manpower). In this case, NDD will attempt to proactively renegotiate
the SLA (perhaps accepting a penalty) before the violation actually
occurs. Only if this renegotiation fails with a service exception be issues.

It can be seen that the agent attempts to handle these exceptions at various
levels. The least serious ones are dealt with locally by repeating or reassign±

ing tasks, the medium ones by rescheduling tasks, and the most serious ones
by social interactions.

INTERFACE DESIGN ISSUES
Agent± based systems with their emphasis on autonomy, proactiveness,

and reactivity oŒer a level of �exibility and parallelism not usually seen in
complex system developments. In the provide customer quote application,
for instance, many of the sequential dependencies that abound in conven±

tional systems were removed. Thus users could instruct subsystems to carry
out tasks that are not possible at the instant of invocation, but, later, when
conditions change, these subsystems can automatically react and commence
the previously requested task. This means, for example, that at the com±

mencement of the provide quote business process, the customer handling
agent can request customer vetting while simultaneously dealing with the
task of gathering the customer’s initial requirements. The vetting process
might involve the vetting agent accessing multiple, external databases and
interpreting their results. This process will invariably involve a degree of
latency. However, in the agent metaphor, the activity is left to the agent
responsible. When the task has been completed, it reports back the results.
This pattern can be observed throughout the provide quote application.

While this degree of �exibility and parallelism enables powerful systems
to be constructed, it raises a number of new issues and challenges for the

Implementing Business Processes Using ADEPT 453

design of the human computer interface (Norman, 1994). In this section, we
identify and discuss these issues and then present the solutions devised for
this application. Note, however, that although these issues arose out of this
speci�c application, we believe they are relevant for the design of the human
computer interface in most agent± based systems.

When designing and building the provide customer quote interface, four
basic problems were identi�ed (Lunnon & Alty, 1997):

users cannot determine why a particular set of actions hasd Impenetrability :
happened (or has not happened). Many of the system’s actions are hidden
inside the interagent negotiation process.

Handling Difficulties : users are not familiar with the sources of thed Data
data, its reliability, and its accuracy. Problems are also caused by the
sheer volume of the data involved.

Complexity : the autonomous operation of agents, the complexityd Process
and speed of the negotiation process, and the distribution of problem±

solving across the system all combine to form a complex environment that
even the system designers have difficulty in following.

it is difficult for a user (or a designer) to know that thed Accountability :
system has performed as expected and yet there is a requirement that the
system can be audited and monitored.

The causes of these basic problems vary between applications. However,
in this case, they are as follows. Impenetrability is caused by a lack of appro±

priate feedback at an appropriate level (and this level will depend upon the
type of user and the nature of the task being carried out). However, too
much feedback can be as perplexing as too little feedback. Data± handling
problems occur because the sources of the data may be unknown or unfa±

miliar at the outset of the service. Agents may search the organization for
appropriate sources of data and supply too much or too little, or data of the
wrong type. The complexity problem is related to the combinatorial explo±

sion that arises out of the interactions between a set of autonomous
problem± solving entities. There are a huge number of possible problem/
solution paths that can be followed, so some form of abstraction is clearly
necessarly to tackle the complexity? The accountability issue is an impor±

tant one. How can users or designers obtain an account of what the system
has done and why? Who should be blamed if the system delivers an inap±

propriate or inefficient solution? How can such problems be corrected? The
accountability problem resonates with similar problems that came to light
early on in the development of expert systems± who is responsible for a
faulty diagnosis?

Each of the aforementioned problems manifest themselves in diŒerent
ways and to diŒerent degrees to the diŒerent types of user in the system. In

454 N. R. Jennings et al.

this application, however, there was particular concern about impenetra±

bility, complexity, and accountability, though problems associated with data
volumes sometimes occurred when the system was fully loaded. Since the
type of user is important, we divide the subsequent discussion into the three
classes of users found in this application: end application users : individuals
who perform problem± solving tasks in the business process (e.g., input clerks,
design engineers, etc.); system designers : programmers and analysts who
write and maintain the ADEPT system; and business process managers : who
are responsible for monitoring and managing the end± to± end business
process. For each type of user, the most pressing issues are discussed with
respect to interface design. The section on tackling the Usability Problems
then describes the philosophy of the ADEPT approach to tackling these
issues for agent± based systems in general. The �nal section describes how
these issues were addressed within the provide customer quote application.

