
Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems

Franco Zambonelli� Nicholas R. Jennings� Michael Wooldridge�

� Dipartimento di Scienze dell’Ingegneria
Università di Modena e Reggio Emilia
Via Campi 213-b – 41100 Modena, Italy
franco.zambonelli@unimo.it

� Department of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, United Kingdom
nrj@ecs.soton.ac.uk

� Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom
M.J.Wooldridge@csc.liv.ac.uk

Abstract. The architecture of a multi-agent system can naturally be viewed as
a computational organisation. For this reason, we believe organisational abstrac-
tions should play a central role in the analysis and design of such systems. To this
end, the concepts of agent roles and role models are increasingly being used to
specify and design multi-agent systems. However, this is not the full picture. In
this paper we introduce three additional organisational concepts — organisational
rules, organisational structures, and organisational patterns — that we believe are
necessary for the complete specification of computational organisations. We view
the introduction of these concepts as a step towards a comprehensive methodol-
ogy for agent-oriented systems.

1 Introduction

Autonomous agents and multi-agent systems (MASs) are rapidly emerging as a power-
ful paradigm for designing and developing complex software systems. However, as is
the case with any new software engineering paradigm, the successful and widespread
deployment of MASs requires not only new models and technologies, but also new
methodologies to support developers engineer such systems in a robust, reliable, and
repeatable fashion. In the last few years, there have been several attempts to develop
such methodologies. However, most of this work is either tuned to specific systems and
agent architectures [9, 4] — thus it lacks generality — or it is defined as an extension
of existing object-oriented methodologies [14] — thus it exploits abstractions that are
unsuitable for modelling agent-based systems.

Against this background, only a few proposals exist that attempt to define complete
and general methodologies, specifically tailored to the analysis and design of MASs.
One such methodology is Gaia [32]. Gaia views the process of analysing and designing
multi-agent systems as one of constructing computational organisations. Thus, multi-
agent systems are viewed as being composed of a multitude of autonomous interacting



entities (an organised society of individuals) in which each agent plays one (or more)
specific roles. In particular, Gaia, like a few other agent-oriented methodologies [9,
7, 16], suggests defining the structure of a MAS in terms of a role model. This model
identifies the roles that agents have to play within the MAS and the interaction protocols
in which the different roles are involved.

The adoption of a role model as the main organisational abstraction makes the above
mentioned methodology mostly targetted at MASs in which the agents are cooperative
and in which the system is closed. However, in order to deal with systems that involve
self-interested agents operating in an open environment, we believe that additional or-
ganisational abstractions have to be introduced in a methodology [33]. In particular,
we believe that organisational rules, organisational structures, and organisational pat-
terns must also play a primary role in the analysis and design of MASs. Organisational
rules express general, global (supra-role) requirements for the proper instantiation and
execution of a MAS. An organisational structure defines the specific class (among the
many possibilities) of organisation and control regime to which the agents/roles have to
conform in order for the whole MAS to work efficiently and according to its specified
requirements. Organisational patterns express pre-defined and widely used organisa-
tional structures that can be re-used from system to system (in a manner similar to the
way catalogues of patterns are widely exploited in the design of object-oriented sys-
tems) [11].

In this paper, we show, with the aid of two application examples, that adoption of the
above organisational abstractions can lead to a methodology that is applicable to a wide
spectrum of agent systems. We also believe that the introduction of high-level organi-
sational abstractions can lead to more clean, manageable, and re-usable MAS designs.
Specifically, the paper is organised as follows. Section 2 introduces the basic concepts
underlying agents and multi-agent systems. Section 3 introduces the additional organ-
isational abstractions that are needed for a methodology to apply to open systems and
motivates their adoption. Section 4 briefly sketches how our organisational abstractions
can be exploited during the analysis and design of MASs. Section 5 discusses related
work in this area and section 6 concludes by outlining the open issues and the future
research directions.

2 Multi-Agent Systems and Organisations

Agents are software entities that exhibit autonomous and proactive goal-directed be-
haviour — their activities are not subject to a global flow of control and they can take
the initiative where appropriate — and that are reactive to changes in the environment
in which they are situated [31, 19]. These characteristics make agents useful as stand-
alone entities that are delegated to accomplish a given task on behalf of a user (e.g.,
personal digital assistants, e-mail filters, or simple robots). However, in the majority
of cases, agents exist in the context of multi-agent software systems, whose global be-
haviour derives from the interaction among the constituent agents [13]. In these cases,
agents also exhibit social behaviour; they interact with one another: either to cooperate
to achieve a common objective or because this helps each of the interacting agents to
achieve their own objectives.



Here, we distinguish between two main classes of multiple agent system: (i) dis-
tributed problem solving systems in which the component agents are explicitly designed
to cooperatively achieve a given goal, and (ii) open systems in which agents, not nec-
essarily co-designed to share a common goal, can dynamically leave and enter the sys-
tem. In the former case, all agents are known a priori, and all agents are supposed to be
benevolent to each other and, therefore, they can trust one another during interactions.
In the latter case, the dynamic arrival of unknown agents needs to be taken into account,
as well as the possibility of self-interested behaviour in the course of the interactions.