Usability Problems for the End Users
The users of the provide customer quote application form a spectrum

ranging from input clerks and secretaries to engineers, lawyers, and senior
managers. They certainly have one thing in common± a lack of, and a disin±

terest in, computing knowledge for its own sake. Some will almost certainly
exhibit computer phobia. At one time, it was common to talk of computer
application users as being ‘‘naive.’’ Other classi�cation systems talked of
them being ‘‘beginners’’ or ‘‘experts’’ (Fisher, 1991 ; Ryan, 1992). However,
this can be misleading and trivial. All computer users are usually experts in
the area of their professional competence, and they expect others, with diŒer±

ent expertise, to converse in a manner that will convey the required informa±

tion without resorting to unnecessary technical knowledge or jargon. A BT
lawyer frequently has to converse with a BT engineer, but neither expect to
require special support to achieve this. Of course, they may have to explain
certain situations and procedures to the other party and check for agree±

ment, but the interaction is usually achieved through mutual support. Com±

puter applications (and agents) should operate in a similar way so that the
professional user can get on with their task without having to carry out
additional, and usually irrelevant tasks, because of a poor user interface.
Here the key point is to provide feedback at the right level and at the right
time.

The second major problem experienced by this class of user relates to
tracking the status of problem± solving tasks in a decentralized organization.
Users want answers to questions such as : which agent is dealing with my
problem? who had it last? why is this issue currently on hold in the legal
department? what are network design teams waiting for? and why has it not
progressed? These problems are not new and are often experienced in

Implementing Business Processes Using ADEPT 455

manual systems as well. Indeed, in a manual system, there is eventually
someone who can track down what has happened and take corrective
action, and we needed the equivalent in our automated application.

The �nal problem for this class of user relates to determining the degree
of autonomy exhibited by the agents. Professional users, like network
designers and lawyers, often wish to in�uence certain aspects of the system’s
operation : do not do that now, give more priority to this, prod the customer
handling department to speed things up, etc. These wishes need to be re�ec±

ted in the interface presented to users, if they are to be happy about their
roles in the business process relative to those of the agents. It must be made
clear that the agents are the servants of the human users, not the other way
round. Achieving this requires a clear de�nition of the limits of responsibility
and delegation between agents and users. When human beings act as agents
to other human beings, they only do so within well± de�ned limits. There is
an ‘‘accepted,’’ if sometimes implicit, contract between the person providing
the service and the agent servicing the request. This contract de�nes the
limits of delegation. This ‘‘service contract’’ has certain similarities with the
service level agreements outlined earlier, but it is a contract between a
human user and a machine± based agent. Such service contracts are required
at the interface between humans and the system particularly where the
service is not well± de�ned. For a more extensive discussion of this issue, see
Alty (1987).

A general point underlying all of these usability issues relates to the
domain language used by the agents to interact with their users. In all cases,
users want to know the answers to their questions in the domain language
that they are used to. For example, a lawyer will not wish to know which
software agent is in control, rather, what is the state of the negotiation? or
what is holding up the resolution of the problem? The implications for
systems design are far± reaching. It means that diŒerent levels of abstraction
will need to be held simultaneously, and updated, connecting the operations
of the low level agents with the higher level views.

Usability Problems for the Designers
Distributed systems that have a high degree of autonomy and proacti±

vity are among the most difficult to test and debug (Gasser et al., 1987). The
problems are, of course, very similar to those described above for the
system’s end users, only they are at a diŒerent abstraction level, being con±

cerned with technical detail rather than business detail. To this end, the type
of services that designers require during the system development phase were:

what± if facility to allow exploration of alternatives in agent activity (e.g.,d a
what happens if we change the SLA between the CHL and CIC agents for

456 N. R. Jennings et al.

the Vet–Customer service?);
what± happened facility at a detail level (e.g., why was thed a

BT–Customer–Credit–Rating so low for this customer? Which
vetting process was used?);

facility to ‘‘sit in’’ on a particular agent and direct its negotiation strat±d a
egy (e.g., actually take the place of the agent by constructing message
replies during negotiation with other agents);

of errors from agent interactions (e.g., by ‘‘sitting in’’ on and identi�cation
agent negotiation process and watching the progress of a suspect
negotiation);

of possible inconsistencies arising from agent actions, both fromd analyses
the design and from the actual execution (this requires some form of
formal analysis technique, perhaps by labelling paths and then using alge±

braic techniques on path combinations).

Usability Problems for Business Process Managers
Finally, we observed that there are also difficult problems for those who

managed and monitored the overall system operation. How do managers
optimize the operation of such systems? That is, how do they identify and
remove bottlenecks, identify redundant procedures and eliminate inefficient
solutions? How can the system support them in these actions? How is
accountability in the legal or �nancial sense dealt with? This ‘‘management’’
accountability problem requires specialized knowledge as previously
described for the two user groups above, but this knowledge will be more
statistical and historical in nature, since the prime objective is to compare
previous system interactions and timings with current activity.

Tackling the Usability Problems: Adding Self-Knowledge to Agent
Systems

We tackled the aforementioned usability problems by adding additional
capabilities to the agents so that they had self± knowledge about their oper±

ations. With such knowledge, the system is able to reason about its past,
current and future actions, becoming more accountable to all classes of user.
Examples of the types of self± knowledge we added relate to : knowledge of
the system’s current state, how it was reached, why it arrived there, and
where it might go next. This knowledge can then be interrogated by the user
(of whatever level) in order to satisfy queries and concerns. Since the diŒer±

ent classes of users have diŒerent levels of expertise and diŒerent knowledge
requirements, we had to store the knowledge at diŒerent levels and provide

Implementing Business Processes Using ADEPT 457

a diŒerent emphasis for the diŒerent users. Thus, we store additional know±

ledge about the agent activity at diŒerent levels. An example of self±
knowledge at a high level of abstraction is the business processing �ow
diagram (similar to that shown in Figure 1). Without a correspondence
between low level agent activity and this high level processing diagram, the
user cannot be advised in business terms.

One problem that taxed us was how to ensure that the user could under±

stand the agents’ self± knowledge. The key to this is presenting it in the most
appropriate form. This is a separate problem from deciding the most appro±

priate level of abstraction, though, of course, there is a connection. One clue
as to how to approach this problem came from work done in trying to
validate rule± based expert systems. In 1988, the European Space Agency was
concerned about developing on± board, rule± based expert systems in satel±
lites. One approach that proved promising was a combination of qualitative
modelling of the operation of the satellite, a rule induction approach used to
derive a set of expert system rules, and a visual model of the system that
could be observed by the engineers (Alty & Pearce, 1992 ; Pearce, 1988).
What turned out to be important was the visualization of the qualitative
model, and the ability to exercise the model under diŒerent conditions. By
watching visual presentations of the execution of the model (actually driven
from the basic model components), they were able to con�rm the validity of
the models and understand the consequences of errors.

There is a similarity here because an agent system can be interpreted
from both qualitative and quantitative points of view, the former is more
appropriate for end users and the latter more appropriate for designers.
Thus, by setting up diŒerent visualizations of the operation of the model
(both qualitative and quantitative), we can present the self± knowledge of the
system in representations that can be understood at multiple diŒerent levels.
Out of this idea arose the key concept of the agent visualizer that was used
to solve the problem of communicating the self± knowledge at the right level
of abstraction.

The ADEPTVisualizer
The visualizer is essentially another agent in the system that negotiates

with the application’s main problem solving agents before operations com±

mence, sets up information collection agreements (that can be thought of as
SLAs), and then communicates with users during the operation of the
system, visually presenting the supplied information in a variety of forms on
request. It also records all the interactions so that they may be played back
separately at a later time. In the current ADEPT implementation, a user can
see two basic views:

F
IG

U
R

E
12

.
V

is
ua

lis
er

Ïs
B

us
in

es
s

P
ro

ce
ss

V
ie

w
.

Implementing Business Processes Using ADEPT 459

agent view (service provisioning and service management activities),d the
business process view (the state of the system in high level businessd the

terms).
Both views are driven from the same basic execution information. They

show the current state in diagrammatic form and messages from active
agents alter the state of the diagram. For end users (lawyers, network
designers, etc.), a �gurative view of the whole business process is presented
and progress is marked by color changes (Figure 12). For agent designers,
actual agents are shown with the content of the messages passing between
them (Figure 13).

In both �gures there are a number of common items. At the top left of
the screen are three control menus for selecting various strands of informa±

tion (a strand being a negotiation for a service, a service execution, or a
business process). For a given strand, the viewer can select a thread (a par±

ticular business process diagram), the subthread (e.g., Capture–
Customer–Details) and the message content. Below this is an expansion
panel that shows the content of each message. Then there is an expansion of
a particular message and below this the current SLA of interest. Control
buttons at the base of the screen allow the viewer to navigate, follow
progress, or look at previously stored sequences. The right of the screen
diŒers for the two views. In the agent view, there is an agent window and a
negotiation window. When interagent negotiation takes place, arrows
appear between the relevant agents and the label on the arrow contains the
actual message (as can be seen in the �gure). Double clicking on an agent
allows the viewer to send instructions to agents as to what messages to relay
to the visualizer. Even agents that have not been requested to send any
messages, send skeletal messages to the visualizer so that it knows all the
executions that have started. In the business process view, the top half of the
screen shows a diagrammatic view of the whole business process. This is
updated from agent activity and diŒerent colors indicate the diŒerent pos±

sible states of the processes (�ashing green indicates active, red completed,
etc.). Clicking on a process reveals a further breakdown into the �ow
diagram for this service. The lower half of the business view shows the
agents that are executing in relation to a chosen process.