2.1 The Organisational Metaphor

The design of parallel and distributed applications, as well as of distributed object sys-
tems, usually relies on an architecture that derives from the decomposition of the func-
tionalities and data required by the system to achieve its goal, and on the definition
of their inter-dependencies [2]. In MASs, however, the autonomous and proactive be-
haviour of the constituent agents suggests that applications can be designed by mimick-
ing the behaviour and structure of human organisations. Thus each agent is assigned a
specific role in the system. That is, a well-defined task/responsibility in the context of
the overall system, that the agent has to accomplish in an autonomous fashion, without
any centralised control. In this model, interactions are no longer merely an expression
of inter-dependencies, rather they are viewed as a means for an agent to accomplish its
role in the organisation. Therefore, interactions are well-identified and localised in the
definition of the role itself, and they help characterise the position of the agent in the
organisation.

An organisational perspective can also make the design of the system less complex
and easier to manage than more traditional metaphors for concurrent systems. Firstly,
each agent becomes a separate locus of control, in charge of accomplishing its role
and being fully responsible for it. Secondly, since agents typically embed most of the
functionality they need to accomplish their role, inter-dependencies between the system
components are likely to be reduced. When taken together, these points ease the design
process because they lead to a cleaner separation between the component-level (i.e.,
intra-agent) and system-level (i.e., inter-agent) design dimensions.

A final advantage relates to the fact that, in many cases, MASs are intended to sup-
port and/or control some real-world organisation. For example, MASs can be adopted
to support the workflow management in a team or to help control the activities of an
Internet auction. In such cases, an organisation-based MAS design reduces the concep-
tual distance between the software system and the real-world system it has to support.
Consequently, this simplifies the development of the system.

2.2 An Organisational Characterisation of Multi-Agent Systems

The organisational perspective leads to a general characterisation of a MAS as depicted
in figure 1 [7, 15]. Although some simpler systems can be viewed as a single organ-
isation, as soon as the complexity increases, modularity and encapsulation principles



suggest splitting the system into different sub-organisations. Thus, in most cases, a com-
plex multi-agent system can be viewed as several interacting organisations. Naturally
a given agent can be part of multiple organisations.

����������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

����������
����������
����������
����������

����������
����������
����������
����������

AgentAgent Agent

Org 1
Org 2

Agent Organizations

Sensors/Effectors

Interaction Protocols

Interaction Medium

Environment

Fig. 1. Characterisation of a Multi-Agent System

In each organisation, an agent can play one or more roles. The role is what the agent
is expected to do in the organisation: both in cooperation with the other agents and in
respect of the organisation itself.

Often, the role of an agent is simply defined in terms of the specific task that the
agent has to accomplish in the context of the overall organisation. However, in our work
the notion of a role is much more precise, in that it gives an agent a well-defined position
in the organisation, with a set of associated expected behaviours.

To accomplish their role in the organisation, agents typically need to interact with
each other in order to exchange knowledge and coordinate their activities. Therefore,
the concept of inter-agent interactions is strictly related to the role of an agent. It is
the role that requires a given form of interaction. Even more precisely, an agent, by the
very fact that it plays a given role and has a well-defined position in the organisation,
is committed to certain interaction protocols with the other agents in the organisation.
Of course, the need to interact according to specific protocols requires the presence
of a communication medium between agents. This can be either a traditional network
infrastructure, typically enforcing a message-passing interaction model, or another in-
frastructure possibly enforcing a different interaction model (e.g., a shared dataspace
enforcing an indirect, data-oriented interaction model [12]).

Generally speaking, a MAS is immersed in a given environment with which the
agents may need to interact in order to accomplish their role. This interaction occurs via
sensors and effectors, i.e., mechanisms that enable agents to sense and effect a selected
portion of the environment. That portion of the environment that an agent can sense and
effect is determined by the agent’s specific role, as well as on its current status.



2.3 Exemplar Multi-Agent Systems

To illustrate our points on the need for organisational abstractions, we will consider two
sample problems that will act as running examples throughout this paper.

Manufacturing Pipeline: As an example of a MAS that belongs to the class of dis-
tributed problem solvers, we will consider a system for the control of a manufacturing
process. For example, let us consider the process of assembling, painting and packing
metal hardware. Typically, such a control system can be delegated to a multiplicity of
agent organisations, each devoted to the control of a well-defined portion of the over-
all manufacturing process (e.g., the assembling section or the painting section). Within
each section, agents can then be associated with the control of a specific tool in the con-
trol system or to the control of a specific condition that must be assured to guarantee
the correctness of the process.