Although it has not been possible to carry out detailed experiments to
precisely quantify the visualizer’s bene�ts (such experimentation is very diffi±
cult to successfully carry out), we have observed designers endeavouring to
debug agent problems. This observation (and subsequent comments from
designers) lead us to conclude that visualization is an essential tool for high
productivity. Moreover, it is our expectation that as the complexity of the
system grows, so the importance of visualization will increase (probably
super linearly !).

F
IG

U
R

E
13

.
V

is
ua

lis
er

Ïs
A

ge
nt

D
es

ig
ne

r
V

ie
w

.

Implementing Business Processes Using ADEPT 461

In conclusion, the visualizer has helped users in the following ways :

business level representation has enabled end users to locate what isd The
going on and to understand how the current situation was reached.

detailed agent negotiation level has enabled designers to watch thed The
negotiation process and has assisted with debugging. The eŒect of SLAs
has also been observed.

the current visualization representation for managers is not fullyd Although
implemented, areas of slow activity and bottlenecks can be observed and
monitored.

CONCLUSIONS
This article has shown how ADEPT can be used as a solution tech±

nology for a real± world business process management application. We have
illustrated how the conceptual framework described in the technology com±

panion paper can be used in practice. In fact, a modi�ed version of this
application technology is planned for �eld trials within BT in the coming
year. This experience has led to a number of important insights on agent±
based business process management in particular and practical applications
of multiagent systems in general.

In terms of agent± based business process management, the ADEPT
approach enabled us to develop a robust and �exible system that could not
have been built using extant work�ow technology.7 Features not supported
by traditional systems include: managing business process enactment in an
environment in which the resources �uctuate at run± time, handling excep±

tions in a context± dependent manner, provisioning problem± solving
resources according to prevailing circumstances, and allowing loose coup±

ling between interorganizational business activities. Moreover, the agent±
based approach enables diŒerent parts of the organization (and indeed
diŒerent organizations) to retain their autonomy of information and control.
This is an essential feature for any technology that is to become widely
accepted and used in this domain. To develop a system with these character±

istics a number of important components needed to be put in place. These
include a �exible and high level means of specifying services that gives the
agents sufficient freedom to take alternative paths at run± time, a fast and
efficient means of sharing information between agents with diŒerent data
models, negotiation strategies and tactics that can be tailored to the provi±
sioning task at hand, and �exible mechanisms for scheduling and res±

cheduling problem± solving resources. The main drawback of the ADEPT

462 N. R. Jennings et al.

solution is that it can be more difficult for the business process manager to
track and monitor the end to end process (since it is now a highly decentral±
ized and concurrent system). To alleviate this problem, considerable empha±

sis was placed on developing a powerful suite of visualization tools that
enabled users to view the system from many diŒerent perspectives and at
many diŒerent levels of abstraction.

The work also highlighted a number of broad issues that are relevant for
the development of industrial strength multiagent systems in general. The
�rst relates to the importance of a multiview suite of visualization tools. If
end± users and developers are to understand the operation of a complex
multiagent system, then it is essential that a range of powerful visualization
tools are available. Here, we highlighted a number of views that we feel are
essential to this endeavour. Second, efficient development of industrial
strength systems requires a number of high level facilities and structures to
be available for building both the microlevel aspects of the system (i.e., the
individual agents) and the macro± level aspects (i.e., the interaction structures
and reasoning models). Such facilities are needed because it is believed that
most applications will be composed of heterogeneous agents that are
required to exhibit a range of problem± solving characteristics. Given this, the
most eŒective way of building such varied agents is to have high level con±

�gurable components. Finally, heterogeneous information models must be
treated as a given (even when developing a multiagent system for a single
organization). This means the information sharing infrastructure must be an
integral part of the system, not something that is bolted on later.

For the future, there are a number of lines of research and development
that are being pursued. On the application side, the ADEPT concepts and
software are being applied to a number of new business process manage±

ment applications both within BT and within other large organizations. On
the technology side, a number of open research issues still remain. First,
more elaborate forms of visualization are being experimented with in order
to complement the techniques developed thus far. These techniques include
auralization and virtual reality. Second, a more systematic evaluation of the
behavior of the negotiation capabilities is being undertaken. In the provide
customer quote application, a signi�cant amount of �ne tuning of the nego±

tiation strategies and tactics was required to obtain the desired performance
characteristics. We wish to place this eŒort on a sounder footing and to
formally show properties about the convergence (or not) of the various types
of negotiation. Finally, this work has highlighted the clear need for a system±

atic methodology for analyzing and designing multiagent systems. The
present system was designed based on intuition, past experience and, to a
certain extent, trial and error. This is not sustainable for future develop±

ments and so work on multiagent system methodologies is urgently needed.

Implementing Business Processes Using ADEPT 463

NOTES
1. Indeed subsequent work has expanded upon this idea to produce a methodology for designing and

building agent-oriented software (Wooldridge et al., 1999).
2. Note this model is also used as an internal information model by several of the agents.
3. The ability to translate either means that a stored information model mapping exists or that the

search engine is able to Ðnd an appropriate ontology description (Figure 6 of the companion article).
If neither of these options are available, then the agents will not be able to attain sufficient common-
ality to interact purposefully.

4. There must be an overlap in the reservation values for each issue for an agreement to be possible.
However, since the reservation values are private to the agents, this information may only emerge
during the negotiation process.

5. By means of illustration, consider the negotiation over price. For CHL, is 10 and isminprice maxprice
20 and the reservation value is the maximum of the two values. Whereas for NDD, is 18 andminprice

is 30, and the reservation values is the minimum of the two values.maxprice
6. Thus, for example, if CHL makes an initial o†er of 15 for price, is 0.5.k price
7. Ideally, the beneÐts of the ADEPT approach would be shown quantitatively by comparing our

system with a similar one developed using conventional techniques. However, with organization-wide
systems, such as ADEPT, such experimentation is extremely difficult because of the sheer scale of the
system (it is estimated that a realistic comparator would take several person years to develop). Given
this fact, the argumentation for ADEPT is more qualitative in nature.

REFERENCES
Alty, J. L. 1997. Interface agents and dynamic processes, In : Proc. 16th European Annual Conf. on Human

Decision Making and Manual Control, ed. G. Johannsen, Kassel, Germany, 197È200.
Alty, J. L. and D. A. Pearce. 1992. ArtiÐcial intelligence and fault diagnosis : An approach to the vali-

dation problem. In Proc. Int. Conf on the Applications of ArtiÐcial Intelligence to Industry, Lenin-
grad, Soviet Union, 121È129.

Axelrod, R. 1984. T he Evolution of Cooperation. Basic Books, New York.
Bradley, M. 1994. Starting TQM from ISO 9000. T QM Magazine 6(1) :50È54.
Bulled, J. 1996. ISO 9000ÈA Route to Total Quality. In Proc. 1st Int. Conf. on ISO 9000 and T QM.
Faratin, P., C. Sierra, and N. R. Jennings. 1998. Negotiation decision functions for autonomous agents.

Int. Journal of Robotics and Autonomous Systems 24(3È4) :159È182.
Fisher, J. 1991. DeÐning the novice user. J. Behaviour and Information T echnology 10(5) :437È441.
Gasser, L., C. Braganza, and N. Herman. 1987. MACE: A Ñexible testbed for distributed AI research. In

Distributed AI, ed. M. N. Huhns. Morgan Kaufmann, Los Altos.
Lunnon, M., and J. L. Alty. 1997. Visualization of intelligent agents. In Proc. 3rd IL OG Int. Users Mtg.,

Paris, France, 34È42.
Norman, D. A. 1994. How people might interact with agents. Comms. of the ACM 37(7) :68È71.
Pearce, D. 1988. The Induction of Fault Diagnosis Systems for Qualitative Models. In Proc. 7th National

Conf. Of ArtiÐcial Intelligence (AAAI-88), St. Paul, Minnesota, 353È357.
Ryan, C. 1992. Usefulness of on-line help to novice users in supportive learning environments. In Proc.

CHISIG Ann. Conf. on HCI Education, 166È173.
Sierra, C., P. Faratin, and N. R. Jennings. 1997. A service-oriented negotiation model between auton-

omous agents. In Proc. 8th European W orkshop on Modeling Autonomous Agents in a Multi-Agent
W orld, Ronneby, Sweden, 17È35.

Sommerville, I. 1992. Software Engineering. AddisonÈWesley, Harlow, England.
Wooldridge, M., N. R. Jennings, and D. Kinny. 1999. A methodology for agent-oriented analysis and

design. In Proc. 3rd Int Conference on Autonomous Agents (Agents-99), Seattle, WA.