In this context, we specifically consider a manufacturing pipeline in which items are
transformed/augmented (e.g., a pipeline in which metal items are painted). Here, differ-
ent agents can be devoted to the control of different stages of the pipeline (e.g., an agent
is devoted to control the paint spraying, another is devoted to control the heat treatment
of the paint, another of controlling the cooling process). Agents interact both indirectly
through the environment and directly, through various forms of interaction protocol. In
such an organisation, the role of each agent is that of “stage of the pipeline”, in charge
of ensuring that a specific portion of the pipeline works properly (e.g., that the oven
maintains a constant temperature and that the cooling system does not cool items too
fast). To this end, agents need to sense and effect that portion of the environment which
represents the stage of the pipeline of which they are in charge. In addition, the agents
need to interact to achieve a proper global functioning of the pipeline (for instance,
by guaranteeing a uniform flux of items throughout the pipeline and by guaranteeing
that the global flux of item does not exceed the “processing capabilities” of each of the
stages).

Conference Management: As an example of an open system we will consider an agent-
based system for supporting the management of an international conference. Setting
up and running a conference is a multi-phase process involving several individuals and
groups. During the submission phase, authors of submitted papers need to be informed
that their papers have been received and they need to be assigned a submission number.
Once the submission deadline has passed, the program committee (PC) has to handle
the review of the papers; contacting potential referees and asking them to review a
number of the papers. After a while, reviews are expected to come in and be used to
decide about the acceptance/rejection of the submissions. Authors need to be notified of
these decisions and, in case of acceptance, must be asked to produce the camera ready
version of their revised papers. Finally, the publisher has to collect the camera ready
versions from the authors and print the whole proceedings.

The conference management problem naturally leads to a conception of the whole
system as a number of different organisations, one for each phase of the process. In
each organisation, the corresponding MAS can be viewed as being made up of agents
associated to the persons involved in the process (authors, PC Chair, PC Members,



Reviewers). The roles played by each agent reflect the ones played by the associated
person in the conference organisation. They may require agents to interact both directly
with each other and indirectly, via an environment composed of papers and review
forms. Since an agent is directly associated with a person, and its behaviour can be
influenced by that person, opportunistic behaviour can emerge in the application. For
example, an author could attempt to review their own paper or a PC Member could try
to deal with fewer papers than they should. In addition, as the natural environment for
the MAS is the Internet — due to the world-wide nature of the conference organisation
— interactions with agents external to the MAS itself are likely to occur. For instance,
a reviewer can decide to exploit its own personal agent to interact with the other agents
of the organisation.

3 Organisational Abstractions

Organisational role models precisely describe all the roles that constitute the computa-
tional organisation; in terms of their functionalities, activities, and responsibilities, as
well as in terms of their interaction protocols and patterns, which establish the position
of each role in the organisation [32, 9, 7] . However, such role models cannot be consid-
ered as the sole organisational abstraction upon which to base the entire development
process. Rather, before the design process actually defines the role model and, conse-
quently, the whole organisation, a number of other steps need to be performed. Firstly,
the analysis phase should identify how the organisation is expected to work. Secondly,
the design phase should define which kind of organisation best fits the requirements
identified in the analysis phase. Thirdly, it needs to be determined whether any re-use
of available components can be exploited in some part of the organisational design.
When taken together, this necessitates the introduction of three further organisational
abstractions: organisational rules (section 3.1), organisational structures (section 3.2),
and organisational patterns (section 3.3).

3.1 Organisational Rules

The analysis phase aims to collect all the specifications and requirements for building
the MAS. To this end, it is possible to identify the basic skills (functionalities and com-
petences) required by the organisation, as well as the basic interactions that are required
for the exploitation of these skills. However, until the design phase has decided which
organisation is most appropriate for the system, the identified skills and interactions
cannot fully define the roles and the interaction protocols that will be played in the sys-
tem (i.e., at defining a complete role model): this would imply an early commitment
to a specific form of organisation. Instead, what the analysis phase can further identify
— even in the absence of a complete role model — are the constraints that the actual
organisation, once defined, will have to respect.

The implementation and/or execution of a computational organisation will have to
respect a number of constraints, whose identification can either: (i) spread horizontally
over all the roles and protocols (or, which is the same in this context, over the identified
preliminary roles and protocols), or (ii) express relations and/or constraints between



roles, protocols, or between roles and protocols. For example, in the case of human
organisations: (i) social conventions define a set of implicit rules that moderate the in-
teractions between all members (e.g., a clerk cannot contradict or ignore the commands
of his manager), (ii) company specific conventions might impose constraints on how
different roles have to be played in each of its organisations (e.g., a clerk cannot assume
a role that would imply a member of the managing staff to be somehow subordinated to
his clerk).

In both cases, such global constraints cannot easily be expressed in terms of in-
dividual roles or individual interaction protocols. Nevertheless, their identification is
important for the correct development of the system and, therefore, they must be taken
into account by the designer when actually defining the organisation of the system. To
capture this type of information we use the concept of organisational rules.

The explicit identification of organisational rules is of particular importance in the
context of open agent systems. With the arrival of new, previously unknown, and pos-
sibly self-interested agents, the overall organisation must somehow enforce its internal
coherency despite the dynamic and untrustworthy environment. The identification of
global organisational rules allows the system designer to explicitly define: (i) whether
and when to allow newly arrived — possibly unknown — agents to enter the organi-
sation, and, once accepted, what their position in the organisation should be; and (ii)
which behaviours should be considered as an expression of self-interest, and which
among them must be prevented by the organisation. In this context, organisational rules
may also drive the designer towards the definition of the specific organisation that most
eases the enforcement of the organisational rules and, for instance, can facilitate pre-
venting undesirable behaviours of unknown and self-interested agents.

In the manufacturing pipeline example, all the different stages have to maintain
the same speed of flow of items in the pipeline. This requirement can be more easily
expressed in terms of a global organisational rule, rather than replicating it as a require-
ment for each and every role in the organisation. In the conference management system,
there are a number of rules that drive the proper implementation of the organisation. As
notable examples: an agent should be prevented from playing both the role of author
and reviewer of the same paper and PC Members should not be in charge of collecting
the reviews for their own papers. Neither of these constraints can easily be expressed
in terms of properties/responsibilities associated to single roles and protocols. Instead,
they represent global organisational rules.

3.2 Organisational Structures

A role model describes all the roles of an organisation and their positions in that organ-
isation. Therefore, a role model also implicitly defines the topology of the interaction
patterns and the control regime of the organisation’s activities. That is, it defines the
overall organisational structure. For example, a role model describing an organisation
in terms of a “master role” and “slave roles” — where the former is in charge of as-
signing work to the latter and of load balancing their activities — implicitly defines an
organisational structure based a hierarchical topology and on a load partitioning control
regime. Other exemplar organisational structures include collectives of peers, multi-



level and multi-divisional hierarchies [10], and they can all be modelled in term of a
role model.

However, it is conceptually wrong to think of a role model as something that ac-
tually defines the organisational structure. Instead, in the design of a MAS, as well as
in the design of any organisation, the role model should derive from the organisational
structure that is explicitly chosen. Thus organisational structures should be viewed as
first-class abstractions in the design of MASs.

The definition of the system’s overall organisational structure can derive from the
specifications collected during the analysis phase, as well as from other factors, related
to efficiency, simplicity of application design, and organisational theory [10]. In any
case, a methodology cannot start the analysis phase by attempting to define a complete
role model that implicitly sets the organisational structure. Rather, the definition of the
organisational structure is a design choice that should not be anticipated during the
analysis phase. In fact:

– starting from the organisational structure — by pretending to know in advance what
it should be or by committing a priori to a given organisational structure — may
prevent subsequent optimization and change;

– although, in several cases, the organisational structure of a MAS is directly driven
by its counterpart in the real-world system that the MAS is supposed to support,
automate or monitor, this should not automatically imply that the organisation of
the software system should mimic that of the real counterpart. Instead, the MAS
may be better adopting a different organisational choice. There are several reasons
why this could happen:

� the real world organisation may not be well structured and the analysis phase
could highlight several shortcomings;

� the software, in itself, may change the way of working. Thus, the mere presence
of the software introduces changes in the real organisation and these changes
need to be reflected in the MAS;

� the efficiency issues that may have driven a human organisation towards the
adoption of a particular organisational structure may not necessarily apply to
the agent organisation.

– the organisation, once defined, has to respect the organisational rules. Starting from
a pre-defined organisational structure can make it difficult to have the organisa-
tional rules respected and enforced by the organisation. Instead, the choice of the
organisation has to follow the identification of the organisational rules and have to
be possibly driven by them.

In the manufacturing pipeline example, the most natural choice is to have an or-
ganisational structure in which all of the stages in the pipeline are peers, and in which
they directly interact with their neighbours as needed. For instance, with reference to
Figure 2, the stages Stage1, Stage2, Stage3, and Stage4 are controlled by agents R1,
R2, R3 and R4, respectively, and each of these agents directly interacts with its neigh-
bours. This closely mimics the structure of the real-world pipeline. However, this is
not the only possible choice. Moreover, it may not necessarily be the best one. For in-
stance, due to the real-time nature of the pipeline control problem, it may happen that



Stage 1 Stage 2 Stage 3 Stage 4 Other Organisations

R1 R2 R3 R4

Fig. 2. A Manifacturing pipeline: pipeline organisation

a problem that requires global coordination between all the agents cannot be solved in
due time, because of the high coordination costs associated with peer-based systems.
In such cases, the designer can adopt a different organisational structure: for example,
as sketched in Figure 3, it can introduce a global coordinator agent RC in charge of
controlling and mediating the interactions for all the other agents, thus leading to a
hierarchical organisation.

In the conference management example, the overall structure of the organisation can
generally be derived from the structure the conference organisers have decided to adopt.
However, it is often the case that the same conference varies its organisational structure
from year to year, depending on both the size of the conference and the organisers’ atti-
tudes. For example, a small conference usually relies solely on the PC Members for the
review process, and the PC Chair acts as a global coordinator, in a single-level hierar-
chy, for the work of the PC Member (see Figure 4). In contrast, a big conference usually
has to involve external reviewers. This may require the PC Chair to partition the papers
among the PC Members, and the PC Members to be in charge of seeking the appro-
priate number of reviews for their assigned partition. In other words, the organizational
structure is a multi-level hierarchy based on a work partitioning control regime at the
highest level (the one of the PC Chair) and on a global coordination control regime at
the PC Member level (see Figure 5).

If the analysis phase commits the system to a specific organisational structure, the
designer of the associated MAS will find it difficult to adapt the system, year after
year, to the changing needs. For instance, it is very likely that a conference changes its
dimensions in different editions and, consequently, its organizational structure. Thus, if
the analysis phase simply describes the system’s requirements, abstracting away from
any specific organisational structure, the designer can reuse it to produce a new design
according to the conference’s new organisational structure.

Organisational Relationships The obvious means by which to specify an organisation
is by the inter-agent relationships that exist within it. We emphasise that there is no
universally accepted ontology of organisational relationships: different types of organ-
isations make use of entirely different organisational concepts. For example, notions
such as “command and control”, which may be widely accepted in military organisa-



Stage 1 Stage 2 Stage 3 Stage 4 Other Organisations

R1 R2 R3 R4

RC

Fig. 3. A Manifacturing pipeline: hierarchical organisation

tions, tend not to be used in (most) academic organisations. Nevertheless, as a first pass
towards more complete characterisations and formalisations, we can identify certain
types of relationships that frequently occur in human and other organisations:

– control — which identify the authority structures within a system;
– peer — which identify agents of equal status;
– benevolence — which identify agents with shared interests;
– dependency — which identify the ways in which one agent may rely on another;
– ownership — which delimit organisational boundaries.

Note that these (binary) relationships exist between roles within a system — let � be
the set of all such roles. In what follows, we give the intuition behind each type of
relation. We then go on to give a precise formal definition of the semantics of these
relationships.

Perhaps the paradigm example of an organisational relationship is that of one agent
controlling another. Intuitively, if a role r controls another role r �, then r� will perform
any service demanded of it by r. If r controls r �, then as far as r is concerned, the role r �

is a resource to be used as desired. Any control relationship � � � ��, must satisfy
the following properties:

– (Reflexive): �r� r� � �, for all r � �.
Any role controls itself.

– (Transitive): if �r� r�� � � and �r�� r��� � � then �r� r��� � �.
If Ann controls Bob, and Bob controls Charles, then Ann controls Charles.

– (Anti-symmetric): if �r� r�� � �, then �r�� r� �� �.
If Ann controls Bob, then Bob does not control Ann.

Peer relationships capture the notion of “equal status” within organisations. For
example, consider two professors in the same university, but in different departments.



Paper 1 Paper 2 Paper 3 Paper 4

Rf 1 Rf2 Rf3 Rf4

Environment

PC Member
(reviewer)

PC Member
(reviewer) (reviewer)

PC Member
(reviewer)

PC Member

PC Chair

reviews and 
(assigns

collect them)

Fig. 4. Conference management: in a small conference, the PC Chair and assigns the reviews
directly to PC Members and, possibly, to itself

These professors have equal status, even though they may not interact with one-another
in the normal course of events. Status relationships have implications for how agents
should interact with one-another. Any peer relationship � � ��� must be an equiv-
alence relation: it must be reflexive, symmetric, and transitive.

Benevolence is the classic assumption made in research on distributed problem solv-
ing (DPS) [8]. Put simply, an agent i is said to be benevolent to another agent j if i will
offer its services to j whenever it is able to do so. Note that this is not the same as con-
trol. If Ann is benevolent to Bob, then Ann is inclined to help Bob wherever possible,
except where helping Bob would prevent one of her own goals being satisfied. For-
mally, a benevolence relation � � � �� must be reflexive and symmetric. Note that
a benevolence relation is not (necessarily) transitive. Thus it is entirely possible for r to
be benevolent to r�, and for r� to be benevolent to r ��, without r being benevolent to r ��.
To see why this is the case, consider for example benevolence relations between coun-
tries: it is entirely possible for the USA to be benevolent to (for example) Switzerland,
and for Switzerland to be benevolent to Ruritania, without the USA being benevolent
to Ruritania. (Situations like this are common in international relations!)

Dependency Relationships exist between agents primarily because of resource re-
strictions. For example, Ann controls some resource, (for example a piece of informa-
tion), and Bob requires this information to satisfy one of his goals, then Bob is depen-
dent on Ann. There are in fact many sub-classes of dependence relation that may exist
between agents (see, e.g., [27]). For example, Ann and Bob may be mutually dependent
on one-another; Bob may be dependent on Ann but Ann does not know it, or he may
be dependent on Ann but he does not know it, and so on. Dependency relations are
reflexive and transitive, but need not be symmetric.



Paper 1 Paper 2 Paper 3 Paper 4

Rf 1 Rf2 Rf3 Rf4

Environment

PC Chair

PC Member PC Member PC Member PC Member

papers and

reviews) reviews) reviews)

Reviewer Reviewer Reviewer Reviewer Reviewer

(partitions

collects reviews)

(assigns (assigns (assigns (assigns
reviews)

Fig. 5. Conference management: in a big conference, the PC Chair partitions the papers among
the PC Members that, in their turns, are in charge of finding the appropriate referees for their
assigned papers and of collecting the reviews

Finally, turning to ownership relations, the idea is to delimit boundaries of common
ownership — thus all the agents belonging to organisation o are grouped together, as
are all the agents belonging to o �, and so on. Every agent is required to be the member
of at least one ownership group, which may of course be a singleton set. Formally, any
ownership relation 	 � ��� must be an equivalence relation.

3.3 Organisational Patterns

There are numerous potential organisational structures, both in terms of topology of the
interactions and control regimes [10]. However, we believe that a (comparatively) small
subset of these structures are likely to be used most of the time. Thus, only rarely will
peculiar structures be adopted (typically when the organisation has a very specific and
unusual set of requirements).

Any methodology that encourages re-use of pre-defined components and architec-
tures will ease and speed-up the work of both designers and developers. Object-oriented
technology has recognised this need and increased the potential for re-use via design-
patterns [11]. In this case, the most widely-used patterns of composition and interaction
of object-oriented systems have been catalogued, and precisely described in terms of
extent of applicability, sample implementation, and use cases. A software designer can
then rely on these catalogues, and build applications by composing and re-using not
only single objects, but whole pieces of the software architecture.



In the area of agent-based systems, we envisage something similar with respect
to the most widely used organisational structures. Thus with the availability of cata-
logues of organisational patterns, designers can recognise in their MASs the presence
of known patterns, and re-use definitions from the catalogue. In addition, designers can
also be guided by the catalogue in the choice of the most appropriate organisational pat-
terns for their MAS. Of course, for patterns to be properly exploited, the organisational
structure must have been explicitly identified in the design phase.

In the pipeline example, the pipeline organisation between agents expresses an or-
ganisational pattern that is likely to re-appear in many applications (and which is already
widely exploited as an architectural patterns in traditional software systems). The same
can also be said of the hierarchical pipeline structure. In both cases, if a catalogue of
patterns was available, the designer could rely on it to help define the system structure.

In the conference management example, the various organisational structures that
conferences of different sizes tend to adopt are all fairly typical: from single hierar-
chies, to multi-level and divisional ones. Therefore, also in this case, it is expected that
a methodology that makes explicit use of organisational patterns would ease the appli-
cation design.

It is worth mentioning that several attempts to analyse and catalogue organisational
agent patterns currently exist [28, 16, 17]. However, in most cases, this work abstracts
away from any specific methodology for MAS analysis and design which should en-
courage and facilitate the re-use of these patterns. This, in turn, makes re-use more
difficult.

4 Towards an Organisation-Oriented Methodology

The exploitation of the organisational abstractions we have introduced naturally pro-
motes an organisation-oriented methodology for the analysis and design of MASs.

The analysis phase is tasked with collecting all the specifications from which the
design of the computational organisation can start. This includes the identification of:

– the overall goals of the organisation and its expected global behaviour;
– the basic skills required by the organisation and the basic interactions required for

the exploitation of these skills (that is, a preliminary role model);
– the rules that the organisation should respect and/or enforce in its global behaviour.

The output of the analysis phase should therefore be a triple: 
PR� PP� OL�, where
PR are the preliminary roles of the system (derived from the identification of the ba-
sic skills), PP are the preliminary protocols (which have already been discovered to be
necessary for the preliminary roles), and OL are the organisational rules. It is worth not-
ing that the analysis phase should not committ to any specific organisational structure.
Instead, its output should be (and be expressed in terms) independent of any specific
organisational structure.

The design phase builds on the output of the analysis phase and produces a complete
specification of the MAS. To this end, design can be decomposed into the following
phases:



– definition of the organisational structure; by choosing the topology and the control
regime. This involves considering: (i) the overall organisational efficiency, (ii) the
need to respect and enforce the organisational rules, and (iii) the corresponding (if
any) real-world organisation;

– completion of the preliminary role model; based upon the adopted organisational
structure, and by keeping the organisational-independent aspects (detected from the
analysis phase) and the organisational-dependent ones (deriving from the adoption
of a specific organisational structure and from the insertion of roles and protocols
in it) as separate as possible;

– exploitation of well-known organisational patterns on the basis of the system’s
identified organisational structure.

As in the Gaia methodology, we view the output of the design phase as a spec-
ification that can be picked up by using a traditional method (such as object orien-
tation or component-ware) or that could be implemented using an appropriate agent-
programming framework should one be available.

5 Related Work

Traditional analysis and design methodologies, such as object-oriented ones [2], are
poorly suited to MASs because of the fundamental mismatch between the abstractions
they provide [32]. Consequently, we believe that those efforts that attempt to simply
extend object-oriented methodologies to MAS [18, 16] will inevitably fall short. More-
over, traditional compositional methods for object-oriented software architectures [24,
3] also have limited applicability in the definition of organisations for MASs. On the
one hand, the defined interaction models are too static when compared to the dynamic
interaction model defined by agents. On the other hand, the functionality-oriented mod-
elling of the interactions between the system components clashes with the role-oriented
perspective of MASs.

A number of agent-specific modelling techniques and development methodologies
have been proposed in recent years (see [14] for a survey), several of which attempt
to exploit the idea of a MAS as a computational organisation. In most of the cases,
organisation-oriented systems and modelling techniques define an organisation as a col-
lection of roles (i.e., a role model), without introducing any higher-level organisational
abstractions. This is precisely what happens, for example, in the ALAADDIN system
[9] where “the group structure” is simply the collection of roles that compose the or-
ganisation. Analogously, in the ToolKit approach [7], an organisation is defined simply
by the set of roles that compose it and by the interaction protocols that have to occur
between roles. Neither of these approaches incorporate the notions of organisational
rules or organisational structures and, for the reasons we have outlined, will be limited
in the range of agent systems they can deal with. In addition, these proposals do not at-
tempt to define a complete and clear methodology for the development of agent system
organisations.

Gaia starts from the organisational metaphor and defines a complete methodology
[32] for the development of multi-agent systems. It also provides a clean separation



between the analysis and design phases. However, it suffers from several limitations
that are caused by the incompleteness of its organisational abstractions. The objective
of Gaia’s analysis phase is to define a fully elaborated role model, derived from the sys-
tem specification, together with an accurate description of the protocols in which the
roles will be involved. This implicitly assumes that the overall organisational structure
is known a priori. However, as already stated, this is not always the case. In addition, by
focusing exclusively on the role model, the analysis phase fails to identify any global
organisational rules (making Gaia unsuitable for modeling open systems and for con-
troling the behaviour of self-interested agents).

Similar shortcomings also effect most of the recently proposed organisation-oriented
methodologies. For example, the MASE (Multi-Agent Systems Engineering) method-
ology [30] provides clean guidelines for developing multi-agent systems, based on a
well-defined six-step process. This process drives developers from analysis to imple-
mentation. However, once again, the design process fails to identify any organisational
abstraction other than the role model.

From a different perspective, some work in the area of coordination models and
languages [12, 5] does explicitly address the problem of defining global rules (“coordi-
nation laws”) to specify the behaviour and the interaction of agent ensembles. In this
work, all interactions have to occur via specific “coordination media”, whose inter-
nal behaviour can be programmed so as to implement specific policies for governing
agent interactions. However, only recently have coordination models been recognised
as useful abstractions upon which to define methodologies for the analysis and design of
those systems. To achieve this, the coordination media are exploited as both the concep-
tual and physical repository of the organisational rules [6, 26, 25]. A somewhat similar
approach has driven the implementation of the Fishmarket system for agent-mediated
auctions [23]. In Fishmarket, the need to force agents to act in accordance with the “so-
cial conventions” that rule the organisation of an auction is recognised. To enact social
conventions, the system dynamically associates a “controller agent” with each agent in
the auction. Controller agents act as a coordination media, in charge of mediating all
the interactions and of making agents respect the auction’s conventions.

6 Conclusions and Future Work

This paper has discussed a number of issues related to the analysis and design of multi-
agent systems. Specifically, we have considered the view of developing multi-agent
systems as a process of constructing computational organisations. To date, the organ-
isational concepts of agent roles and role models have become an important research
area in the field of agent-based systems. However in this paper we have introduced three
further organisational abstractions: organisational rules, organisational structures, and
organisational patterns. These concepts, although neglected by the current methodolo-
gies for agent-oriented software engineering, are nevertheless of fundamental impor-
tance in multi-agent systems, and we therefore believe they should play a central role in
any methodology. Having introduced and motivated these organisational abstractions,
we sketched some general guidelines for a new methodology for the analysis and design
of multi-agent systems that is centered around organisational abstractions.



Further work is needed to detail the proposed methodology, by:

– fully formalising the concepts of organisation rules and organisational structures.
This can possibly be achieved by refining the formalism that we have already in-
troduced in Subsection 3.2 with respect to the organizational structures.

– providing suitable notations for expressing the expected outputs of the analysis and
design phases. We expect standard notations, such as UML, to be rapidly adapted
to the needs of agent-based software engineering [1], as well as new agent-specific
methodologies to emerge;

– identifying guidelines that assist the designer in the identification of suitable organ-
isational structures for the system. Here analytical methods, experimental results,
and case study experiences are likely to be helpful in supporting the choice.

For all of the above topics, we expect significant cross-fertilisation of models, for-
malisms and experiences from a number of different research areas. Among others, the
research area of requirements engineering [22] can provide useful guidelines towards
the identification and the modelling of organisational rules; the research results of both
coordination, organizational and management sciences [20, 29, 21], which have widely
studied the structures of human organisations and their most common patterns, are also
expected to play a significant role.

References

1. B. Bauer, J. P. Muller, and J. Odell. Agent uml: A formalism for specifying multiagent
software systems, 2000. In this volume.

2. G. Booch. Object-oriented Analysis and Design (second edition). Addison Wesley, Reading
(MA), 1994.

3. F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur. Desire: Modelling multi-
agent systems in a compositional formal framework. Journal of Cooperative Information
Systems, 6(1):67–94, 1997.

4. S. Bussmann. Agent-oriented programming of manifacturing control tasks. In Proceeding of
the 3rd International Conference on Multi-Agent Systems (ICMAS 98), pages 57–63. IEEE
CS Press, June 1998.

5. P. Ciancarini. Coordination models and languages as software integrators. ACM Computing
Surveys, 28(2), June 1996.

6. P. Ciancarini, A. Omicini, and F. Zambonelli. Multiagent systems engineering: the coordina-
tion viewpoint. In Intelligents Agents VI (ATAL99), volume 1767 of LNAI, pages 250–259.
Springer-Verlag, 2000.

7. Y. Demazeau and A. C. Rocha Costa. Populations and organizations in open multi-agent
systems. In 1st National Symposium on Parallel and Distributed AI (PDAI’96). 1996.

8. E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer, 1988.
9. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations

in multi-agent systems. In Proceeding of the 3rd International Conference on Multi-Agent
Systems (ICMAS 98). IEEE CS Press, June 1998.

10. M. S. Fox. An organizational view of distributed systems. IEEE Transactions on Systems,
Man, and Cybernetics, 11(1):70–80, January 1981.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, Read-
ing (MA), 1995.



12. D. Gelernter and N. Carriero. Coordination languages and their significance. Communica-
tions of the ACM, 35(2):97–107, February 1992.

13. M. H. Huhns. Interaction-oriented programming, 2000. In this volume.
14. C. Iglesias, M. Garijo, and J. Gonzales. A survey of agent-oriented methodologies. In

A. S. Rao J.P. Muller, M. P. Singh, editor, Intelligents Agents IV (ATAL98), LNAI. Springer-
Verlag, 1999.

15. N. R. Jennings. Agent-based computing: Promises and perils. In International Joint Confer-
ence on Artificial Intelligence (IJCAI 99), pages 1429–1436, 1999.

16. E. A. Kendall. Role modelling for agent system analysis, design, and implementation. In 1st
International Symposium on Agent Systems and Applications. IEEE CS Press, October 1999.

17. E. A. Kendall. Agent software engineering with role modelling, 2000. In this volume.
18. D. Kinny and M. Georgeff. A methodology and modelling technique for systems of bdi

agents. In Workshop on Modelling Autonomous Agents in a Multi-Agent World, LNAI 1038,
pages 56–71. Springer-Verlag, 1996.

19. J. Lind. Issues in agent-oriented software engineering, 2000. In this volume.
20. T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM Comput-

ing Surveys, 26(1):87–119, March 1994.
21. H. Mintzberg. The Structuring of Organizations: A Synthesis of the Research. Prentice Hall,

Englewood Cliffs, N.J., 1979.
22. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional requirements:

A process-oriented approach. IEEE Transactions on Software Engineering, 18(6):483–497,
June 1992.

23. P. Noriega. Agent-mediated Auctions: The Fishmarket Metaphor. Ph.D Thesis, Universitat
Autonoma de Barcelona, Barcelona (E), 1997.

24. J. Odell, H. Van Dyke Parunak, and C. Bock. Representing agent interaction protocols in
uml. In OMG Document ad/99-12-01. Intellicorp Inc., December 1999.

25. A. Omicini. Soda: Societies and infrastructures in the analysis and design of agent-based
systems, 2000. In this volume.

26. A. Omicini and F. Zambonelli. Coordination for Internet application development. Journal
of Autonomous Agents and Multi-Agent Systems, 2(3):251–269, 1999.

27. J. S. Sichman, R. Conte, C. Castelfranchi, and Y. Demazeau. A social reasoning mechanism
based on dependence networks. In Proceedings of ECAI94, pages 188–192, Amsterdam,
1994.

28. Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development based on agent patterns.
In International Conference on Software Engineering, pages 356–367. ACM, 1999.

29. James D. Thompson. Organizations in Action. McGraw-Hill, New York, 1967.
30. M. Wood and S. A. DeLoach. An overview of the multiagent systems engineering method-

ology, 2000. In this volume.
31. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 10(2):115–152, 1995.
32. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology for agent-oriented

analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3):285–
312, 2000.

33. F. Zambonelli, N. Jennings, A. Omicini, and M. Wooldridge. Agent-oriented software engi-
neering for internet applications. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors, Coordination of Internet Agents: Models, Technologies and Applications. Springer-
Verlag, 2000.


